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Abstract

The equivalent source method (ESM) is known as an attractive alternative to the classical boundary element or finite

element methods to solve acoustic scattering or radiation problems, mainly because of its straightforward formulation and

low computational cost. However, since the quality of the ESM solutions depends strongly on the position of the sources,

the lack of general rules for its determination represents a disadvantage to the user. In the present paper, it is shown that a

combination of ESM with a specific genetic algorithm can actually remove this disadvantage by providing, given a number

of monopoles, their ‘optimal’ localization and complex source strengths. The method is applied to three-dimensional

scattering problems in which different body aspect ratios and wave incidence angles are considered. It is shown that the

developed technique permits a good reconstitution of the pressure field by using very few monopoles. The accuracy of the

solution is also compared with that provided by the multiple-multipole expansion technique.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic radiation or scattering problems are classically solved with the boundary element or finite element
methods. The equivalent source method (ESM) is a relatively more recent and unfamiliar technique that can
represent an attractive alternative. The method’s basic idea is to substitute the real body for a set of point
sources located in its interior, whose location and strengths must be such that the resulting normal velocity at
the boundary of the body is as close as possible to that of the real case. The method has been developed,
implemented and successfully used for a wide range of applications, in the time and frequency domains, both
for exterior and interior radiation or scattering problems [1–10]. Its main advantages reside in its simplicity
and in the fact that it can provide good approximations of the solution by employing a number of sources
much smaller than the number of nodes, i.e., with a relatively much lower computational effort. Another plus,
when compared to the boundary element or finite element methods, is that, since the scatterer (or vibrating
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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body) can be simulated by simple source sets, ESM contributes to the physical understanding of how the
scatterer (or radiator) behaves, as it alters the sound field in which it is immersed.

On the other hand, given that the quality of the solution depends strongly on the source positioning,
the lack of a general rule for picking a suitable source arrangement represents a disadvantage in the use
of the equivalent source method [4,5,11]. This is, in the authors’ opinion, the main reason for the so-far
limited application of the method. Nevertheless, this issue is tackled by several published works that
propose a number of different approaches. First, based on an alteration of the boundary element method that
aims to avoid the difficulty involved in the computation of the singularities, some authors recommend placing
the sources on a retracted inner surface with the same shape as the body boundary itself. For instance,
Koopmann et al. [1] obtained the pressure radiated from spherical and cubic radiators by using a sphere and a
cube as the source support. Fahnline and Koopmann [2] and Song et al. [3] studied the bi-dimensional
radiation from an infinite circular cylinder with 16 line sources located on an inner cylinder. However,
while this procedure can lead to good solutions with a reasonably small number of sources when a simple
boundary condition is considered—and mostly for bi-dimensional problems—it requires a high number of
sources in other cases. Other authors have adopted different approaches, attempting to provide a specific rule
for each particular problem. For instance, Kropp and Svensson [4] used 32 sources (in two layers, each with
4� 4 monopoles) to compute the field radiated from a 0.25� 0.5� 0.5m box. In order to optimize a
low-height noise barrier, Thorsson [6] solved the bi-dimensional problem by using two vertical arrays of
monopoles and two dipoles located close to the barrier’s top. Pavic [8] proposed a completely different
approach to the problem: a grid of possible positions for the monopoles is considered and an iterative process
is used in order to select, one by one, the appropriate location for the sources. In an investigation about the
stability of some variants of the equivalent source method, Ochmann [5] proposed another general procedure
named ‘‘multi-point multipole method’’: the structure is divided into sub-structures, as sphere-like as possible,
whose centers are the focal point of multipole expansions. In a paper that discusses the sensitivity of the
solution to both source spatial arrangement and number of sources, Gounot et al. [9] have shown that, when
the source position is a priori chosen, it may happen that a rather poor solution is found, since this
arrangement may correspond to a local minimum for the problem. In a subsequent investigation, Gounot and
Musafir [10] proposed thumb-rules that furnish appropriate and easy-to-implement monopole sets (number
and position) for the case of a simple geometry scatterer, i.e, when the body can be approximated by a
collection of parallelepipeds. Although the proposed procedure constitutes useful guidelines for users of the
equivalent source method, it also points out to the need of other approaches in the case of more complex
bodies.

The present paper proposes a general technique that permits, by combining genetic algorithms with the
equivalent source method, to determine simultaneously optimal source location and source strengths. Genetic
algorithms, which belong to the evolutionary algorithm family inspired by Darwin’s theory, constitute a
global search technique that presents the advantage of limiting considerably the risk of falling into a local
optimal. Successfully employed in various scientific fields [12], theses algorithms were applied in acoustics, to
the authors’ knowledge, only in active noise control problems: Baek and Elliott [13] used them in order to find
the optimal position for the secondary loudspeakers while Martin and Roure [14] focused on the minimization
of the number of secondary sources and on the location of the error sensors. In the analogous field of
electromagnetic radiation, Regué et al. [15] employed genetic algorithms to determine the position and
amplitude of a set of dipoles, used to describe the radiation of dipole-like sources in an electric device (in fact,
4 and 8 dipoles, respectively, were used to model 4 and 8 sources). In the cases addressed in Refs. [13,14] the
constraints imposed by the experimental realization turn the problem (in which the best solution is sought out
among a finite number of viable solutions) into a combinatory problem. On the other hand, in the cases
studied in [15] the search space is ‘infinite’—since the problem of searching for optimal source positions within
a continuous region is in fact infinite. However, as the investigation by Regué et al. [15] amounts to the
identification of point (dipole) sources, whose locations are in fact, known, there is a simple exact analytical
solution to which the numerical solution tends to converge. The present paper considers the more general
situation of approximating a continuous source distribution by a finite number of point sources. The fact that,
in general, no exact solution exists in this case makes necessary to include numerical error criteria in the
analysis. A number of three-dimensional numerical experiments, aiming at the reconstitution of the scattered
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field due to the impinging of a plane wave on a rigid body (different body aspect ratios and wave incidences
being considered), are presented in order to show the algorithm efficiency.

2. Theoretical background

2.1. The radiation and scattering exterior problem

Let S be a closed surface. The interior and exterior regions are OI e OE, the exterior one being characterized
by the uniform mean density and sound speed, r0 and c0. The boundary outward normal is denoted by n, x
and xS are, respectively, arbitrary points in OE and on S. In the frequency domain, the pressure field p radiated
by the vibrating surface S in the free space OE is the solution of the Neumann boundary value problem
associated with the Helmoltz equation and the boundary conditions on S and at infinity, given, respectively,
by Eqs. (1)–(3),

fr2 þ k2
gpðx;oÞ ¼ 0, (1)

qpðxS;oÞ
qn

¼ �ikr0c0ūnðxS;oÞ, (2)

lim
r!1

rðqp=qr� ikpÞ ¼ 0, (3)

where k is the wave number related to the angular frequency o, given by k ¼ o/c0, ūn is the normal component
of the prescribed surface velocity and r ¼ |x|; a time dependence eiot is assumed throughout.

The scattering problem (see Fig. 1) due to the impinging of an incident wave on the body surface can be
described as a radiating problem in which the pressure and velocity fields are given by the sum of the incident
wave and scattered wave components

pt ¼ pinc þ psc, (4)

vt ¼ vinc þ vsc. (5)

The scattered pressure psc has to satisfy the Helmoltz equation and the Sommerfeld condition [16], i.e.,
Eqs. (1) and (3). Moreover, since a rigid body is considered—what implies that the normal total velocity on S

is zero—the boundary condition is satisfied by assuming that the vibration normal velocity is equal to minus
the normal velocity that would be due to the incident wave on S in the absence of the body (see Eq. (5)).

2.2. The equivalent source method

The equivalent source method consists in substituting the real acoustic radiator (or scatterer) for point
sources that satisfy (or approximate) the same boundary condition—i.e., that are supposed to generate the
same normal velocity on S—as in the original problem. The source location can be any point ym within the
envelope of the body, i.e., outside the true propagation domain OE (see Fig. 2). Any function that satisfies
both the Helmoltz equation and Sommerfeld condition can be used to represent the source radiation; the
most commonly employed being the free-space Green’s function and expansions in spherical wave functions.
ΩI
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psc
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Fig. 1. Geometry for the scattering problem.
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The resulting pressure and velocity fields are given by the superposition of the fields generated by each one of
theses sources, which are, in the case of a set made of M monopoles, straightforwardly expressed as

pscðx;oÞ ¼
XM

m¼1

AmGkðxjymÞ (6)

vsc
n ðx;oÞ ¼

�1

ior0

XM

m¼1

Am

qGkðxjymÞ

qn
(7)

where Am denotes the unknown complex strength of the monopole located at ym and Gk is the free-space
Green’s function given by

GkðxjyÞ ¼
e�ikjx�yj

4pjx� yj
. (8)

Except for rare cases, the source set does not satisfy perfectly the boundary condition and a velocity error
(given by the difference between vsc

n and the prescribed velocity ūn) is produced; its minimization furnishes the
‘optimal’ set {Am}m ¼ 1,y,M which corresponds to the best solution.

2.3. Classical minimization techniques and genetic algorithms

The most common optimization technique for solving this type of problems is the least square method,
which consists in minimizing the sum, over N boundary nodes, of the local errors squared: first, one chooses
and fixes the M source positions ym and solves the resulting N�M system, furnishing then the M complex
source strengths Am. The method presents the following drawback: since the quality of the solution depends
strongly on the choice of the source location [9], the fact that the spatial coordinates are fixed may possibility
lead to a local minimum, what means that the corresponding ‘best solution’ might be quite removed from the
actual best solution that a set of M sources can provide. Another minimization technique is the method of the
weighted residues, in which the choice of particular weighting functions used to minimize the local errors can
lead to a more stable variant. This is the case of the techniques developed by Ochmann [5], the null-field
equations and the full-field equations, which present the following advantage: the solution precision increases
with the number of sources used. On the other hand, as shown in a comparative study of these ESM variants
[9], provided the sources are properly positioned, sets made of a low number of monopoles generally yield
solutions significantly more precise with the least square method than with the full-field equations.

Since conventional optimization algorithms usually require the computation of the derivatives of the
function to be minimized, they are restricted to well-behaved functions, i.e., continuous and differentiable
functions in a convex search space, whereas genetic algorithms can operate in a non-convex space and deal
directly with the function itself. This feature implies that, besides the fact that they allow minimizing functions
which are not even continuous, a significantly much lower computational cost is also involved. Another
advantage over classical methods, like the gradient method, resides in the fact that genetic algorithms
constitute a global search technique that limits considerably the risk of falling into a local minimum. Genetic
algorithms are based on natural selection genetic mechanisms, as in biological evolution, in which the fittest
individuals of a population tend to reproduce and survive to the next generation, improving (according to a
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specific fitness criterion) the successive generations. The first step of the algorithm implementation is the
encoding of the solution. A solution, called chromosome, is expressed in the form of a finite string of characters
or numbers, the genes, that represent the variables of the function to be minimized, called the cost function.
The possible values for the genes form intervals or sets, which, all together, define the search space for the
particular problem. The algorithm starts with the creation of a first population made of a specified number of
chromosomes randomly generated. The fitness of each chromosome, given by the corresponding value for the
cost function, is then evaluated. Three basic genetic operators, the selection, the crossover and the mutation, act
on the first-generation chromosomes, preserving some of them and transforming others, and engendering the
second generation, and so on. The selection of the chromosomes is based on probabilistic laws related to their
fitness in such way that the best chromosomes have a higher chance of being selected and preserved,
increasing, generation after generation, the mean value of the population fitness. The two reproduction

operators, the crossover and the mutation are responsible for the formation of new chromosomes, which
‘guarantees’ that the entire search space is scanned and the global optimal is found. The crossover operator
picks two chromosomes (parents A and B) and produces two new ones (child A0 and B0) through operations
based on the exchange of the value of some genes. Thus, the resulting chromosomes present parts of the
chromosome A combined with parts of the chromosome B, as illustrated in Fig. 3a. As for the mutation,
the operator consists in the alteration, in a given chromosome, of the value of one or various genes (Fig. 3b).
The algorithm stops when a termination condition—which usually is a certain number of iterations or a
satisfactory value for the fitness function—is reached. For a complete description of the genetic algorithm
techniques, see [12].

2.4. Description of the ESGA technique

The present optimization procedure, which combines the equivalent source method with genetic algorithms
and is denoted by ESGA, was implemented by using MATLAB and the genetic algorithm toolbox ‘‘Gaot’’
[17]. A real valued coding of the problem was chosen and the solutions are expressed as follows. Let’s consider
a set of M monopoles. Since each monopole is described by five variables—two for its complex source
strength, expressing magnitude Ai and phase ji, and three for the space coordinates xi, yi and zi—the
chromosome is formed by M times five genes, as illustrated in Fig. 4. The Ai and ji are randomly picked
within the intervals [0, Amax] and [0, 2p], respectively, the upper limiting value Amax being chosen by the user.
As for the source position, the only restriction is that xi, yi and zi be strictly inside the body. Three search
spaces, which have different dimensions and consequently, different ‘degrees of freedom’, will be considered
(see Fig. 5): a linear segment parallel to k and in the z ¼ 0 plane (one-dimensional); the region of the z ¼ 0
plane inside the body (two-dimensional); the whole volume enclosed by the body (three-dimensional).

The function to be minimized has been chosen as the normalized quadratic velocity error on the boundary given by

eBC ¼

PN

i¼1

jvsc
n ðxiÞ � ūnðxiÞj

2

PN

i¼1

jūnðxiÞj
2

, (9)

which involves essentially the computation of vsc
n through Eq. (7).
Fig. 3. Example of (a) a simple cross-over (at third gene) and (b) a simple mutation (at fourth gene).
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Fig. 4. Representation of a chromosome used for equivalent source method with the genetic algorithm (ESGA).

Fig. 5. Representation of a parallelepiped-shaped scatterer and the three search-spaces for the sources; Finc ¼ 0.
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The initial population is constituted by 30 randomly generated chromosomes. It must be noted that, while
an excessively high number of chromosomes makes difficult the minimization process, a too much low number
tends to limit the diversity of these solutions within the population. Chromosomes are evaluated by means of
their corresponding eBC value and, then, sorted. The constitution of the following populations (generations) is
based on the selection of the ‘best’ chromosomes of the current population—achieved by assigning a
‘probability of selection’ to each chromosome—and on the two genetic operators, the crossover and the
mutation. The main schemes for the genetic algorithm selection process are the roulette wheel, scaling
techniques and ranking methods, the one used in the present ESGA version being the normalized geometric
ranking in which the probability of selecting a given chromosome depends on its rank and on the size of the
population [17]. Two types of crossover have been used, the ‘simple’ and the ‘arithmetic’ crossover. While the
simple crossover generates a random integer number r, between 1 and the chromosome size, and recombines
the ‘initial’ part (from the first to the rth gene) of the parent A with the ‘final’ one (from the (r+1)th to the last
gene) of parent B and vice-versa, the arithmetic crossover produces two new chromosomes which are given by
two complementary linear combinations of A and B. The number of times these operators are called at each
generation is determined by a probability of 60% of its application to each member of the population, this
being a commonly recommended value [12,17]. As for the mutation, three types of operators were jointly used:
the uniform mutation, the non-uniform mutation, and the boundary mutation. While all of them randomly
select one of the chromosome variables, ci, and set it to a certain value, the process differs according to the
type of mutation considered: in the first and second cases, the value is comprised between the variable lower
and upper bounds, cmin

i and cmax
i , being randomly obtained, respectively, by uniform and non-uniform laws; in

the third case, the value is either cmin
i or cmax

i . The frequency of application of the mutation operators
corresponds, as for the crossover case, to a suggested value for the probability of application to a member of
the population of 5% [17]. The ESGA termination criterion is given by a number of iterations (generations)
equal, if not otherwise specified, to 2000. For each generation, the best solution, {Am, ym}m ¼ 1,y,M, is stocked
in order to permit the computation of the corresponding pressure field, given by Eq. (6).
3. Numerical experiments

3.1. General description

The numerical experiments refer to the scattering of a plane wave by a rigid body in the three-dimensional
space. The scatterer is a parallelepiped with dimensions (Z� 1� 1)l, where l is the wavelength of the incident
wave and Z expresses the body aspect ratio; the values Z ¼ 1, 2, 3 and 4 are considered, as in Ref. [10].
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Therefore, the non-dimensional parameter kLZ based on the body largest dimension, LZ, corresponds, for the
chosen Z values, to 6.3, 12.5, 18.8 and 25.1, respectively. The incidence angle of the impinging wave, Finc, is the
angle between the wave vector k, assumed parallel to the xy-plane, and the x axis. Fig. 5 gives a schematic
representation of the geometry of the problem (for the case Finc ¼ 0) and of the different search spaces used
for the source position.

Fig. 6, which illustrates the evolution of the optimization process, shows, at each generation, the values of
the cost function eBC corresponding to the population best chromosome and to the average value over all the
chromosomes of the population. It is notable that, as generations go by, not only the best chromosome of the
population improves (the eBC passing, here, from 4 to 0.4), but also does the entire population (the eBC mean
value passing, here, from 30 to 0.5). This means that ESGA not only furnishes a single solution, but also a
family of solutions that present an acceptable quality. When dealing with the experimental reconstitution of
pressure fields, in which physical constraints are often involved, this point represents clearly a plus, since one
can choose, among the available solutions, the ‘more appropriate optimal solution’ for its given situation. In
order to check the algorithm efficiency, a number of cases with a large diversity of velocity distributions to be
reconstructed—corresponding to different orientations for the wave vector k and different scatterer
geometries—are considered. In Section 3.3, the scatterer is a cube and three incidences, which correspond
to velocity distributions with an increasing level of complexity, are examined: a normal incidence and two non-
normal ones. Section 3.4 is concerned with a normal incidence on parallelepiped-shaped scatterers; two
cases—corresponding to velocity distributions with quite different features—are investigated: k parallel to and
k normal to the body largest side LZ.

3.2. On the choice of the search space

Preliminary experiments made with the ‘three-dimensional’ search space (i.e., when the sources are allowed
to occupy any position inside the body volume) revealed some interesting and valuable results about
the optimal positioning of the sources. A result observed in all the ESGA trials made, independently
of the azimuth angle considered, is that, after exploring various different possible altitudes (z values), all
sources end up meeting on the z ¼ 0 plane, which is a symmetry plane for the present cases. Fig. 7a shows,
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in the case ‘k normal to the body largest side’ (here, for Z ¼ 2, Finc ¼ p/2 and for 4 monopoles referred to as
M1, M2, M3 and M4), a representative evolution of the position of the sources. The second result is actually a
particular case of the one presented above, valid for Z41 when k is parallel to the scatterer largest dimension,
and, for Z ¼ 1 for any normal incidence. As illustrated on Fig. 7b for Z ¼ 2, Finc ¼ 0 and M ¼ 4, besides the
fact that all the sources converge to the z ¼ 0 plane (as in the previous case), they also self-position themselves
on a line parallel to k (their y-coordinate also converges to 0). This fact confirms a result stated in a precedent
study [10], which has been obtained by comparing the efficiency of different simple source supports, namely,
lines, circles and ellipses: in this situation, the best solutions are always obtained with a linear support
parallel to the wave vector. The two general results described above, which permit us to reduce the dimension
of the search space without altering the final solutions, will be used in order to ease the minimizing process, as
follows: (1) in all cases involving a zero azimuth angle (i.e., for k in the xy plane), the search space will be
the ‘two-dimensional-space’ previously described; (2) moreover, when k is parallel the scatterer largest
dimension (here, when k is parallel to the x-axis, i.e., Finc ¼ 0), the search space will be reduced to the
‘one-dimensional-space’.

3.3. On the effect of the incidence angle

Results in this section were obtained for the case Z ¼ 1 (i.e., for a cube) with three different values for the
wave incidence angle. These three values have been chosen for corresponding to surface velocity distributions
with increasing level of complexity: a normal incidence, i.e., Finc ¼ 0, and two non-normal ones, Finc ¼ p/4
and Finc ¼ p/8. Fig. 8 shows the corresponding normal velocity along the cube perimeter line in the z ¼ 0
plane, the line being covered starting from the frontal face in Fig. 5, and proceeding clockwise. The simplest
velocity distribution corresponds to the normal incidence (Finc ¼ 0), for which the nodes of the frontal face
present the same velocity magnitude, but are in phase opposition with those of the back face; null velocity
occurs on the other faces. The second case, Finc ¼ p/4, corresponds to the only non-normal incidence that
yields a symmetrical velocity distribution (with respect to the cube diagonal parallel to k). The third case,
Finc ¼ p/8, illustrates an arbitrary case with an asymmetric velocity distribution on the boundary. The
increasing degree of complexity of the velocity distributions corresponding to these three cases mirrors in the
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Fig. 8. Normal velocity on the boundary for different incident angles: Finc ¼ 0, (a) and (d); Finc ¼ p/4, (b) and (e); Finc ¼ p/8, (c) and (f).

(a)–(c) Normalized magnitude, and (d)–(f) phase in rad/s.
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resulting pressure fields, as illustrated in Fig. 9, which shows the pressure magnitude on a reference 2l-radius
circle centered on the scatterer geometric, computed with a standard boundary element method code. This
reference circle will be employed for all pressure field results shown in this paper.



ARTICLE IN PRESS

2 3 4 5 6 7 8 9 10 . X1 X2 X3 X4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

B
ou

nd
ar

y 
ve

lo
ci

ty
 e

rr
or

Fig. 10. Boundary velocity errors obtained with ESGA using 2, 3,y, 10 monopoles and with the expansions w1, w2, w3 and w4; ’ Finc ¼ 0;

Finc ¼ p/4; & Finc ¼ p/8.

Y.J.R. Gounot, R.E. Musafir / Journal of Sound and Vibration 322 (2009) 282–298 291
In order to evaluate the ESGA efficiency in reconstructing these different fields, the following methodology
has been adopted: on the one hand, ESGA trials are made with a number of monopoles M ¼ 2,y, 10; for each
value of M, 10 trials are performed and their corresponding eBC values at the last generation are stocked; the
mean value is shown in Fig. 10. It should be noted that this value is referred as ‘representative’ because the
dispersion between the 10 trials is always small, what means that it provides a good evaluation of the quality
of the solution that can be expected with ESGA for a given number of monopoles. On the other hand, in order
to estimate these typical ESGA errors, the ones obtained by using expansions in spherical wave functions,
following a procedure proposed by Ochmann [5], have been computed. The procedure consists in dividing the
body in a set of cube- or sphere-like substructures, in whose centers are placed the expansion points. In the
present section, since the scatterer is a cube, no division is required, and a single expansion with order up to a
(referred to as wa) focused at the geometric center of the cube is used. It is worth underlining that wa contains
ðaþ 1Þ2 functions, so that an expansion referred to as w1, w2, w3 or w4 corresponds to 4, 9, 16 or 25 sources with
different orders: monopole and dipoles for a ¼ 1, monopole, dipoles and quadrupoles for a ¼ 2, etc. Fig. 10
shows, for each incidence angle considered, the velocity errors obtained with ESGA and with the expansions
w1, w2, w3 and w4.

Regarding the ESGA convergence, Fig. 10 shows that, in general, the error decreases with the number of
monopoles employed. However, the sometimes negligible decrease in the error between two solutions
corresponding to two successive values of M can be explained by the fact that a couple of monopoles (or more)
may be required to reach a significant improvement of the precision. It is also observed that, as expected, for a
given number of monopoles, the error increases with the complexity of the velocity distribution. However,
even in the most unfavorable case considered (Finc ¼ p/8), the solution obtained with a relatively low number
of monopoles, M ¼ 8, shows a precision equivalent to or better (eBCp40%) than the one obtained with the w3

expansion, which is made of 16 sources, including dipoles, quadrupoles and octupoles. The significant
difference between the Finc ¼ 0 and the Finc ¼ p/4 cases observed with the expansions seems to be related to
the fact that the axis system for the expansion is fixed, coincident with the xyz axis (see Fig. 5), while the
scattered fields present a strong dipolar component in the k direction [10]. Although, formally, there is no a
priori reason that prevents the expansion algorithm to produce a resulting dipole with the appropriate
orientation, the best results are observed when the angle between k and one of the axis is close to zero. As this
angle increases, the field reconstitution requires an expansion including higher degree components. As for
ESGA, the fact that it does not require any a priori condition about the source positioning constitutes
evidently an asset.



ARTICLE IN PRESS
Y.J.R. Gounot, R.E. Musafir / Journal of Sound and Vibration 322 (2009) 282–298292
Regarding the evaluation of the solution accuracy, it should be noted that, while a boundary velocity error
of about 40% may seem somewhat high, for a scattering problem it corresponds to a satisfactory solution.
This is shown by the comparison of the reconstructed pressure fields with the boundary element method
solution, shown in Figs. 11–13 for Finc ¼ 0, p/4 and p/8, obtained using only 5, 8 and 6 monopoles,
respectively. Moreover, in order to get additional information on the solution quality, Table 1 shows the field
indicators E1 and E2, which express the percentage of the field points (100 points uniformly distributed on the
reference circle described in Section 3.1.) with an error lower than 1 and 2 dB, respectively. For the normal
incidence, a good reconstruction of the field is obtained with only 5 monopoles, 96% of the points presenting
an error lower than 1 dB. For Finc ¼ p/4, besides the higher complexity of the velocity distribution on the
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Fig. 11. Normalized total pressure field on the control circle for Z ¼ 1 and Finc ¼ 0; equivalent source method with the genetic

algorithm (ESGA), using 5 monopoles;—boundary element method.
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Fig. 12. Normalized total pressure field on the control circle for Z ¼ 1 and Finc ¼ p/4; equivalent source method with the genetic

algorithm (ESGA), using 8 monopoles;—boundary element method.
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Fig. 13. Normalized total pressure field on the control circle for Z ¼ 1 and Finc ¼ p/8; equivalent source method with the genetic

algorithm (ESGA), using 6 monopoles;—boundary element method.

Table 1

Boundary velocity error and pressure field errors for the three incidence angles considered.

Finc ¼ 0 Finc ¼ p/4 Finc ¼ p/8
(rad) (rad) (rad)

eBC 0.42 0.48 0.43

E1 (%) 96 75 74

E2 (%) 100 98 95
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boundary, the pressure field obtained with 8 monopoles is rather satisfactory (E2 ¼ 98%), the lobes being
quite reliably reproduced. The same applies for the more complex case, Finc ¼ p/8, for which, with only
6 monopoles, 95% of the control points show a local pressure error lower than 2 dB. It should be noticed that
there is not a strict correlation between the boundary velocity error and the pressure field error indicators,
since they are based on data obtained on geometries with different dimensions: the former on a closed surface
and the latter on a circle. This explains why two solutions with comparable eBC values may present quite
different E1 values (see for example the Finc ¼ 0 and Finc ¼ p/8 cases).

Fig. 14 shows, for Finc ¼ p/4 and for Finc ¼ p/8, ‘optimal’ source positions furnished by the ESGA with a
6-monopole source set; for the normal incidence case, it has been found that the optimal positioning for the
sources is along the x-axis, i.e. on a line parallel to k (see Section 3.2). For Finc ¼ p/4, the sources show a
‘perfect’ symmetry in relation to the cube diagonal that mirrors the symmetry in the velocity distribution on
the boundary: the monopoles are positioned on a cross-like geometry, four of them aligned with the k

direction, along one of the cube’s diagonal, and the other two positioned each on a side of this axis. For the
Finc ¼ p/8 case, the ‘best’ 6-monopole set (Fig. 14b) does not show any notable arrangement. The capacity of
finding, without requiring any information apart from the number of sources to be employed, source sets that
provide satisfactory solutions and whose arrangement would be, a priori, totally unguessable, demonstrates
the effectiveness of ESGA.

3.4. On the body aspect ratio effect

In this section, the scattering problem involving a body with an higher aspect ratio (Z ¼ 2, 3, 4) is
considered. The two possible normal incidences, Finc ¼ 0 and Finc ¼ p/2, are investigated, these situations
having been chosen for corresponding to two markedly different patterns of scattered field: the main difference
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Fig. 14. Source position corresponding to the solution obtained with 6 monopoles: (a) Finc ¼ p/4; (b) Finc ¼ p/8.
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Fig. 15. Boundary velocity errors obtained with equivalent source method with the genetic algorithm (ESGA) (with 2, 3,y, 10

monopoles) and with the expansion technique (w 1, w 2, w 3 and w 4) when (a) Finc ¼ 0 and (b) Finc ¼ p/2. ’ Z ¼ 1; Z ¼ 2; Z ¼ 3; &

Z ¼ 4.
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between these two cases is that, as Z increases, while for Finc ¼ 0 the scattered field becomes more and more
concentrated along the k direction, for Finc ¼ p/2, the affected region is enlarged [10]. The velocity error eBC

that one can expect with ESGA as well as the one furnished by the expansion technique are given in Fig. 15 for
the two incidence angles and Z ¼ 1,y,4. Regarding the expansion technique, it must be remembered that, for
a scatterer with aspect ratio Z, the body is divided into Z cubes, and therefore, Z expansions are employed.
Therefore, the source set that corresponds to ‘an’ expansion referred to as wa contains, actually, Z times
ðaþ 1Þ2 functions with different orders, and it should be noted that the total number of sources increases
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significantly with Z. Thus, while the eBC values obtained with, for instance, ‘w3’, are comparable for the four
Z-values considered, the number of sources involved are rather different: 16, 32, 48 and 64 for Z ¼ 1, 2, 3
and 4, respectively. In order to permit an easier comparison between the size (and complexity) of the source
sets involved with ESGA and with the expansion technique, the number of sources corresponding to ‘wa’ is
given in Table 2 for the different cases considered; the number of nodal points xS used in each case is also
specified. About the ESGA efficiency, the results illustrated in Fig. 15 permit to draw the following
conclusions, which are independent of the angle of incidence considered: first of all, for a given number of
monopoles, the error increases with Z; this result could be expected since, as Z increases, the number of nodes
also does, and consequently the ‘number’ of monopoles per node decreases. Second, for a given value of Z (i.e.,
for a given body shape), the precision of the solution globally increases—in a way that depends on Z—with the
number of monopoles employed, what confirms the convergence of the algorithm.

Regarding the case ‘k parallel to the larger side of the scatterrer’, the results show that a satisfactory
solution (with an eBC value lower than 0.4) can be obtained with only 5 monopoles for Z ¼ 1 or 2 and with
only 10 monopoles for Z ¼ 3 and 4. However, even in the most unfavorable case (Z ¼ 4), these are numbers
lower than the number of sources necessary with the expansion technique, which requires, for an equivalent
precision, 12 and 16 sources corresponding, actually, to 3 monopoles plus 9 dipoles and 4 monopoles plus 12
dipoles, respectively. Regarding the relation ‘number of sources/number of nodes’, the results show that ESGA

can provide a solution with a satisfactory precision by using a number of monopoles about 30 times lower
than the number of nodes. As an illustration of the quality of solution that one can expect to obtain with such
a low number of simple sources, Fig. 16 shows, for the case Z ¼ 3 and Finc ¼ 0, the total pressure field
Table 2

Total number of ‘sources’ constituting the source sets ‘wa’ for Z ¼ 1, 2, 3, 4.

Z expansions wa

a ¼ 1 a ¼ 2 a ¼ 3 a ¼ 4

Z ¼ 1 (96 nodes) 4 9 16 25

Z ¼ 2 (160 nodes) 8 18 32 50

Z ¼ 3 (224 nodes) 12 21 48 75

Z ¼ 4 (288 nodes) 16 36 64 100
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Fig. 16. Normalized total pressure field on the control circle for Z ¼ 3 and Finc ¼ 0; equivalent source method with the genetic

algorithm (ESGA), using 10 monopoles—boundary element method.
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reconstructed with 10 monopoles. The field matches pretty well with the boundary element method one,
reproducing satisfactorily both the strong modifications that occur on a limited angular span—mainly
characterized by a zone of brightness and a zone of shadow diametrally opposed—and, elsewhere, the
essentially unaffected region.

The results relative to the case ‘k normal to the scatterrer larger side’ indicate, globally, the same
performance as in the previous case: ESGA provides a satisfactory solution (eBC lower than 0.4) with
6 monopoles for a scatterer with aspect ratio Zp2 and, with only 8 monopoles for Z ¼ 3 and 4. Fig. 17 shows,
for the case Z ¼ 3 with Finc ¼ p/2, the total pressure field simulated with 6 monopoles. Once more, the field
obtained in this representative ESGA experiment shows, in spite of the quite detailed directivity pattern, a
relatively good matching with the boundary element method solution. It should be noted that, although the
field shown in Fig. 17 is rather well reconstructed, it is not perfectly symmetric (relatively to the k direction),
which is due to the fact that, at the (arbitrary) end of the random minimization process, the ESGA not always
hits upon ‘the best’ solution (which should be obtained, in this case, with a source distribution presenting a full
symmetry with respect to k). It is, for instance, the case shown in Fig. 18b, in which, although the sources
manifestly approach the best solution that a 4-monopoles set can furnish, the absolute values of the
x-coordinate of these monopoles are not exactly equal. However, it was verified that, as illustrated in
Fig. 18b–d, when k is normal to the scatterer largest side, the source distributions obtained at the last
generation always show a striking symmetrical feature: when the number of monopoles is even (Fig. 18b
and d), the source optimal position corresponds to an array of ‘pairs of monopoles’, each pair forming
actually a dipole parallel to k (since their magnitude are identical and their phase opposed; these quantities,
however, are not shown here). The natural formation of dipoles observed is consistent with previous results
[10] that have shown that, for this incidence situation, a ‘double linear’ support made of two closely spaced
parallel lines—which make easier the formation of dipoles—always provides better solutions than those
obtained with (simple) linear, circular and elliptical supports. When the source set is constituted by an odd
number of monopoles (Fig. 18c), the source optimal configuration also presents a symmetric feature: one
monopole occupies a position on the x ¼ 0 symmetry axis, and ‘dipoles’ are formed, symmetrically positioned
around this axis. As for the case ‘k parallel to the scatterer largest side’, Fig. 18a illustrates a result already
discussed in Section 3.2: the best solutions are always obtained when the monopoles are located on a linear
support parallel to k. In all cases, the sources are evenly distributed within the body volume.
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Fig. 17. Normalized total pressure field on the control circle for Z ¼ 3 and Finc ¼ p/2; equivalent source method with the genetic

algorithm (ESGA), using 6 monopoles—boundary element method.
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Fig. 18. Position of the monopoles obtained with equivalent source method with the genetic algorithm (ESGA) when (a) Finc ¼ 0, Z ¼ 2,

M ¼ 4; (b), (c), (d) Finc ¼ p/2 and, respectively, Z ¼ 2 , M ¼ 4; Z ¼ 3, M ¼ 5; Z ¼ 3, M ¼ 6.
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4. Conclusion

It has been shown that the use of a simple genetic algorithm combined with the equivalent source method
permits to overtake the method major drawback, which resides in choosing an appropriate location for the
sources. As this global search tool limits the risk of falling into a local minimum, the proposed algorithm
makes the ESM much more reliable and efficient, since it provides, for a given number of monopoles, both the
location and the complex strength of the sources responsible for, essentially, the lowest possible boundary
velocity error. The method has been successfully used in a number of three-dimensional scattering problems.
In all the cases considered, ESGA provides a good reconstruction of the pressure field by using a number of
monopoles about 30 times lower than the number of nodes. Moreover, the diversity in the nature of the
boundary velocity distributions considered suggests that the method would work equally well for radiation
problems, although this has not been tested. Regarding the algorithm convergence, the results, nevertheless,
show a certain limitation, given that the error does not decrease linearly with the number of monopoles used:
while solutions which present a ‘reasonably good’ precision are easily obtained by using very few monopoles,
an increase in the precision may requires a significantly larger set of sources. Consequently, the size of the
chromosomes also increases, making slower and tougher the minimization process. However, if a higher
precision is desired without increasing the number of monopoles, this can be achieved by, in a first step, using
the proposed algorithm to find out a satisfactory arrangement for the monopoles, and, in a second step,
employing a classical minimization tool—like the gradient technique—in order to perfect the position of the
sources.
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