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Abstract

The objective of this paper is to numerically predict the modal behaviours of a two-plate steel structure defined with

variable parameters and to validate this prediction experimentally. First, the test structure, in which geometrical and

material variability has been identified, is studied using a Fuzzy Finite Element Method. This method, named PAEM,

allows the fuzzy numerical eigenfrequencies and eigenvectors to be calculated. Second, the test structure is analyzed

experimentally to quantify the possible variation of the eigensolutions’ modal behaviours and to build the experimental

fuzzy sets. Finally, the fuzzy numerical quantities are compared with the experimental quantities to highlight the efficiency

of our non-deterministic model for predicting the behavioural modifications of the test structure.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recent progress in computing resources has allowed increasingly complex and realistic numerical models to
be exploited. For example, it is now possible to simulate mechanical structures with very large numbers of
finite elements, to realise multiphysics applications and to take imperfections into account. Previously, when
creating and using new structures, the sources of deficiencies that had been identified for different parameters
were never taken into account in the numerical simulations, and all design parameters were considered
deterministically. These deficiencies can be defined by the term ‘‘imperfection’’ and two classes can be
distinguished. Variability refers to the variation inherent to the physical system or the environment under
consideration. Uncertainty is a potential deficiency in any phase or activity of the modelling process that is due
to lack of knowledge.

Different theories, both probabilistic and non-probabilistic, have thus been developed to manage the
imperfections mentioned above. Among the non-probabilistic theories [1], the fuzzy set theory allows both
imprecise data and subjective data to be modelled. This fuzzy formalism has been coupled with the finite
element method (FFEM [2–5]) and has already been employed successfully to solve a variety of increasingly
complex problems (e.g., static [6], modal [7–9], dynamic [10–16], design and optimisation [6,17,18],
identification [19], multi-body [20]). These studies have led to many numerical applications that have not
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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always been compared to a numerical reference (e.g., Zadeh’s Extension Principle) and never to an
experimental reference.

This paper compares fuzzy numerical and experimental data, with the goal of numerically predicting the
variation of modal behaviour. This prediction is made using a nominal model and an estimation of the
different variability parameters, and then the prediction is validated experimentally. To successfully complete
the study described in this paper, many data were needed to efficiently determine the fuzzy numerical and
experimental database:
�
 A modular test structure in which some element of variability can be identified.

�
 An efficient Fuzzy Finite Element Method to propagate the variability.

�
 Specific experimental modal analyses to build the fuzzy experimental reference.
Section 2 introduces the two-plate steel structure used in our experiments, its corresponding finite element
model, and our experimental process. In Section 3, the main sources of imperfections in non-deterministic
analysis are described. Section 4 presents the fuzzy formalism and its coupling with the Finite Element
Method, and reviews the PAEM method, presented previously in Ref. [2]. In Section 5, the fuzzy numerical
and experimental results are compared in terms of fuzzy eigenvalues and eigenvectors in order to demonstrate
the capacity of the fuzzy model to represent imperfections. The final section offers our conclusions and
perspectives for future research.
2. Description of the two-plate steel structure

The example considered in this paper is the two-plate steel structure presented in Fig. 1. Both plates in the
structure were honed and screwed together with eight Chc M4 bolts and then glued to avoid assembly defects.
The material properties, geometric characteristics and the associated measurement tolerances are specified in
Section 3, which describes and quantifies the various imperfections. The finite element model of the nominal
structure (Fig. 2) contains 400 shell elements and 2706 degrees of freedom. This configuration was chosen in
order to allow the first five elastic mode shapes to be studied. The neutral planes of the plates were defined as
the middle of the thickness measurement.

Experimental modal analyses were performed to determine the structure’s first five elastic mode shapes.
During experimentation, the structure was suspended using four standard springs. Fig. 3 shows the position of
the excitation points and the accelerometers, which were placed in accordance with the mesh nodes. Using an
8-channel acquisition system, the accelerometers were divided into two sets, corresponding to two
configurations with an optimised mass distribution. Configuration 1 (dashed arrows) has 7 sensors and
Fig. 1. Two-plate steel structure.
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Fig. 2. Finite-element model of the test structure.

Fig. 3. Sensor model of the test structure. Excitation Accelerometers (Configuration 1) Accelerometers (Configuration 2).
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configuration 2 (dotted arrows) has 6 sensors. For this experimentation, only 13 measurement directions,
selected by the effective independence method [21], are sufficient to clearly distinguish the reduced mode
shapes using the Modal Assurance Criterion (MAC). The MAC is obtained using the following equation:

MACðf1;f2Þ
¼
kfT

1f2k
2

ðfT
1f1Þðf

T
2f2Þ

(1)

where f1 and f2 are two mode shapes to be compared. Generally, MAC values ranging from 0.8 or 0.9 to 1
are considered to define a good correlation between two mode shapes, especially for numerical data. Below
this limit, notable differences can appear locally in the mode shape, leading to a permutation between
frequencies. As Fig. 4 shows, for both configurations, all criteria are near 1 and the mode shapes are correctly
separated.
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Fig. 4. AUTOMAC for reduced modal bases.
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For this experimentation, only one excitation point is necessary to excite correctly all the modes of the
structure in the studied frequency range. Nevertheless, to increase the confidence about results and to quantify
the measurement quality, all the tests are successively realized for two different excitation points (C1 and C11).
More details about the validity and repeatability of these tests are provided in Section 3.

Throughout the study described in this paper, the plate thickness is assumed to be variable, with an
imprecision of 720% in the nominal thickness values. To insure a variable plate thickness, three vertical and
three horizontal plates were manufactured, and the plate measurements were used to construct a database.
The thickness imperfections were voluntarily exaggerated in order to obtain large variations in the
eigenfrequencies and to prevent small variations in the eigenfrequencies from being interpreted as possible
measurement errors.

3. Imperfections in non-deterministic analysis

There are three main types of imperfections: experimental, modelling and parametric. Experimental
imperfections generally originate in the test conditions and the calibration of the different sensors used.
Modelling imperfections stem from the process of discretizing the structure using finite element theory and the
different simplifications employed when building the model. Parametric imperfections come from the material
and geometric parameters or loads and represent the different observed dispersions.

In this study, only the last type of imperfection is considered. The influence of the first two types of
imperfections was reduced by defining a rigorous protocol, as described in the following paragraphs.

3.1. Experimental imperfections

To obtain accurate Frequency Response Functions (FRF) and decrease the possible imperfections, different
precautions were taken into account during the experimental process. A stepped sine below 1000Hz with a
variable frequency step was used to concentrate the information around the resonance frequencies. For
example, the Fig. 5 highlights the quality of the results for an accelerometer placed beside the excitation point
C1. Appropriation criteria [22] were then employed to detect the resonance and to calculate the best frequency
step. These criteria allow the FRFs to be fitted more reliably, thus making the identification phase easier
(Fig. 6). To verify the variation in the measurements, the impedance measurements were compared for the two
sensor configurations. Fig. 7 shows the very good stability of the measurements for the different series, and
Fig. 8 highlights the good linearity of the overall behaviour according to Maxwell’s reciprocity principle. Still,
there is a small gap in the fifth eigenfrequency. Table 1 summarizes the frequency measurements obtained at
the two excitation points and the errors for the two configurations. As this table shows, the maximal frequency
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Fig. 5. Micro discretization around the first mode (results presented to excitation point C1).

Fig. 6. Comparison of the measured ‘‘o’’ and calculated ‘‘+’’ Nyquists for the first mode.
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error is less than 1%. Repeating the tests revealed a rise in the observed mean frequency deviation to 0.3%,
which implies good measurement repeatability. To further quantify the closeness of two correlated mode
shapes, two scaled vector errors are defined as follows:

errNð%Þ ¼
kf1k � kf2k

kf1k
; norm error; for a global overview (2)

errRNð%Þ ¼
kf1 � f2k

kf1k
; norm error difference; mainly for highlighting local errors (3)
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Fig. 7. Impedance measurements for the two sensor configurations (point C1). —— FRF: C1/C1 (Configuration 1) – – – FRF: C1/C1

(Configuration 2).

Fig. 8. Maxwell’s reciprocity principle as applied to the FRFs C1/C11 and C11/C1. —— FRF: C1/C1 (Configuration 1) – – – FRF: C1/C1

(Configuration 2).

Table 1

Experimental frequencies and errors between points C1 and C11 in the nominal test structure.

f1 f2 f3 f4 f5

Excitation C1 (Hz) 185.42 402.84 459.80 587.81 786.62

Excitation C11 (Hz) 185.17 402.30 458.48 586.38 780.24

Errors (%) 0.1 0.1 0.3 0.2 0.8

f1 f2 f3 f4 f5

Errors N (%) 1.2 3.2 11.5 0.8 8.1

Errors RN (%) 2.0 4.5 13.1 6.9 20.1

F. Massa et al. / Journal of Sound and Vibration 322 (2009) 135–154140
where k � k is the Euclidian norm and f1 and f2 are two mode shapes to be compared (for example
experimental and numerical mode shapes).

The pairing of the mode shapes for the two configurations is also very good. As shown in Fig. 9, the MAC
criteria are superior to 0.97 for each mode shape (Fig. 9), and the mean error between the eigenvectors is on
the order of 9% (Table 1). Although the experimental protocol is rigorous, the identification of the fifth mode
is very difficult. The Fig. 8 shows a small variation of the fifth resonance between the two configurations
(C1 and C11). This variation implies necessarily an error level observed in Table 1. Nevertheless, as the MAC
criterion is superior to 0.97 and the error level, observed by the norm error difference, is equal to 20%, the
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Fig. 9. MAC criteria for the modal bases obtained at C1 and C11.

Fig. 10. Convergence of eigensolutions in relation to the number of finite-elements. (a) frequencies ??? f1 —— f2 — � � f3 — � – f4

– – – f5 and (b) degree of freedom of sensor C1 ??? mode 1 —— mode 2 — � � mode 3 — � – mode 4 – – – mode 5.
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authors are considered the results as acceptable. Moreover, the numerical simulation shows that this fifth
mode is difficult to precisely calculate. The convergence of the fifth eigensolution (Fig. 10) is not very good.
The error level does not decrease even if the number of elements for the length D4 increases. This fifth mode is
more difficult to interpret than the others.

3.2. Modelling imperfections

To create a simple but representative finite element model, several precautions were taken. The two plates in
each test structure were glued with epoxy adhesive and assembled with eight bolts in order to obtain as close a
fit as possible. Torque repeatability was guaranteed by using a torque wrench for each test structure. The finite
element model was based on the results of our study of eigensolution convergence in relation to the number of
finite elements. The basic length of an element was determined by dividing the length D4 into 10 parts. As the
convergence of the fifth mode (Fig. 10) is, however, more difficult to interpret than the others, this mode is not
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Table 2

Errors made in determining the numerical and experimental frequencies and eigenvectors.

f1 f2 f3 f4 f5

Numerical (Hz) 185.98 403.06 460.60 589.32 777.08

Excitation C1 (Hz) 185.42 402.84 459.80 587.81 786.62

Excitation C11 (Hz) 185.17 402.30 458.48 586.38 780.24

Errors C1 (%) 0.3 0.1 0.2 0.3 1.2

Errors C11 (%) 0.4 0.2 0.5 0.5 0.4

f1 f2 f3 f4 f5

Errors N C1 (%) 1.1 5.8 13.3 2.8 11.9

Errors RN C1 (%) 4.1 7.2 13.9 7.7 15.6

Errors N C11 (%) 2.2 2.3 1.6 2.1 18.5

Errors RN C11 (%) 4.1 5.8 5.5 8.8 19.8

Table 3

Geometric characteristic and associated variations.

Thickness e1 (mm) Thickness e2 (mm) Length D1 (mm)

[8.04; 9.99; 12.01] [8.04; 9.99; 12.01] [298.49; 299.99; 301.49]

Length D2 (mm) Length D3 (mm) Length D4 (mm)

[147.75; 148.00; 148.25] [147.75; 148.00; 148.25] [149.9; 150.00; 150.1]
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chosen for the determination of discretization used for the length D4. This discretization corresponds to an
error inferior to 1% for the first four eigensolutions.

Since experimental and numerical data for the nominal structure were very close, it was not necessary to
update the nominal model (Table 2). Thus, before introducing the different imperfections into the finite
element model, the nominal numerical solutions had to be updated based on the nominal experimental data. If
this had not been done, the nominal model would have lacked essential representativity, and our study would
have been pointless.

3.3. Parametric imperfections

Using a parametric model allows imperfections to be taken into account. In this study, the thicknesses
of the two plates in the nominal test structure were allowed to vary by 20% of the nominal thickness values.
Three thicknesses (8.04, 9.99 and 12.01mm), measured with a micrometer, were introduced to simulate
different design choices. The thickness variations introduced were intentionally greater than normal
production variations in order to avoid confusing the intentional variations with any inadvertent experimental
variations.

Other geometric and material imperfections taken into account in this study included production variability,
measurement errors, and lack of knowledge about materials. First, the different dimensions were measured
using a calliper rule or a simple steel rule. The measurement tolerances were 0.1 and 0.5mm, respectively. All
geometric parameters and their associated variations are provided in Table 3. Second, the structure was
manufactured in standard steel, whose the material properties were not completely known. In theory, Young’s
modulus ranged from 1.9� 1011 to 2.1� 1011N/m2, density from 7750 to 7950Kg/m3, and Poisson’s ratio
from 0.27 to 0.33 (http://www.matweb.com, http://www.efunda.com). Experiments were realized to provide
some realistic variation intervals, with Young’s modulus being determined with a vibrometric method [23] and
density with a weighing method. The theorical associated variations of parameters were reduced and the
realistic variations are presented in Table 4.

http://www.matweb.com
http://www.efunda.com
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Table 4

Material properties and associated variations.

Young’s modulus E (1011N/m2) Density r (Kg/m3) Poisson’s ratio n
[2.00; 2.02; 2.06] [7775; 7831; 7883] [0.27; 0.30; 0.33]
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4. Fuzzy numerical analysis

4.1. Fuzzy set theory

The fuzzy set theory was introduced by Zadeh [24–27] as an extension or generalisation of classic set theory.
In Zadeh’s theory, a membership degree, varying between 0 and 1, is associated to the different values of the
non-deterministic parameters. In this context, a fuzzy number is then defined using a membership function
that can take different forms, depending on the kind of imperfection considered. Without information about
imperfection, triangular membership functions are the simplest and common choice. However, with additional
information, other membership functions can be chosen (p-shape, trapezoidaly) to model the perception of
the user [28,29]. As experimentally, the information are available for a ¼ 0 (nominal value) and a ¼ 1 (bounds
of fuzzy numbers), the triangular form was chosen for each imprecise input parameter. The membership
functions of nine fuzzy parameters (Fig. 11) were built using the data presented in Tables 3 and 4.

Fuzzy set theory has its own arithmetic, which allows the classic operations (e.g., +, �, � ) on the fuzzy
scalars to be extended. Extending this arithmetic to problems with matrices or to other more complex
problems (e.g., linear systems, eigenvalues) is not trivial and implies some overestimation. The solution, as
described in fuzzy set theory, is to use the Extension Principle developed by Zadeh.

In practise, this Extension Principle is organised in three steps:
�
 Discretization of membership functions (the continuous problem is transformed by a discrete problem, in
which the parameter variation domain is represented by all the possible combinations of discrete fuzzy
parameter values).

�
 Calculation of deterministic solutions (due to all the combinations of fuzzy parameter values).

�
 Evaluation of the degree of confidence of all the solutions (the membership functions of the solutions are built

by considering that the degree of membership of one combination is equal to the smallest degree of
membership of the independent parameters in this combination. In the case of multiple occurrences of a
solution, the final membership degree is equal to the maximum membership degree of the different solutions).

This principle is very attractive in a general context because it is simple to implement. It allows the output
subset characterizing all the variations of the solutions studied to be defined according to a specific set
application, such as linear systems or eigenvalue problems. Nevertheless, applying this principle directly in a
mechanical engineering context, where finite element models are used, is less appealing because when the size of
the finite element model or the number of fuzzy parameters increases, the approach rapidly becomes too time
consuming. The different alternative approaches that have been proposed are described in the next section.

4.2. Fuzzy finite element method (FFEM)

The use of Zadeh’s principle in the finite element context has led to the development of the Fuzzy Finite
Element Method [3]. The aim is to determine the membership function of an output quantity, based on the
fuzzy description of the input parameters. Computing with fuzzy numbers requires a discretization of the
membership function. In this case, the discrete fuzzy numbers are obtained from cuts according to the degree
of confidence (Fig. 12). For each a-cuts level, an interval p̃a is defined by lower and upper bounds, pa and pa,
respectively.

p̃a ¼ ½pa; pa� (4)
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Fig. 11. Membership functions of the imprecise parameters: (a) material properties, (b) thicknesses and (c) geometric characteristics.
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A maximum degree of confidence (a ¼ 1) was associated to the nominal value and a minimum degree of
confidence (a ¼ 0) to the bounds of the variation interval. Using this a-sublevel technique, the membership
functions of the fuzzy parameters were transformed into a set of intervals. To correctly propagate the
information included in each interval, different methods have been proposed and can be divided into two main
classes: global matrix formulations and parametric formulations.

In the global matrix formulation, specific interval matrices (e.g., in modal analysis, the interval
mass and stiffness matrices [28]) are built for each a-cut level. The interval problem is then trans-
formed into a first-order [9] or high-order [8] perturbed problem, and the solutions are obtained by
calculating the interval bounds. These techniques, although less time consuming than the Extension
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Fig. 12. Discretization of fuzzy number according to the degree of confidence.

Fig. 13. Graphical representation of the different forms of the Transformation Method in the parameter space. Each black dot is an

evaluated parameter combination (a) General Transformation Method (b) Reduced Transformation Method and (c) Short

Transformation Method.
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principle, supply only an idea of the behaviour variation but do not provide the real variations needed in the
design phase.

In the parametric formulation, the interval problem is transformed into a discrete problem for each a-cut
level. The overall strategy of this formulation is to look for combinations of discretized fuzzy design parameter
values, which indicate the extreme variations for each a-cut level and to calculate the modified solutions for
these specific parameters combinations. Amongst the proposed approaches, the Transformation Method [5]
offers different forms (General, Reduced or Short) for evaluating a problem described with fuzzy formalism.

The General form is a practical implementation of Zadeh’s Extension Principle as described in the fuzzy set
theory. The Reduced Transformation Method [5] is an exploitation of the Vertex Method [30] for each a-cut
level. A full factorial Design Of Experiment (DOE) is then performed for each of these intervals. The Short
form [10] is based on the use of the Vertex Method for the support of fuzzy numbers in order to identify the
principal diagonal (i.e., the diagonal in the parameter space that makes the largest contribution to the studied
solutions). Graphic representations of the different Transformation Method forms in the parameter space are
presented for two parameters in Fig. 13. Each black dot is an evaluated parameter combination.

In order to limit the computational cost due to managing imperfections, we have previously proposed an
efficient method [2] based on sensitivity analysis, which researches the specific parameters combinations, and
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on a re-analysis technique, which approximates the modified solutions. The basic steps of the method, called
PAEM (Padé Approximants with Extrema Management), are presented in the next section.

4.3. PAEM method

The Padé Approximants with Extrema Management (PAEM) method [2] is an extension of the Taylor
Expansion with Extrema Management (TEEM) method [6]. The PAEM method was developed to respond to
two specific points of eigensolution variability:
�
 Non-monotonic evolution: depending on the type of solutions studied (eigenvalues or eigenvectors) and the
imprecise parameters involved (e.g., Young’s modulus, Poisson’s ratio, density, thickness), the nature of the
changes in the mode shapes may be non-monotonic.

�
 Crossed mode shapes: the mode shapes may cross regardless of whether the nominal frequencies are

distinct. Consequently, the frequencies and the mode shapes, which correspond to different parameter
combinations, must be reorganised to aggregate mode shapes of the same type in the corresponding fuzzy
subsets. This can be done using the MAC.

The PAEM method requires that the membership function be discretized according to the degree of
confidence. The problem is then transformed into an interval problem for each a-cut level.

The PAEM algorithm follows a 2-step procedure:
�
 A search for parameter combinations is performed for each a-cut level, which implies minimum and
maximum variations. The sensitivity of the eigensolutions is evaluated between each level to determine how
the response function is evolving.

�
 The modified modal quantities are approximated for each selected combination. A high-order

approximation using Padé rational functions is required in order to decrease the calculation time and
maintain a good level of accuracy. (More information about Padé rational functions can be found in work
by Elhage-Hussein et al. [31].)

Comparing the results of the PAEM method with a combinatorial reference method based on Zadeh’s
Extension Principle (ZEP) [24–27] underlined the efficiency of the PAEM method in terms of CPU time,
bound accuracy, and the membership function forms for eigenvalues and eigenvectors. More details about the
algorithm are presented in our previous article [2], and a brief review is provided in the Appendix A to this
article.

5. Prediction and comparison of fuzzy eigensolutions

For the experimental tests, only the nominal values and the bounds of the interval variation for the two
plate thicknesses were used. A total of nine (3� 3) test structures were measured. The nine test structures were
subjected to experimental modal analysis (Fig. 14). The FRFs obtained for the nine test structures are
presented in Fig. 15. After identification with Modan software [32], these FRF results were then aggregated
into fuzzy numbers in terms of the eigenvalues (Fig. 16) and eigenvectors, respecting the membership degree of
the input parameter [19] (i.e., the results obtained for the nominal value have a degree of confidence of 1,
whereas the eight other results have a degree of confidence of 0).

Before beginning the non-deterministic prediction, the most influential imprecise parameters were identified
with the PAEM method in order to limit overestimating the modal solutions (Fig. 17). This preliminary step
was necessary since calculating variability according to Poisson’s ratio provides only a simple estimation,
while characterizing Young’s modulus and the density values depends on the precision of the experimental
tests. This means that the variations introduced in this study are realistic, but relatively pessimistic. The
thicknesses e1 and e2, representing 90% of the total solution, were obviously the most influential parameters in
this study, which is not surprising considering the high level of variability voluntarily introduced in these
parameters. Fig. 18 superimposes the first and fourth fuzzy numerical frequencies and the fuzzy experimental
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Fig. 14. Description of geometrical characteristics for the nine test structures.

Fig. 15. FRFs obtained for the nine test structures.
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frequencies (for e1 and e2 only). These two parameters alone are enough to show the imperfection propagated
in the experimental model, but the numerical solution still slightly underestimates the lower bound of the
membership functions.

Overall, the numerical results are very satisfactory. Nonetheless, if designers want to include the
experimental results in the numerical results in order to take all possibilities into account, it is necessary to
examine the influence of the other imprecise parameters very carefully (Fig. 19). The authors propose to use an
iterative process, which adds, one by one, the most influent parameters in the PAEM methodology. The
process is stopped as soon as the fuzzy numerical solution is stabilized. A careful examination of our results
shows that the second-most influential parameters are the Young’s modulus and the lengths D1, D2 and D3.
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Fig. 16. Aggregation of the experimental data.

Fig. 17. Influence of imprecise parameters on frequencies f1 and f3.
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Added to the two thickness values (e1 and e2), these six parameters account for 96% of the total solution.
Fig. 20 superimposes the fuzzy experimental frequencies and the fuzzy numerical frequencies, determined with
the six fuzzy parameters mentioned above. Fig. 21 shows the first and fourth ‘‘fuzzy’’ mode shapes that
correspond to the upper and lower bounds of both the numerical and experimental results. The numerical
results come reasonably close to the experimental data. The maximal error made in evaluating the frequency
bounds is less than 5% (Fig. 22). The worst result was obtained for the fifth eigenfrequency, no doubt because
both the model and the measurements for this mode shape contain errors. The results obtained for
the eigenvectors are also quite interesting: the lower and upper bounds are correctly evaluated, except for the
upper plate in the fourth mode shape.

The comparison of the numerical and experimental fuzzy eigenvalues and eigenvectors confirmed
the usefulness of our numerical method. The results could be made even more accurate by refining the
uncertainties with regard to Young’s modulus, which is the most influential parameter after thicknesses.
6. Conclusion

The objective of this study was to compare numerical and experimental modal data when varied structural
parameters were considered. Many experimental modal analyses were completed for nine test structures using
specific values of imprecise parameters, and the results were then aggregated to fuzzy eigensolutions.
Numerically, the imperfections of the fuzzy parameters were propagated using the PAEM method in order to
obtain fuzzy eigensolutions. Using a good quality nominal model and a reasonable estimate of the variability
of the significant parameters, we were able to demonstrate a good correspondence between numerical and
experimental data.
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Fig. 18. A comparison of the membership functions of the numerical and experimental frequencies f1 and f4 (for e1 and e2 only). ——

Numerical frequencies – – – Experimental frequencies.

Fig. 19. Influence of the other imprecise parameters on the frequencies f1 and f3, on the first mode shape of component C1, and on the

mean frequency and mean eigenvector (without e1 and e2).
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Fig. 20. Comparison of the membership functions of the numerical and experimental frequencies. —— Numerical frequencies – – –

Experimental frequencies.
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Fig. 21. Comparison of numerical and experimental mode shapes in term of lower and upper bounds. — Experimental modes shapes - - -

Numerical modes shapes.

Fig. 22. Errors made in determining the lower and upper frequency and eigenvector bounds. Lower bounds. Upper bounds.

F. Massa et al. / Journal of Sound and Vibration 322 (2009) 135–154 151
This fuzzy numerical model is an improvement on deterministic models. Using this model, the different
results can be aggregated using a fuzzy formalism, providing fuzzy solutions that show both the evolution and
the robustness of the studied quantities in terms of the variations in the input parameters. Future experiments
will focus on evaluating fuzzy transfer functions.
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Appendix A. PAEM algorithm

The PAEM algorithm (Fig. 23) consists of the following steps:
For the crisp values (a ¼ 1):
�
 Determine the modal quantities and their first sensitivities for each fuzzy parameter. The signs of the first-
order sensitivities indicate the functional dependence of the response function and define the combinations
of discrete fuzzy parameter values for the following a-cut level, which could supply the minimum and
maximum variations (Step 1).
For each a-cut level:
Fig. 23. Construction of fuzzy number solution s̃k.

Fig. 24. Graphical representation of PAEM method in the parameter space.
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�
 Evaluate the first derivatives of the modal quantities for the combinations of discrete fuzzy parameter
values determined at the previous a-cut level (Step 2).

�
 Compare the signs of the derivatives with those obtained at the previous a-cut level.

1 If the sensitivities have the same signs, the response function is considered to be locally monotonic, and
the determined combinations provide the minimum and maximum variations of the modal quantities for
the current a-cut level (Step 3a).

1 If the sensitivities have different signs, the response function cannot be considered as monotonic, giving
rise to an extremum between these two a-cut levels. The combination nearest the extremum is chosen and
the search is stopped for this variation (Step 3b).
�
 Calculate the eigensolutions for the selected combinations of discrete fuzzy parameter values and apply the
MAC criterion to verify the form of the modes. To decrease the calculation time and maintain a good level
of accuracy, the ‘‘exact’’ calculation (corresponding to a deterministic finite element simulation) is replaced
by a high-order approximation using Padé rational functions.

Finally, the graphical representation of the calculations of combinations of values of parameters of PAEM
method is presented in Fig. 24 in the case of two parameters. Compared to Fig. 13, it can be seen in Fig. 24
that the non-monotonic functional dependence is taken into account.
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