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Abstract

Useful approximation formulae for radiation impedance are given for the reflection coefficients of both infinitely flanged

and unflanged rigid-walled cylindrical ducts. The expressions guarantee that simple but necessary physical and

mathematical principles are met, like Hermitian symmetry for the reflection coefficient (identical behaviour of positive and

negative frequencies) and causality for the impulse response. A non-causal but more accurate expression is also proposed

that is suitable for frequency-domain applications. The formulae are obtained by analytical and numerical fitting to

reference results from Levine and Schwinger for the unflanged case and extracted from the radiation impedance matrix

given by Zorumski for the infinite flanged case.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction and results

The problem of the radiation acoustic impedance of the planar mode in a circular pipe with rigid walls
(i.e. with homogeneous Neumann boundary condition) is a classical problem of acoustics. Various detailed
calculations for both unflanged and infinitely flanged ducts have already been provided, see, e.g. Refs. [1–4]. In
addition, experimental investigations with various flanges have been compared to theoretical and numerical
results [5]. There is a need for approximated formulae, such as those given by Refs. [4,6] or [7]. Unfortunately
these formulae do not fulfil the conditions for a physically representative model, as for instance the Hermitian
property of the reflection coefficient (see, e.g. Ref. [8]):

Rð�oÞ ¼ R�ðoÞ, (1)

where � means ‘‘complex conjugate of’’, or the causality of the impulse response of the reflection coefficient,
obtained by inverse Fourier transform and denoted by rðtÞ ¼ FT�1ðRðoÞÞ, also known as the reflection
function. This is essential to ensure that the time-domain signals are real causal quantities.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Table 1

This table summarises the results for the approximate radiation models corresponding to time dependency expð�jotÞ.

Model Unflanged case Flanged case

b ¼ 1=2; Z ¼ 0:6133 b ¼ 1; Z ¼ 0:8216

RðoÞ ¼ � 1�
jka

a

� ��ðnþ1Þ
,

a ¼ 1:2266 a ¼ 0:8216

rðtÞ ¼ �A
ct

a

� �n
exp �a

ct

a

� � n ¼ 0:504 n ¼ 0:350

A ¼ 1:534
c

a
A ¼ 0:861

c

a

n1 ¼ 0:167 n1 ¼ 0:182

RðoÞ ¼ �
1� n1jka

1� d1jkaþ d2ðjkaÞ2
d1 ¼ 1:393 d1 ¼ 1:825

d2 ¼ 0:457 d2 ¼ 0:649

jRj ¼
1þ a1ðkaÞ2

1þ ðbþ a1ÞðkaÞ2 þ a2ðkaÞ4 þ a3ðkaÞ6
,

a1 ¼ 0:800 a1 ¼ 0:730

L

a
¼ Z

1þ b1ðkaÞ2

1þ b2ðkaÞ2 þ b3ðkaÞ4 þ b4ðkaÞ6
,

a2 ¼ 0:266 a2 ¼ 0:372

Non-causal

a3 ¼ 0:0263 a3 ¼ 0:0231
b1 ¼ 0:0599 b1 ¼ 0:244
b2 ¼ 0:238 b2 ¼ 0:723
b3 ¼ �0:0153 b3 ¼ �0:0198
b4 ¼ 0:00150 b4 ¼ 0:00366

For the opposite convention expðþjotÞ, complex conjugation of the expressions is needed.
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The aim of this short paper is to provide suitable approximate formulae based on accurate analytical or
numerical fitting. Choosing the end of the bore as the reference plane and assuming a time dependence
expð�jotÞ, the principal results will be expressed in terms of the pressure reflection coefficient RðoÞ:

R ¼ �jRje2jkL ¼
Zr � 1

Zr þ 1
. (2)

The dimensionless (i.e. divided by the characteristic impedance rc=pa2) radiation impedance Zr can then be
expressed in terms of R as follows:

Zr ¼
1þR

1�R
¼ �jtan kL� j

1

2
ln jRj

� �
. (3)

k ¼ o=c and L denote the acoustic wavenumber and the end correction due to radiation, respectively.
Section 2 describes how reference values were calculated. The requirements are discussed in Section 3.

The approximate formulae are presented together with numerical results in Section 4. Table 1 summarises the
various formulae in the frequency and time-domains.
2. Calculation of the reference values

2.1. Unflanged case

Air vibrations in a rigid cylindrical pipe of negligible wall thickness and radius a propagate into free space
through a circular sharp-edged opening. Nonlinear effects like shock wave, vortex shedding, or mean axial
flow are not considered. Using the Wiener–Hopf technique, Levine and Schwinger [1] obtained an integral
formulation of the reflection coefficient RðkaÞ for the planar mode, for frequencies below the cutoff frequency
of the first non-planar axisymmetric mode. We performed numerical evaluations of Eq. (V.16) of Ref. [1] using
the quadv function from Matlab [9]. The values obtained were compared to the asymptotic approximations
given by Eqs. (VII.1) and (VII.2) of Ref. [1], with a maximum deviation compatible with the value of 3%
mentioned in that paper.
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2.2. Flanged case

The reflection coefficient for an infinitely flanged pipe has been calculated by Nomura et al. [2] using
Weber–Schafheitlin integrals and by Norris and Sheng [4] using modal expansion of the duct pressure field and
a Green’s function representation. The latter results in a modal sum for the planar mode reflection coefficient,
each coefficient having a complex integral expression.

It is also possible to derive the radiation impedance for the planar mode from the radiation impedance
matrix written as in Ref. [10], considering only the modes being symmetrical about the axis of the pipe. The
pressure and the velocity fields at the end of the bore are expressed in terms of the duct modes:

Pðr; kÞ ¼ rc2
X
nX0

Pncnðr; kÞ and V ðr; kÞ ¼ c
X
nX0

V ncnðr; kÞ (4)

with r the mean air density, and c the sound velocity in the free space, respectively. The dimensionless
coefficients Pn and Vn are linked by P ¼ ZV with

Zn;m ¼
ðjkÞ3

2p

Z Z
r;r0

ejkjr�r
0j

2pjr� r0j
cnðr; kÞcmðr

0; kÞdSðrÞdSðr0Þ 8 n;m 2 ½0;N�, (5)

where the cnðrÞ are the normalised Bessel basis functions in the duct as in Eq. (8) of Ref. [10]:

cnðr; kÞ ¼

ffiffiffi
2
p

ka

J0ðjnr=aÞ

jJ0ðjnÞj
, (6)

jn being the nth zero of the Bessel function J1. Computation of the impedance matrix has been performed
using Eq. (24) of Ref. [10], giving results equal to the ones given by formulation given by Eq. (13) of Ref. [4].

The vectors P and V and the matrix Z are then decomposed into blocks, separating planar and non-planar
evanescent components of the pressure and the flow fields:

P0

P0

� �
¼

z00 zT

z Z0

" #
V 0

V0

� �
, (7)

where z00 is the dimensionless radiation impedance of a circular piston and z gives the coefficients of the
higher-order modes for an incident plane velocity field VðrÞ ¼ V0. Provided that the non-planar modes do not
propagate, i.e. kaoj1 ’ 3:832, and that the upstream bore is sufficiently long so that the evanescent modes do
not meet a reflective obstacle in the duct, the following relation links the non-planar components:

P0 ¼ �Z0cV
0, (8)

where Z0c is the diagonal matrix of the dimensionless characteristic impedances Z0c;n ¼ k=kn, with kna ¼

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2n � ðkaÞ2

q
the wavenumber of evanescent modes. Consequently, planar components of pressure and flow

are such that

P0 ¼ z00V 0 þ zTV0 ¼ ðz00 � zTðZ0 þ Z0cÞ
�1zÞV0 ¼ ZrV 0. (9)

This expression showing the influence of evanescent non-planar modes present at the opening on the effective
plane radiation impedance. The reflection coefficient for the planar mode is then obtained by means of Eq. (2).
Fig. 1 shows the effects of the flange (dashed vs solid lines) and of the production of higher components at the
end of the bore (solid vs dash-dotted lines).

The numerical method described here has been compared to the first coefficient R000 of the generalised
reflection coefficient given by Zorumski (Eq. (32) of Ref. [10]) and to the method given by Norris (Eqs. (11)
and (14)) of Ref. [4]) where the anm coefficients can be deduced from the radiation impedance matrix. Results
are in very good agreement, with relative error less than 10�6. Convergence of the calculations with respect to
the number of higher order modes taken into account appeared to be significant for 10 modes. Matrix
calculations were done using LAPACK [11], a standard linear algebra library.
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Fig. 1. Real and imaginary parts of the radiation impedances of the circular piston set in an infinite plane baffle (z00, dash-dotted curves)

and of the planar mode of a cylinder in the flanged (Zr, solid curves) and unflanged cases (dashed lines).
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3. Model requirements

Norris and Sheng (see Eq. (27) of Ref. [4]) attempted to provide simple accurate formulae for jRj with a
rational function. But a non-negligible drawback of these formulae (and of other low-frequency
approximations, see, e.g. Refs. [6,7]) is that they are not Hermitian, i.e. the property Rð�oÞ ¼ RðoÞ� is not
satisfied, and cannot be used for both positive and negative frequency-domains. Another point is that it was
not possible to estimate a time-domain reflection function rðtÞ because the approximated formulae were not
applicable for higher frequencies (the expression for the modulus jRðoÞj become negative when o increases).
In this section the complete set of requirements on RðoÞ is addressed.

3.1. Low frequency behaviour of the reflection coefficient

The first requirement on the reflection coefficient is satisfaction of the following asymptotic forms in the low
frequency-domain:

jRjðo! 0Þ ¼ 1� bðkaÞ2 þ oðkaÞ2 withb ¼
1=2 for the unflanged case;

1 for the flanged case;

(
(10)

using the little-o notation. In the case of the baffled circular piston, the truncated part of the expansion is
known to grow as ðkaÞ4, but is more complicated in the unflanged case. Concerning the length correction as
defined in Eq. (2), it becomes

L

a
ðo! 0Þ ¼ Z ¼

0:6133 for the unflanged case;

0:8216 for the flanged case;

(
(11)

these static values being the ones given by Refs. [1,4].

3.2. Impulse response

In order to enable the use of a time-domain reflection function, the condition for inverse Fourier transform
existence has to be fulfilled. First of all, jRðoÞj has to tend to zero at high frequencies. The impulse response
rðtÞ must also be a real quantity, which is guaranteed by the Hermitian property in the frequency-domain (see,
e.g. Eq. (1)).

Another physics-driven requirement is that the impulse response should be causal. The Kramers–Kronig
relations [12] provide a means to express this requirement in the frequency-domain. Another method is to
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study the placement of the poles of the reflection coefficient. Using the time dependence expð�jotÞ, the poles
have to be located in the complex half-plane ImðoÞo0 (see, e.g. Ref. [8], with the opposite time dependence
convention); otherwise anticausal components appear in the inverse Fourier transform. However, it is not
possible to calculate a time-domain impulse response based on the equations described in the previous section
as this computation requires the knowledge of RðoÞ on the full frequency range. As a practical alternative, we
aim to provide approximations having an extended domain of validity in both frequency and time.

We notice that if the reflection coefficient is causal, the input impedance is causal as well, because the
modulus of RðoÞ is less than unity. Expanding ð1�RÞ�1 in Eq. (3) in the form of 1þRþR2 þ � � � ; the
inverse Fourier transform of Zr is expressed as an infinite series of terms involving convolution products of
causal functions, thus the result is a causal function. A physical interpretation in terms of successive reflections
is classical. This reasoning cannot be done in a reciprocal manner using Eq. (2), since the modulus of the
dimensionless impedance can be large.
4. Approximate formulae and results

Two models are presented in this section. Both models satisfy the requirements mentioned in Section 3: they
are causal in the time-domain and satisfy the Hermitian property and the desired low-frequency behaviour in
the frequency-domain. In particular they both result in very similar accuracy in the frequency-domain below
the below cutoff frequency ka ¼ j1. The main difference is in the high-frequency behaviour which results in
different smoothness properties at t ¼ 0.
4.1. Model (n, a)

The impulse response is modelled by the following expression:

rðtÞ ¼ �A
ct

a

� �n
exp �a

ct

a

� �
for t40; 0 otherwise. (12)

This definition ensures causality and Hermitian symmetry (with real a and n). Its frequency-domain
representation (with the convention exp�jot) is given by

RðoÞ ¼ �
AaGðnþ 1Þ

canþ1
1�

jka

a

� ��ðnþ1Þ
. (13)

The adjustment of the low-frequency behaviour allows the determination of the parameters A, n and a:

A ¼
canþ1

aGðnþ 1Þ
; a ¼

Z
b

and nþ 1 ¼
2Z2

b
. (14)

The value of A leads to the following expression:

RðoÞ ¼ � 1�
jka

a

� ��ðnþ1Þ
. (15)

Numerical values of the parameters are given in Table 1 and frequency and time responses are displayed in
Fig. 2 showing good agreement in frequency-domain up to ka ¼ 2 and monotonic decrease above. The time-
domain reflection function as defined by Eq. (12) is causal, as expected.
4.2. Low order Padé approximant

In order to permit analytical simplicity and possible calculations in the frequency-domain, it is convenient to
assume that the coefficient reflection depends on integers powers of frequency. That is not the case for the
model (n,a) which has a non-integer exponent n.
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Fig. 2. Comparison in frequency-domain of the references (dashed lines) and model (n,a) of Eqs. (12)–(15) (in solid lines) for the unflanged

(left column) and infinitely flanged (right column) cases. (a, b) Modulus jRðkaÞj of the reflection coefficient (approximation errors in solid

lines in (e, f)). (c, d) Dimensionless length correction L=a (approximation errors in dash-dotted lines in (e, f)). (g, h) Example of the

reflection function (a ¼ 7mm).
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A rational function approximation of the form:

RðoÞ ¼ �
1� n1jka

1� d1jkaþ d2ðjkaÞ2
(16)

has been fitted to reference values. Low-frequency behaviour constrains the parameters n1, d1 and d2

according to the following relations:

d1 � n1 ¼ 2Z and d2
1 � n2

1 � 2d2 ¼ 2b, (17)

so that a one-dimensional fitting is done using a Nelder–Mead simplex algorithm to minimise the error
between the complex evaluations of the reference and the model. N ¼ 75 values of RðkaÞ were computed for
regularly spaced values of ka between 0 and j1 (the cutoff value for the first axisymmetric non-planar mode).
Numerical values obtained by constrained optimisation (requiring causality or, equivalently, that no pole lie in
ImðoÞ40) are given in Table 1. In the same manner as for the previous model, frequency and time responses
are shown in Fig. 3. RðoÞ seems almost as well adjusted to the reference values as the model (n; a) but, unlike
that model, the impulse response rðtÞ now shows an instantaneous initial step at t ¼ 0:

rðt40Þ ¼
c

ad2ðg1 � g2Þ
ððn1g2 � 1Þ e�g2ct=a � ðn1g1 � 1Þ e�g1ct=aÞ, (18)

where

g1;2 ¼
1

2d2
d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1 � 4d2

q� �
. (19)
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Fig. 3. Comparison in frequency-domain of the references (dashed lines) and model (1,2) of Eqs. (16)–(20) (in solid lines) for the unflanged

(left column) and infinitely flanged (right column) cases. (a, b) Modulus jRðkaÞj of the reflection coefficient (approximation errors in solid

lines in (e,f)). (c,d) Dimensionless length correction L=a (approximation errors in dash-dotted lines in (e,f)). (g,h) Example of the reflection

function (a ¼ 7mm).
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The radiation impedance Zr is given by the following expression:

ZrðoÞ ¼
ðd1 � n1Þjka� d2ðjkaÞ2

2� ðd1 þ n1Þjkaþ d2ðjkaÞ2
(20)

similar to the one suggested by Doutaut et al. [13], where the coefficients were obtained by numerical fitting on
the approximated radiation impedance given by Caussé et al. [7].

5. Relaxing the causality constraint

The formulae given previously may appear somewhat inaccurate especially as the cutoff frequency
of the first higher order mode is approached. However, it should be kept in mind that they are intended
to simultaneously approximate the low frequency behaviour of the reflection coefficient, satisfy the Hermitian
property, and produce a causal physical response. With all these constraints being satisfied, the relative
errors on the modulus and the length correction are less than 8% for kap2. For applications where the time-
domain response is not a critical criteria, relaxation of the causality constraint may lead to improved
approximations.

We find that modelling jRðkaÞj and LðkaÞ=a with Padé approximants of order (2, 6) provides more accurate
approximations with the following expressions:

jRj ¼
1þ a1ðkaÞ2

1þ ðbþ a1ÞðkaÞ2 þ a2ðkaÞ4 þ a3ðkaÞ6
, (21)

L

a
¼ Z

1þ b1ðkaÞ2

1þ b2ðkaÞ2 þ b3ðkaÞ4 þ b4ðkaÞ6
, (22)
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Fig. 4. Comparison in frequency-domain of the references (dashed lines) and the non-causal model of Eqs. (21) and (22) (in solid lines) for

the unflanged (left column) and infinitely flanged (right column) cases. (a,b) Modulus jRðkaÞj of the reflection coefficient (approximation

errors in solid lines in (e,f)). (c,d) Dimensionless length correction L=a (approximation errors in dash-dotted lines in (e,f)).
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and the numerical values given in Table 1. These formulae fulfil all of the requirements except the causality
principle, and approximation errors for the modulus and the length correction are less than 2% for kao3 for
both unflanged and infinitely flanged cases as shown in Fig. 4. Combining formulae (21) and (22) into Eq. (3)
allows the computation of the acoustic radiation impedance.

6. Conclusion

Practical approximation formulae of the acoustic radiation impedance of tubes are required for a variety of
applications in acoustics. The necessity for such useful formulae is illustrated, in part, by the list of references
cited here, which is long but certainly not exhaustive. The present results attempt to satisfy all the criteria
required of the realistic physical system, such as causality, Hermitian response and faithful low frequency
behaviour. We therefore believe that the present contribution can be useful for calculations in both the time
and frequency-domains. Practical applications include, for instance, measurements in duct acoustics, musical
acoustics, or loudspeakers enclosures where mean flow is absent or very slow.

Difficulty remains for the digital (sampled time) domain. In fact, the approximate formulae provided in this
paper are all expressed in terms of the variable ka. A digital filter modelling the radiation at the end of a
cylindrical duct has to be written as a function of the z ¼ exp ð̃joTeÞ variable (in the Te-sampled time-domain)
and the coefficient of the filter are then dependent on the radius a. This could present difficulties if one wants
to obtain approximation formulae suitable for the digital domain.

Despite such remaining technical issues, the calibrated formulae summarised in Table 1 offer the acoustician
practical and useful formulae for realistic applications. The numerical results of the calculations described in
Section 2 are available at the following http://www.lma.cnrs-mrs.fr/�PIM/DATA/.
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