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Abstract

Recently a hybrid analysis method has been developed in which the various components of a complex vibro-acoustic

system can be modeled either deterministically or statistically. The coupling between these two types of component is

effected by using a diffuse field reciprocity relation, which relates the cross-spectrum of the forces at the boundary of a

statistical component to the vibrational energy level of the component. In practical applications, components may be

coupled over a domain, rather than just at the component boundaries—for example, the coupling between a plate and an

acoustic volume involves the surface of the plate. It is shown in the present work that the reciprocity relation and the

hybrid method can be extended to this situation, so that, for example, it is possible to couple a statistical model of a plate

to a finite element model of an acoustical cavity, or to a statistical acoustical cavity. The coupling of statistical acoustical

and structural components is not new, but rather is done routinely within statistical energy analysis (SEA); this part of the

present work demonstrates that the relevant coupling loss factors can be found by using the hybrid method. The analysis is

illustrated by various numerical examples.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of predicting the mid to high frequency response of a complex vibro-acoustic system faces two
major difficulties, both of which arise from the fact that the wavelength of deformation of the system
components can be relatively short. Firstly, many degrees of freedom are required to capture the detailed
deformation of the system, and secondly the response of the system can be sensitive to imperfections, so that
manufacturing uncertainties can lead to significant variability in the performance of nominally identical items.
A prime example of this situation arises in the automotive industry, where finite element models having several
million degrees of freedom are often employed to represent a vehicle [1], while at the same time it is well known
that the acoustic performance of vehicles from a production line can be very variable [2]. Recently a hybrid
deterministic-statistical modeling technique has been developed to analyze this type of problem [3–5], in which
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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parts of the system are modeled by using the finite element method, while other components are modeled as
statistical subsystems. Rather than employ a large number of finite element degrees of freedom, each statistical
subsystem is modeled by a single energy variable, thus leading to a large reduction in the size of the
computational model required. Furthermore, the approach leads to an estimate of the mean [3] and variance
[5] of the response of an ensemble of random systems without the need for Monte Carlo simulations. The key
enabling feature of the method is a diffuse field reciprocity relation [6,7] which allows statistical subsystems to
be coupled to finite element degrees of freedom within the same model. The aim of the present paper is to use
an extended form of this relation to model a class of problem that has not previously been considered within
the framework of the hybrid method, namely the coupling of statistical structural subsystems to statistical or
deterministic acoustical components.

The original form of the diffuse field reciprocity relation [6] allows the cross-spectrum of the forces on the
boundary of a statistical subsystem to be written in terms of the subsystem vibrational energy. In this way, the
edges of a statistical plate can be coupled to finite element beams, or the faces of a statistical acoustic volume
can be coupled to finite element plates. The aim of the hybrid method is that any component within a system
can be modeled either by using the finite element method (or some other deterministic method) or as a
statistical subsystem. There is potentially a difficulty with this notion if, for example, a statistical plate is to be
coupled to a finite element acoustic volume; in this case the coupling is not along the boundary of the
statistical subsystem, but rather over the domain of the component, and the original reciprocity relation [6]
does not cover this situation. Whereas the original derivation of the reciprocity relation was based on
considering wave propagation, it has subsequently been shown in Ref. [7] that the relation can also be derived
from modal arguments; this approach lifts the restriction on the way in which the statistical component is
coupled to other components and thus allows the problem of domain, or ‘‘area’’, junctions to be addressed.
This development is exploited in the present paper to show how area junctions can be used in the hybrid
method to develop a wide range of deterministic-statistical models.

The notion of coupling a statistical model of a plate to a statistical model of an acoustic volume is not new,
but rather forms one of the earliest problems addressed by statistical energy analysis (for example in
Refs. [8–10]). Furthermore, a statistical model of a plate, which can be coupled to either random or
deterministic acoustic loading, has been given by Bonilha and Fahy [11]. The novelty of the present work rests
in addressing this type of problem through the methodology of the hybrid method, thus allowing general
flexibility in the way in which a complex built-up system can be modeled as an assembly of deterministic and
statistical components.

The diffuse field reciprocity relation is reviewed in Section 2, with particular attention to the applicability of
the relation to area junctions. The hybrid equations are summarized briefly in Section 3, and the application of
the method to systems with area junctions is then considered in Section 4 by means of formulating the relevant
equations for several example systems. The efficient numerical implementation of the method is also discussed
in this section. Several numerical examples are then given in Section 5, where a comparison is made with
benchmark finite element results.

2. The reciprocity relation for a random component

2.1. The wave approach

The diffuse field reciprocity relation derived by Shorter and Langley in Ref. [6] is best described by way of
example, and to this end, a simple built-up system consisting of two plates which are embedded in a beam
framework is shown in Fig. 1. The most direct way of analyzing the dynamic response of this system would be
to generate a finite element model, in which the degrees of freedom consist of the displacements at a set of
nodes distributed throughout the system. Although in principle this process is straight forward, in practice the
plates may be thin and have a relatively short wavelength of vibration, so that many degrees of freedom are
needed to capture the detailed spatial pattern of the response. Furthermore, the plates may be sensitive to
imperfections, so that the response is significantly random over the ensemble of possible realizations of the
system. Progress towards addressing both of these issues can be made by considering a single plate in isolation,
as shown in Fig. 2. Rather than consider the motion at all points on the plate, attention is restricted to a set of
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Fig. 1. A built-up system consisting of two plates in a beam framework.

Fig. 2. Boundary degrees of freedom q for one of the plates in Fig. 1.
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degrees of freedom q which describe the displacement on the boundary. For harmonic motion of frequency o,
the relationship between q and a corresponding set of external forces f acting at the boundary can be written in
the form

Dq ¼ f, (1)

where D is the (frequency dependent) dynamic stiffness matrix, and q and f are interpreted as complex
amplitudes, so that, for example, the time history of the displacement is given by Re[q exp(iot)]. Given D for
each of the two plates in Fig. 1, together with the dynamic properties of the beam framework, it is possible to
assemble the dynamic properties of the whole system. The key challenge is to develop a method of computing
the properties of D that avoids the problems associated with the finite element method. In Ref. [6] this is
achieved by taking a wave view of the response of the plate: the harmonic motion of the boundary generates
elastic waves which propagate across the system and are reflected each time they encounter the boundary. The
‘‘direct field’’ dynamic stiffness matrix Ddir is defined as the matrix D which would be obtained were there no
reflections, and the difference between the boundary force Ddirq produced by this matrix and the actual
boundary force Dq is termed the ‘‘reverberant’’ force, so that frev ¼ Ddirq�Dq. With this notation, Eq. (1) can
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be rewritten in the form

Ddirq ¼ f þ frev. (2)

The matrix Ddir can be computed efficiently by a variety of methods (see for example [4,6]), so that the aim of
providing an efficient description of the plate dynamics will be achieved providing the properties of frev can be
found. Based on wave scattering arguments, it was shown in Ref. [6] that if the reverberant wavefield is
‘‘diffuse’’ then

E½frev� ¼ 0; (3)

E½frevf
�T
rev� ¼

4E

opn

� �
ImfDdirg, (4)

where E[ ] represents the average taken over an ensemble of random structures, E is the vibrational energy of
the plate (defined as twice the time averaged kinetic energy), and n is the plate modal density. Eq. (4) is termed
the ‘‘diffuse field reciprocity relation’’, in that it relates the forces frev applied on the boundary by a diffuse
wave field to the wave generating properties of the boundary, which are governed by Im {Ddir}. The definition
of a diffuse wavefield in the present context is fully discussed by Shorter and Langley in [6]; in brief, the
ensemble average of the energy stored by each possible wave component must be the same. It was shown in
Ref. [6] that Eqs. (2)–(4) enable an efficient method to be developed for the analysis of complex random
systems which avoids the use of very large randomized finite element models, as detailed in Section 3.

The derivation of Eq. (4) described above is based on considering wave scattering from the boundaries of a
component. However, in some cases a component may be coupled to other components over a domain, rather
than just at the boundaries. A common example of this occurs in structural-acoustic coupling, as illustrated in
Fig. 3. An example of coupling over a domain: a plate coupled to an acoustic cavity.
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Fig. 3. Here a plate is coupled at every point on the surface to an acoustic volume; if the degree of freedom
vector q includes the motion of the interior of the plate, as well as the boundary, then it is not immediately
clear how Ddir might be defined, or whether Eq. (4) can be applied to this situation. In this case a modal view
of the dynamics of the plate is more instructive than a wave view, as described in the following section.
2.2. The modal approach

Langley in Ref. [7] has presented a derivation of Eq. (4) which is based on modal rather than wave
arguments. With this approach, the degrees of freedom q can form any subset of the total set of degrees of
freedom of the component, and in the extreme case may actually coincide with the full set of degrees
of freedom. The concept of the direct field dynamic stiffness matrix Ddir is replaced by the ensemble average of
the dynamic stiffness matrix, E[D], and the reverberant force vector frev is replaced by the randomly varying
component of the force fran, so that fran ¼ E[D]q�Dq. Eq. (2) is then replaced by

E½D�q ¼ f þ fran, (5)

If the degrees of freedom q do actually lie on the boundary of the component, then it follows from wave
arguments that E[D] ¼ Ddir. In the more general case, the notation Ddir can be retained as an abbreviation for
E[D], and in addition it is useful to denote the inverse of Ddir by the receptance matrix Hdir. With these
definitions, it was shown in Ref. [7] that if the natural frequencies and mode shapes of the component conform
to the Gaussian orthogonal ensemble (GOE) then

E½franf
�T
ran� ¼

4E

pon

� �
ImfDdirg þ

2

pm

� �
½2RefS

f̂ f̂
g þ qðmÞS

f̂ f̂
�, (6)

S
f̂ f̂
¼ E½f̂ f̂

�T
�, (7)

f̂ ¼ iDdir ImfHdirgf, (8)

qðmÞ ¼ �1þ
1

2pm

� �
ð1� e�2pmÞ þ E1ðpmÞ coshðpmÞ �

1

pm

� �
sinhðpmÞ

� �
, (9)

where m ¼ oZn is the modal overlap of the component, and E1 is the exponential integral [12]. The
GOE is a particular class of random matrix whose eigenvalue and eigenvector statistics have been
derived by Mehta [13]. It has been found that these eigen statistics are shared by many types of
random system, even though the system matrices do not conform to the GOE, and this phenomenon is
referred to as universality. The evidence for the occurrence of GOE eigenvalue and eigenvector statistics in
structural dynamics has been discussed by (for example) Mehta [13], Weaver [14], and Langley and
Cotoni [15]. In broad terms, it has been found that GOE statistics tend to apply providing the system is
random enough for natural frequencies to vary by more than the mean frequency spacing, and this tends to
occur in many cases beyond the first few modes. In the vast majority of cases the first term in Eq. (6) is
dominant, so that Eq. (6) is in agreement with Eq. (4); this is certainly true when the component carries a
diffuse field, in the sense that the ensemble average of the modal energy is the same for each mode. It then
follows that Eq. (4) can be applied regardless of whether the degrees of freedom q lie on the boundary of the
component, although some general method of computing the matrix Ddir ¼ E[D] is required. Langley [7] has
shown that E[D] is independent of the damping in the system and furthermore that the variance of D

decreases with increasing damping. Thus for large damping, the matrix D becomes deterministic and
approaches E[D]. It thus follows that E[D] can readily be computed by considering simple physical analogies
based on a highly damped system. When q lies on the boundary of the component, this approach coincides
with the wave based estimate Ddir, since waves generated at the boundary (the direct field) are damped out
prior to the first reflection. The case in which q lies in the interior of the component is discussed in the
following section.
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2.3. Area junctions

For the situation shown in Fig. 3, the boundary condition between the plate and the acoustic volume
involves the out-of-plane displacement of the whole plate; this type of coupling is referred to here as an ‘‘area
junction’’. In this case q can be defined (for example), as the out-of-plane response at a grid of points covering
the surface of the plate. In order to employ Eq. (4) for the plate, it is first necessary to identify the matrix Ddir.
Following the argument that a simple physical system corresponding to a non-reverberant or highly damped
plate should be selected, an obvious choice of system is an infinite plate, since this eliminates any reflections
from the plate boundary. In this case the jkth entry of the receptance matrix is given by

Hdir;jk ¼ GðrjkÞ, (10)

where rjk is the distance between the grid points j and k, and G is the Greens function of the infinite plate. The
dynamic stiffness matrix Ddir is then given by the inverse ofHdir. It is interesting to consider the implications of
Eqs. (5), (6) and (10) regarding the behavior of the plate when it is subject to direct excitation f, in which case
Eq. (5) yields

q ¼ Hdirf þHdirfran. (11)

The first term on the right hand side of this equation represents the response of an infinite plate to the applied
loading, while the second term represents the additional response due to the finite size of the system. For a
lightly damped system the second term can be expected to dominate, and Eq. (11) in conjunction with Eq. (6)
then yields

Sqq ¼ E½qq�T� ¼ HdirE½franf
�T
ran�H

�T
dir ¼

4E

pon

� �
Hdir ImfDdirgH

�T
dir, (12)

where Eq. (6) has been employed, with the assumption that the second term in the equation is negligible. Now
the following matrix identity holds for any matrix A

A ImfA�1gA� ¼ �ImfAg, (13)

so that Eq. (12) can be written in the form

Sqq ¼ �
4E

pon

� �
ImfHdirg ) E½qjq

�
k� ¼ �

4E

pon

� �
ImfGðrjkÞg: (14)

Eq. (14) states that the correlation between the response at node j and that at node k is proportional to the
imaginary part of the Greens function between these two points. This is a known result for a diffuse wavefield
[16], and the emergence of the result from the present analysis supports the arguments leading to Eq. (10).

3. The hybrid FE–SEA equations

The diffuse field reciprocity relation given by Eq. (4) forms the main building block of the hybrid
analysis method presented by Shorter and Langley in Ref. [3]. In this approach a complex system is divided
into deterministic components, such as the beams shown in Fig. 1, and statistical components, such as the
plates shown in this figure. The deterministic components are modeled by using the finite element method
(or some other deterministic technique) with degrees of freedom q, whereas the statistical components
(or ‘‘subsystems’’) are each assumed to carry a diffuse wavefield, the intensity of which is characterized by the
subsystem vibrational energy. The coupling between the deterministic and statistical components is effected by
using Eq. (4), which leads to the following result for the response of the deterministic system

Sqq ¼ D�1tot Sff þ
X

k

4Ek

opnk

� �
ImfD

ðkÞ
dirg

" #
D�1�Ttot , (15)

Dtot ¼ Dd þ
X

k

D
ðkÞ
dir. (16)
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Here Dd is the dynamic stiffness matrix of the finite element model, Sff is the cross-spectrum of the forces
applied to the deterministic system, D

ðkÞ
dir is the direct field (or, equivalently, the ensemble average) dynamic

stiffness matrix for subsystem k, and Ek and nk are the vibrational energy and modal density of this subsystem.
Everything on the right hand side of Eq. (15) can be computed from the physical properties of the system,
apart from the subsystem energies Ek, which must be found by considering a power balance condition for each
subsystem. This leads to the following set of additional equations

oðZj þ Zd;jÞEj þ
X

k

oZjknjðEj=nj � Ek=nkÞ ¼ Pj þ Pext
in;j ; j ¼ 1; 2; 3 . . . , (17)

where

oZd;j ¼
2

pnj

� �X
r;s

ImfDd;rsgðD
�1
tot ImfD

ðjÞ
dirgD

�1�T
tot Þrs, (18)

oZjknj ¼ ð2=pÞ
X

r;s

ImfD
ðjÞ
dir;rsgðD

�1
tot ImfD

ðkÞ
dirgD

�1�T
tot Þrs, (19)

Pext
in;j ¼ ðo=2Þ

X
r;s

ImfD
ðjÞ
dir;rsgðD

�1
totSff D

�1�T
tot Þrs. (20)

All of the symbols which appear in Eqs. (17)–(20) have been previously defined, apart from Zj, the loss factor
of subsystem j, and Pj, which represents the power input to subsystem j arising from forces applied directly to
the subsystem (in contrast to Pext

in;j, which arises from forces applied to the deterministic system). Eq. (17)
represents a set of equations in the form of the well known statistical energy analysis (SEA) equations (see for
example [8]), with the coefficients Zjk being known as coupling loss factors. The complete response of the
system is found by solving Eq. (17) to yield the subsystem energies, following which Eq. (15) is used to yield
the response of the deterministic system.

Full details of the derivation of Eqs. (15)–(20) have been given by Shorter and Langley in Ref. [3], and the
application of these equations to a range of examples has been described by Cotoni et al. in Ref. [4]. The
results yielded by the equations represent ensemble averaged quantities, and a further set of equations have
been derived to predict the ensemble variance of the response [5]. For brevity, these further equations are not
considered here, although it can be noted that they require no additional information beyond the system
matrices which appear in Eqs. (15)–(20).

It can be noted that Eqs. (15) and (17) relate to the response of the system at a particular frequency o, and
all of the averaging involved relates to ensemble averaging rather than averaging across a frequency band. The
equations therefore apply directly to harmonic loading. For random loading (i.e. loads that vary randomly in
time), the equations yield the power spectra of the response at frequency o, and frequency band integration of
these spectra will yield mean squared values. In this context it can be noted that SEA is sometimes considered
to be a theory governing frequency band averaged quantities; in fact, the fundamental principle is ensemble
averaging [17], which equates to frequency band averaging if the response is locally ergodic.

Eqs. (15)–(20) have not previously been applied to systems with area junctions on statistical structural
subsystems, and this type of problem is considered in the following section.
4. Application of the hybrid method to systems with area junctions

4.1. General comments

The aim of this section is to demonstrate how the hybrid method may be used to analyse systems in which
there are area junctions, i.e. systems in which two-dimensional statistical components are connected to other
components (either statistical or deterministic) over a surface domain, rather than at a line boundary.
A number of illustrative examples are selected to highlight key aspects of the modeling process, so that it
should then be clear how the method can be applied to any other problem. Further examples are then
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implemented numerically in Section 5, where the hybrid method is benchmarked against a full finite
element solution.

4.2. Example 1: a statistical model of a transmission suite

The first example concerns two acoustic volumes which are separated by a flat plate, as illustrated
schematically in Fig. 4. The aim is to build a hybrid model in which both volumes, and the plate, are modeled
as statistical subsystems, i.e. to produce a statistical energy analysis (SEA) model of the system. To develop a
hybrid model, it is necessary to identify a deterministic system which serves to couple the various statistical
subsystems, and in this example a ‘‘virtual’’ deterministic system is introduced, consisting of a grid of points
covering the surface of the plate, with out-of-plane displacements q. The ‘‘finite element model’’ associated
with these degrees of freedom is null, so that Dd ¼ 0 in the hybrid equations. In order to build the hybrid
model it is necessary to compute the dynamic stiffness matrix D

ðkÞ
dir for each of the three subsystems in the

model, so that Eqs. (17)–(20) can be applied, and these matrices are described in what follows.

The matrix D
ð1Þ
dir is the direct field dynamic stiffness matrix of the left hand room, as seen by the grid of

points. This can be found by considering the grid of points to be embedded in an infinite planar baffle, and
then identifying D

ð1Þ
dir as the dynamic stiffness matrix associated with an acoustic half-space on one side of the

baffle. Various methods are available for computing this dynamic stiffness matrix, including the Fourier
transform approach [18] and an approach based on jinc functions [19]. The direct field dynamic stiffness

matrix for the right hand room D
ð3Þ
dir follows from the same methodology. The dynamic stiffness matrix of the

plate, D
ð2Þ
dir, has been discussed in Section 2.3, and is given by inverting the receptance matrix which appears in

Eq. (10). The Greens function is given by

GðrjkÞ ¼ ð�i=8Dk2
Þ½H
ð2Þ
0 ðkrjkÞ �H

ð2Þ
0 ð�ikrjkÞ�, (21)

where D is the flexural rigidity of the plate, k is the (frequency dependent) wavenumber, and H
ð2Þ
0 is the Hankel

function of the second kind of order zero.
The set of coupling loss factors which are yielded by the hybrid method are shown schematically in Fig. 5,

where it should be noted that Zjk also implies the presence of the coupling loss factor Zkj. In detail, the coupling
loss factors are given by Eq. (19) with

Dtot ¼ D
ð1Þ
dir þD

ð2Þ
dir þD

ð3Þ
dir. (22)

To consider the physics embodied in Fig. 5, suppose that subsystem 1, the left hand volume, carries an energy
E1. Considering the energy flow arising from this energy alone, it follows from Eq. (17) that there is an energy
Room 1
(SS 1)

Room 2
(SS 3)

Plate
(SS 2)

Fig. 4. Schematic of two statistical acoustic volumes separated by a statistical flat plate (SS J represents subsystem J).

η21

η12

η13

Fig. 5. Schematic of the coupling loss factors yielded by the hybrid method for the system shown in Fig. 4.
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flow of oZ31n3(E1/n1) into the right hand volume, the transmission path being via the response of an infinite
plate to the applied pressure loading. Below the coincidence frequency, the resulting ‘‘non-resonant’’ motion
of the plate will be dominated by mass effects, and thus Z31 can be expected to encompass ‘‘mass law’’
transmission. Eq. (17) also predicts that there will be an energy flow of oZ21n2(E1/n1) into the plate subsystem,
which represents excitation of the plate resonant modes by the acoustic pressure. Thus non-resonant plate
effects such as mass law transmission will be included in Z31, while the resonant response of the plate is covered
by Z21 and also Z32. All of these features appear in the conventional SEA approach to modeling the sound
transmission problem [9,10], where Z21 and Z32 are calculated from the radiation efficiency of the resonant
plate modes, and Z31 is calculated from the mass law. A key point is that given the reciprocity relation for an
area junction, the hybrid method automatically generates these effects.

It can be noted that the hybrid method assumes that each statistical component in the model carries a
diffuse wavefield, and so no special attention is given to the boundary conditions acting on the edges of the
plate—thus Z32 does not account for the effect of specific boundary conditions (for example a simply
supported edge, or a clamped edge) on the edge radiation below the coincidence frequency. In principle,
correction factors could be included to account for a particular boundary condition, or alternatively at low
frequencies the plate could be modeled by using the finite element method, and thus form part of the
deterministic system rather than a statistical subsystem. These issues are considered numerically in Section 5.
4.3. Example 2: statistical room-plate-cavity-plate-room model

This example represents an extension of the previous example to sound transmission through a double
panel, as shown schematically in Fig. 6. The aim is to develop a five subsystem SEA model of the system by
using the hybrid method. In this case the ‘‘virtual’’ deterministic system consists of a grid of out-of-plane
displacements on the left hand plate, q1 say, together with a similar set of degrees of freedom on the right hand
plate, q2 say. Again Dd ¼ 0 for this problem, and in this case the matrix Dtot has the following structure when
written in terms of the coordinates ðqT1 q

T
2 Þ

T:

Dtot ¼ D
ð1Þ
dir þD

ð2Þ
dir þD

ð3Þ
dir þD

ð4Þ
dir þD

ð5Þ
dir

¼
D
ð1Þ
dir;11 0

0 0

 !
þ

D
ð2Þ
dir;11 0

0 0

 !
þ

D
ð3Þ
dir;11 D

ð3Þ
dir;12

D
ð3Þ
dir;21 D

ð3Þ
dir;22

0
@

1
Aþ 0 0

0 D
ð4Þ
dir;22

0
@

1
Aþ 0 0

0 D
ð5Þ
dir;22

0
@

1
A. (23)

The matrices D
ð1Þ
dir;11 and D

ð5Þ
dir;22 are given by considering acoustic half-spaces, as in the previous section, while

D
ð2Þ
dir;11 and D

ð4Þ
dir;22 are the dynamic stiffness matrices associated with infinite plates. The matrix D

ð3Þ
dir for the

cavity can be derived by considering the cavity to be of infinite dimension in the plane of the plates, but of
finite thickness. Outside of the domain of the plates, the walls of the cavity can taken to be blocked, and the
resulting acoustic dynamic stiffness matrix can then be found by Fourier transform methods. The cavity is an
interesting case of the application of the diffuse field reciprocity relation. Langley [7] has shown that for a
sufficiently random subsystem this relation is applicable to any subset of the full set of degrees of freedom;
imagining the cavity to be modeled by using a set of nodal degrees of freedom on a three dimensional mesh,
the subset here consists of those degrees of freedom which are connected to the plates. The matrix D

ð3Þ
dir is found
Room 1
(SS 1)

Room 2
(SS 5)

Plate 1
(SS 2)

Cavity
(SS 3)

Plate 2
(SS 4)

Fig. 6. Schematic of a double wall transmission problem (SS J represents subsystem J).



ARTICLE IN PRESS

η23

η12η13η14η15

η24η25 η34η35 η45

Fig. 7. Schematic of the coupling loss factors yielded by the hybrid method for the system shown in Fig. 6.

R.S. Langley, J.A. Cordioli / Journal of Sound and Vibration 321 (2009) 893–912902
by considering a system in which there is no wave reflection from any boundaries other than the plates (since
such reflections average to zero in the ensemble averaging process), and this leads to the infinite (in the plane
of the plates) cavity described above. This is also equivalent to a highly damped system in the sense that high
damping would prevent the reverberance (multiple reflection) of waves propagating in the plane of the plates,
but not affect propagation over the narrow cavity width.

The set of coupling loss factors yielded by Eq. (19) for this system is shown schematically in Fig. 7: in terms
of panel ‘‘mass law’’ effects, any arrow that passes through a panel involves mass law behavior for that panel,
while any arrow that starts or ends on a panel is related to the resonant response of that panel. The same
reasoning applies to the middle cavity, in the sense that arrows that pass through the cavity involve non-
resonant (stiffness) behavior of the cavity. The use of the hybrid method to derive the SEA equations of the
system automatically identifies the possible coupling paths, without any danger of ‘‘double accounting’’, or
conversely omitting, any physical effects. The present approach can be compared with the SEA model of Price
and Crocker [20]; effectively the terms D

ð3Þ
dir;12 and D

ð3Þ
dir;21 are assumed to be zero in that work, so that there are

no non-resonant coupling paths through the cavity—such paths would be expected if the cavity is thin
compared to the acoustic wavelength. This physical effect has been discussed by Finnveden [21], who has
developed an alternative SEA model which incorporates a waveguide model of the double wall system; it was
demonstrated that significant errors can arise from neglecting direct transmission paths through the cavity.

As in the previous example, the plate boundary conditions are not considered explicitly in the present
approach; correction factors could be included to capture edge radiation effects, or alternatively the plates
could be modeled at low frequencies by using the finite element method, rather than modeled as statistical
subsystems. The aim of the present section has been to demonstrate how the hybrid methodology allows
consistent SEA models to be constructed in an automatic way, and the double wall system serves to highlight
aspects of the approach. The numerical examples presented in Section 5 do not cover this system explicitly, but
rather consider the reduced case of the single panel system described in the previous section.

4.4. Example 3: deterministic room-statistical plate-statistical room model

This example, shown schematically in Fig. 8, is a variation of the first example: the left hand room is
modeled by the finite element method rather than as a statistical subsystem, and therefore forms part of the
deterministic system. The remaining part of the deterministic system is a ‘‘virtual’’ grid of points placed over
the plate, with out-of-plane displacements q1 say. If the degrees of freedom of the finite element model of the
room are the nodal pressures p, then the matrix Dd for this problem has the structure (see for example [22])

Ddq ¼
Dd;11 C

CT 0

� �
p

q1

 !
. (24)

where Dd,11 is the dynamic stiffness matrix of the acoustic finite element model, and C is a coupling matrix,
which projects the acoustic pressures onto the plate grid. The matrix Dtot is then given by

Dtot ¼ Dd þ
0 0

0 D
ð1Þ
dir;22

 !
þ

0 0

0 D
ð2Þ
dir;22

 !
, (25)
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Fig. 8. Schematic of a deterministic acoustic volume separated from a statistical acoustical volume by a statistical flat plate.
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where, by analogy with the previous examples, D
ð1Þ
dir;22 is the dynamic stiffness matrix of an infinite plate, and

D
ð2Þ
dir;22 is the dynamic stiffness matrix of an acoustic half-space. The hybrid method then proceeds as usual, and

this results in a coupling loss factor between the plate and the right hand room. The numerical results
presented in Section 5 include two examples in which statistical plate components are coupled to finite element
models of acoustic cavities.

4.5. Reformulation of the hybrid equations for increased numerical efficiency: ‘‘reduced’’ area junctions

The method described in the previous sections is based on introducing a grid of deterministic degrees of
freedom over the surface of each relevant two-dimensional SEA subsystem. The full set of deterministic
degrees of freedom in the hybrid model then consists of a grid of freedoms qi for each area junction, together
with a set of deterministic freedoms, qm say, associated with the finite element (FE) model of the deterministic
components. The grid freedoms can be grouped so that the various sets qi are coupled only through the finite
element model. It is possible that more than one SEA subsystem may be attached to a particular set qi

(for example, an SEA plate and an SEA acoustic volume share a common grid for the case considered in
Section 4.4) so that the general structure of the resulting equations for the full set of deterministic degrees of
freedom has the form

Ddq ¼

Dm C1 C2 . . .

C�T1
PN1

j¼1

D
ð1Þ
dir;j 0 . . .

C�T2 0
PN2

j¼1

D
ð2Þ
dir;j . . .

. . . . . . . . . . . .

0
BBBBBBB@

1
CCCCCCCA

qm

q1

q2

. . .

0
BBB@

1
CCCA ¼

Fm

F1

F2

. . .

0
BBB@

1
CCCA, (26)

where: Dm is the dynamic stiffness matrix of the FE model, including the ‘‘direct field’’ dynamic stiffness
matrix of any subsystems that are attached to the model via non-area junctions (e.g. the line stiffness of an
SEA plate coupled via an edge, etc); Ni is the number of subsystems attached to the ith grid of points; D

ðiÞ
dir;j is

the direct field dynamic stiffness matrix of the jth subsystem attached to the ith grid of points; Ci is the relevant
deterministic coupling matrix—it is assumed that no power is dissipated in the coupling, so that the coupling is
Hermitian (in practice the coupling matrix will almost always be real); Fi comprises the external forces applied
directly to the freedoms qi, together with the reverberant forces arising from the attached subsystems, as in
Eq. (2). One numerical difficulty associated with the present approach is that qi may contain many degrees of
freedom, and hence the direct application of the hybrid method via Eqs. (15)–(20) could involve matrices of an
unwieldy dimension, such as Dd in Eq. (26). Because the various two-dimensional grids are coupled only to the
FE degrees of freedom qm, and not to each other, it is possible to fully discuss the practical numerical aspects
of the hybrid method by considering the following restricted form of Eq. (26)

Dm C1

C�T1
PN1

j¼1

D
ð1Þ
dir;j

0
B@

1
CA qm

q1

 !
¼

Fm

F1

 !
. (27)
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An immediate reduction in the size of the matrices involved in the approach can be made by rearranging
Eq. (27) to yield

Dm � C1

XN1

j¼1

D
ð1Þ
dir;j

 !�1
C�T1

2
4

3
5qm ¼ Fm � C1

XN1

j¼1

D
ð1Þ
dir;j

 !�1
F1, (28)

so that the equations are expressed in terms of the FE degrees of freedom alone. It is helpful to introduce the
abbreviated notation

Dm;tot ¼ Dm � C1D
ð1Þ�1
dir C�T1 ; (29)

D
ð1Þ
dir ¼

XN1

j¼1

D
ð1Þ
dir;j , (30)

so that Eq. (28) becomes

Dm;totqm ¼ Fm � C1D
ð1Þ�1
dir F1. (31)

Eq. (31) represents a reduced form of the deterministic system equations, in which the degrees of freedom q1
do not appear explicitly. It now remains to derive expressions for the SEA coupling loss factors avoiding the
explicit use of these freedoms. Progress towards this end can be achieved by considering the energy flows
resulting from a reverberant field in subsystem j. From Eq. (31), the deterministic system response to this
loading, F1,j say, is given by

qm ¼ �D
�1
m;totC1D

ð1Þ�1
dir F1;j . (32)

Now from the reciprocity equation, Eq. (4), it follows that

E½F1;jF
�T
1;j � ¼

4Ej

opnj

� �
ImfD

ð1Þ
dir;jg, (33)

so that

Sqq ¼ E½qmq
�T
m � ¼

4Ej

opnj

� �
D�1m;totC1D

ð1Þ�1
dir ImfD

ð1Þ
dir;jgD

ð1Þ�1�T
dir C�T1 D�1�Tm;tot . (34)

This result can be rewritten as

Sqq ¼
4Ej

opnj

� �
D�1m;tot ImfD

ð1Þ
red;jgD

�1�T
m;tot , (35)

where the reduced direct field dynamic stiffness matrix D
ð1Þ
red;jis defined as

D
ð1Þ
red;j ¼ �C1D

ð1Þ�1
dir D

ð1Þ�
dir;jD

ð1Þ�1�T
dir C�T1 . (36)

Assuming that the dynamic stiffness matrices are symmetric, it can be noted that

XN1

j¼1

D
ð1Þ
red;j ¼ �C1D

ð1Þ�1
dir

XN1

j¼1

D
ð1Þ�
dir;j

( )
D
ð1Þ�1�T
dir C�T1 ¼ �C1D

ð1Þ�1
dir C�T1 , (37)

which is the dynamic stiffness matrix that appears on the right hand side of Eq. (29); the definition expressed by
Eq. (36) thus allows this matrix to be represented as a linear sum of contributions from the various subsystems,
as in the standard hybrid equation, Eq. (16). Eq. (29) therefore has exactly the form of Eq. (16), with
D
ð1Þ
red;jplaying the role of the direct field dynamic stiffness matrix for subsystem j, expressed in the degrees of

freedom qm. Now the power input to subsystem k arising from the response given by Eq. (35) can be written as

Pk ¼ ðo=2Þq�T1 ImfD
ð1Þ
dir;kgq1; (38)

q1 ¼ �D
ð1Þ�1
dir C�T1 qm, (39)
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(having used Eq. (27) with F1 ¼ 0) so that

Pk ¼
2Ej

pnj

� �X
r;s

ImfD
ð1Þ
red;k;rsgðD

�1
m;tot ImfD

ð1Þ
red;jgD

�1�T
m;tot Þrs. (40)

Equating this power to oZkjnk(Ej/nj) then yields a coupling loss factor in exactly the same form as the existing

hybrid result, Eq. (19), with, as observed previously, D
ð1Þ
red;j playing the role of the direct field dynamic stiffness

matrix for subsystem j, expressed in the degrees of freedom qm.
It follows from the above analysis that the standard hybrid equations can be implemented using the

deterministic freedoms qm alone, without explicit reference to the area grid freedoms qi, providing the direct
field dynamic stiffness matrix associated with subsystem j is identified by Eq. (36). This approach can vastly
reduce the size of the matrices involved in Eqs. (15)–(20). An identical approach has previously been used by
Shorter [23] to reduce the size of the hybrid equations when trim layers are added to deterministic structural
components—in this case the degrees of freedom on the ‘‘wetted’’ surface of the trim are removed from
the model.

5. Numerical examples

5.1. The transmission loss of a plate

The first numerical example concerns the problem described in Section 4.2, i.e. a transmission suite in which
an elastic plate is located in an otherwise rigid wall between two rooms. The plate is taken to be a square steel
plate of thickness 5mm and side length 0.5m, and each room is taken to have a volume of 10m3. The loss
factor of the plate is 0.1, while that of each room is 0.01. The critical frequency of the plate is 2370Hz, and the
plate modal density is such that there are approximately 40 modes below this frequency (0.016modes/Hz). An
acoustic source is placed in the left hand room, and the transmission loss of the plate is defined as [24]

TL ¼ 10 log10ðhp
2
1i=hp

2
3iÞ � 10 log10½A=ðS3a3Þ�

¼ 10 log10ðE1=n1Þ � 10 log10ðE3=n3Þ � 10 log10½A=ðS3a3Þ�, (41)

where hp2
1i and hp

2
3irepresent the spatially averaged pressures in the two rooms (labeled as subsystems 1 and 3),

A is the area of the panel, and S3 and a3 are, respectively, the surface area and the absorption coefficient of the
right hand room (for the present model S3a3 is specified to give a room loss factor of 0.01 at all frequencies).
Three approaches have been used to compute the transmission loss: (i) the hybrid method has been used to
develop a three subsystem SEA model of the system using the new area junction approach, as described in
Section 4.2; (ii) a benchmark model has been developed in which the plate is modeled by using finite elements
and the rooms are modeled as statistical subsystems—this approach uses the existing hybrid methodology and
the associated software [3,25] to couple the finite element model of the plate to the statistical rooms, and this
results in a two subsystem SEA model, Eq. (17), together with the equations governing the plate response,
Eq. (15); (iii) a three subsystem SEA model of the system has been developed using standard existing
expressions for the coupling loss factors [10,26]. For each of these three models, the resulting SEA
equations can be solved to yield the system response, and Eq. (41) can then be used to compute the panel
transmission loss.

Results for the transmission loss obtained by using method (i), the present hybrid approach, are compared
with results yielded by method (ii), the finite element plate model, in Fig. 9. Three different boundary
conditions have been considered for the finite model of the plate, namely simply-supported, clamped, and free.
The level of agreement between the present approach and the finite element method is good, with the finite
element results for the various plate boundary conditions tending to enclose the present prediction. The results
of the present method are compared with the results of method (iii), a standard SEA model, in Fig. 10. In this
case the agreement is within 2 dB at low frequencies and closer at higher frequencies. The standard SEA model
is based on the methodology outlined by Craik [10] and employs the plate radiation efficiencies and the direct
transmission factor (effectively Z13) derived by Leppington [26,27]. The irregularities in the standard SEA
results around the critical frequency arise from the equations used for the radiation efficiencies, and this is
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Fig. 9. Transmission loss of a 5mm thick steel plate from various hybrid models: (——) free-free finite element plate, (- - - - - -) simply-

supported finite element plate, ( ) clamped finite element plate, and ( ) statistical plate.

Fig. 10. Transmission loss of a 5mm thick steel plate: (- - - - - -) hybrid model with a simply-supported finite element plate, ( )

hybrid model with a statistical plate, and ( ) conventional SEA model.
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illustrated more clearly in Fig. 11, which shows the coupling loss factors derived by the present method and by
the standard SEA approach. The small discontinuities in Z12 and Z21 arise from combining the asymptotic
formula above and below the critical frequency with a transition formula in the region of the critical frequency
[26]. The values of Z12 and Z21 yielded by the present approach agree well with those derived from [26], apart
from a 2–3 dB discrepancy at low frequencies. This can be traced to the effect of the boundary conditions on
acoustic radiation below the critical frequency: the results of [26] employed here relate to simply supported
boundary conditions, whereas the present hybrid approach assumes a diffuse wavefield in the plate, without



ARTICLE IN PRESS

Fig. 11. Coupling loss factors: ( ) hybrid formulation, and ( ) standard SEA formulation [10,26]. Upper curves Z21, middle

curves Z12, lower curves Z13.
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special consideration of the plate boundaries. The differences in Z12 and Z21 yielded by the two approaches
account for the differences in the transmission loss predictions below the critical frequency shown in Fig. 10,
which are of the order of 1–2 dB. Also shown in Fig. 10 are the finite element predictions for simply supported
edges; it might be excepted that these results should agree more closely with the results of [26] than with the
present hybrid theory, but the plate is modally sparse at low frequencies and the results are erratic. The two
values of Z13 shown in Fig. 11 (covering ‘‘mass law’’ effects) show very good agreement below the critical
frequency; this effect is not included in the theory of [26] above the critical frequency. It can be concluded from
the present example that the hybrid approach captures all of the features of the standard SEA model (aside
from the boundary radiation issue), while allowing the relevant coupling loss factors to be computed in a
straight forward way.
5.2. A room-plate system

This example forms part of the system considered in Section 4.4: a flexible plate forms one wall of an
acoustic cavity, and the cavity is modeled deterministically by using the finite element method. The new area
junction approach allows the plate to be modeled as a statistical subsystem, and the results obtained are
benchmarked by comparison to a full finite element model of the system generated by the software VA One
[25]. The present approach leads to Eq. (15) for the response of the cavity, together with a single SEA equation
in the form of Eq. (17) for the response of the plate subsystem. The cavity has dimensions 0.7m (width) by 1m
(height) by 0.5m (depth), so that the plate, which is aluminum of thickness 1mm, has dimensions 0.7m� 1m.
The loss factors of the plate and the cavity are each 0.01, and the modal density of the plate is 0.223modes/Hz.
The excitation consists of a prescribed velocity source on the rear wall of the cavity (equivalent to a
generalized force acting on the finite element pressure degrees of freedom), acting over an area of 8� 10�4m2

located at the point (0.214,0.252), so that within the present method the excitation of the plate appears
through Eq. (20). The finite element mesh employed is shown in Fig. 12, and the results of the present hybrid
approach (a statistical plate subsystem combined to a finite element acoustic cavity) are compared with those
of a full finite element model in Fig. 13. The full finite element results are shown for five different plate
boundary conditions, each of which consists of an irregular combination of clamped and simply supported
conditions around the plate perimeter. The present approach predicts the main features of the full results: the
peaks in the present results correspond to cavity modes, and there is no appearance of individual plate modes,
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Fig. 13. Energy of the plate for the second numerical example: ( ) full finite element model for five different sets of random

boundary conditions, and ( ) hybrid model.

Fig. 12. Statistical plate and finite element cavity considered in the second numerical example.
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since the effect of these is averaged in the present statistical model. This example demonstrates that the ‘‘area
junction’’ version of the diffuse field reciprocity relation can be used to couple a statistical structural
subsystem to a deterministic acoustic component.

5.3. Vibration transmission through a small acoustic cavity

The final numerical example concerns two plates which are coupled via a small acoustic cavity as shown in
Fig. 14(a,b). A force is applied to one of the plates, and the aim is to predict the vibration level in each plate
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and the acoustic response of the cavity. The plates are each made of aluminum, and have thickness 1mm and
side lengths 0.27m� 0.4m, while the acoustic cavity has thickness 0.1m (equal to the spacing between the
plates), height 0.08m and width 0.14m. The modal density of each plate is 0.0689modes/Hz, and the loss
factors for the plates and the cavity are each taken to be 0.01. The system has been modeled by using the new
area junction approach to couple two statistical plate subsystems to a finite element model of the cavity
(Fig. 14b), and for comparison, benchmark results have been obtained from a finite element model of the
whole system (Fig. 14a). The present approach leads to Eq. (15) for the response of the cavity, together with a
two subsystem SEA model of the plates, Eq. (17).
Fig. 14. Two models for analyzing vibration transmission through a small acoustic cavity: (a) left figure, full finite element model, (b) right

figure, hybrid model with finite element cavity and statistical plate components.

Fig. 15. Energy of the driven plate: ( ) full finite element model with four different sets of random boundary conditions, (——)

mean response of the four finite element models, and hybrid model ( ).



ARTICLE IN PRESS
R.S. Langley, J.A. Cordioli / Journal of Sound and Vibration 321 (2009) 893–912910
The response of the driven plate is shown in Fig. 15, the response of the cavity is shown in Fig. 16,
and the response of the non-driven plate is shown in Fig. 17. Four sets of random plate boundary conditions
have been applied to the finite element model of the whole system, and results from each of these
systems is shown in the figures, together with the average of the four results. In all cases the present
approach yields a good prediction of the system response, with statistical smoothing of the effect of the
individual modes in the plates. The use of statistical, rather than deterministic plates, leads to a large reduction
in the number of degrees of freedom employed in the model, and a corresponding reduction in the required
computer run time.
Fig. 16. Energy of the non-driven plate: ( ) full finite element model with four different sets of random boundary conditions, (——)

mean response of the four finite element models, and hybrid model ( ).

Fig. 17. Energy of the acoustic cavity: ( ) full finite element model with four different sets of random boundary conditions, (——)

mean response of the four finite element models, and hybrid model ( ).
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6. Conclusions

The key feature of the hybrid method presented by Shorter and Langley [3] is that any component of a
complex vibro-acoustic system can be modeled in one of two ways: either (i) deterministically, by using, for
example, the finite element method, or (ii) as a statistical subsystem. The coupling between these two disparate
types of component is effected by the diffuse field reciprocity relation [6]. Previously this relation has been
applied to couplings at the boundaries of the statistical components (for example the edges of a plate), but it
has been shown here that the approach can readily be extended to coupling over the domain of a subsystem,
termed here an ‘‘area junction’’. This enables, for example, a statistical structural component to be coupled to
either a finite element acoustic volume, or (via a grid of ‘‘virtual’’ freedoms) a statistical acoustic volume.
Potential industrial applications of this approach include systems such as automotive door panels, where
acoustic pockets lie between modally dense structural panels, suggesting the use of a statistical structural
model coupled to a deterministic acoustic model. Statistical structural components are routinely coupled to
statistical acoustic volumes in SEA and this aspect of the present work is therefore not a new capability;
however the present work has shown that this type of modeling is encompassed by the hybrid method.
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