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Abstract

A hyperbolic perturbation method is presented for determining the homoclinic solution of certain strongly nonlinear

autonomous oscillators of the form €xþ c1xþ c2x2 ¼ �f ðm; x; _xÞ in which hyperbolic functions can be employed instead of

the usual periodic functions in the perturbation procedure. The generalized van der Pol oscillator in which f ðm;x; _xÞ ¼
ðmþ m1x� m2x2Þ _x is studied. To illustrate the accuracy of the present method, its predictions are compared with those of

Runge-Kutta method.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With the classical perturbation methods such as Lindstedt–Poincaré (L–P) method, the average method,
Krylov–Bogoliubov–Mitropolsky (KBM) method and the multiple scales methods [1,2] as the bases, new
techniques have been presented in the last few decades for solving the periodic solution of the strongly
nonlinear oscillator equation in the form of

€xþ gðxÞ ¼ �f ðx; _xÞ, (1)

where g(x) is a nonlinear function of x, f ðx; _xÞ is a polynomial function of x and _x, e is a small positive
parameter. These techniques can be grouped into three categories with respect to the nature of periodic
functions employed in the solutions.

The first category can be termed the circular (trigonometric) function perturbation procedures. They include
the modified L–P method [3,4], the modified multiple scales method [5], the generalized average method [6], the
generalized KBM method [7], etc. They are applicable when the generating equation:

€xþ gðxÞ ¼ 0, (2)
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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which is obtained by setting e ¼ 0 in Eq. (1), is linear, i.e.

€xþ c1x ¼ 0. (3)

As the solutions of Eq. (3) are trigonometric functions, the solution of Eq. (1) is expressed by trigonometric
functions.

The second category can be termed the elliptic function perturbation procedures. They include the elliptic
KB method [8,9], the elliptic average method [10,11], the elliptic L–P method [12,13] and the modified elliptic
L–P method [14], the elliptic perturbation method [15,16], the elliptic KBM method [17], etc. They are
applicable when the generating equation is a nonlinear differential equation with quadratic or cubic
nonlinearity, i.e.,

€xþ c1xþ cmxm ¼ 0 where m ¼ 2 or 3. (4)

As the solutions of Eq. (4) are elliptic functions, the solution of Eq. (1) is expressed by elliptic functions.
The third category can be termed the generalized harmonic function perturbation procedures. They include

the generalized harmonic average method [18], the generalized harmonic L–P method [19], the generalized
harmonic KBM method [20], the generalized harmonic multiple scales method [21], etc. These methods are
applicable when the generating equation contains an arbitrary nonlinear function g(x). Hence, the solutions of
the generating equation are the generalized harmonic functions and the solution of Eq. (1) is expressed by the
generalized harmonic functions.

Besides the periodic solution of the strongly nonlinear oscillator described by Eq. (1), much effort has been
paid to investigate its stability and bifurcation of the limit cycles and to predict its homoclinic bifurcation
value. For example, Xu et al. [22] presented a perturbation-incremental method to study the separatrices and
the limit cycles of strongly nonlinear oscillators. Chan et al. [23] used the perturbation-incremental method to
study the stability and the bifurcations of limit cycles. Chen et al. [24] used the perturbation-incremental
method to study the semi-stable limit cycles. Recently, Belhaq and his coworkers presented the elliptic
averaging method [25] and the elliptic Linstedts–Poincaré method [26] to predict the homoclinic bifurcations
of oscillators. Their techniques lead to the same results as the standard Melnikov technique.

In this paper, a new perturbation method is presented to determine the homoclinic orbits of the following
quadratic nonlinear system:

€xþ c1xþ c2x
2 ¼ �f ðm;x; _xÞ. (5)

Noting that the homoclinic orbit is not periodic when the time t-+N or t-�N, the phase point on the
phase path in the phase portrait approaches the same saddle point. After proofing that the infinite periodic
solution of the generating equation can be expressed by hyperbolic functions, hyperbolic functions instead of
the usual elliptic functions are selected as the basis functions throughout the perturbation procedure. To show
the essence and the effectiveness of the present method, typical examples of the generalized van der Pol
equations are presented. Predictions from Runge–Kutta (R–K) integration method and the present methods
are compared. It can be seen that the present method possesses excellent accuracy.
2. Homoclinic solution of the generating equation

We start from solving the homoclinic solution of the generating equation of Eq. (5), i.e.,

€xþ c1xþ c2x
2 ¼ 0. (6)

Integral of the equation is

1
2
_x2 þ V ðxÞ ¼ E, (7)

where _x2=2 is kinetic energy, V(x) is potential energy and E is total energy of the system. In particular,

V ðxÞ ¼

Z x

0

ðc1xþ c2x
2Þdx ¼

1

2
c1x

2 þ
1

3
c2x

3. (8)
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The potential energy curves and phase portraits of the systems with (c1o0, c2 40) and (c140, c2o0)
are shown in Figs. 1 and 2, respectively. For c1o0, c240, the saddle point H is at (0,0) and the center O is at
(�c1/c2,0). For c140, c2o0, the saddle point H is at (�c1/c2,0) and the center O is at point (0,0). In the figures,
GH marked with arrow heads are the homoclinic orbits. When time t-+N, the phase point approaches
saddle point H along DAH. When time t-�N, the phase point approaches the same saddle point H but
along the reverse direction. G1 and G2 are periodic orbits around the center O. The phase portraits in the other
two cases (c1o0, c2o0) and (c140, c240) are similar to Figs. 1 and 2, respectively, only the position of the
saddle point and center are different.
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Chen et al. [13] obtained the exact periodic solution for Eq. (6). The solution can be expressed as

x0 ¼ a0 cn
2ðt; kÞ þ b0, (9)

t ¼ o0t, (10)

a0 ¼ 6o2
0k2=2, (11)

b0 ¼ �½4o2
0ð2k2

� 1Þ þ c1�=2c2, (12)

o4
0 ¼ c21=16ðk

4
� k2
þ 1Þ, (13)

where cn(t,k) is the cosine Jacobian elliptic function, a0 is the amplitude, o0 is the angular frequency, k is the
modulus of the elliptic function and b0 is the bias. The time derivative of x0 is

_x0 ¼ �2a0o0 cnðt; kÞ snðt; kÞdnðt; kÞ, (14)

where sn(t,k) is the sine Jacobian elliptic function and dn(t,k) is the delta Jacobian elliptic function.
Obviously, x0 is periodic when 0oko1. The solution becomes the trivial solution when k ¼ 0. When k ¼ 1,
the elliptic functions will reduce to the hyperbolic functions.

The solution (9)–(13) represent the closed orbits around the orbital center O as shown in Figs. 1 and 2. Each
closed orbit corresponds to a periodic solution. The constants a0, b0, o0 and k can be determined by the initial
conditions x(0) ¼ a0+b0 ¼ d and Eqs. (11)–(13).

The objective of this paper is to find the solution of the homoclinic orbit. The coordinates of the saddle
point depend on the value of c1 and c2. Two cases should be considered.

Case 1: c1o0, c2 40. In this case, the saddle point is H(0,0). Thus, it is required that

lim
t!1

x0 ¼ 0, (15)

lim
t!�1

x0 ¼ 0 (16)

which are equivalent to the following conditions:

x0 ¼ a0 cn
2ðt; kÞ þ b0 ¼ 0, (17)

_x0 ¼ �2a0o0 cnðt; kÞ snðt; kÞdnðt; kÞ ¼ 0. (18)

To satisfy Eq. (18), one of cn(t,k), sn(t,k) and dn(t,k) must vanish.
The condition cn(t,k) ¼ 0 and Eq. (17) lead to

b0 ¼ 0. (19)

From Eqs. (12) and (13), it can be obtained that k ¼ 0 or k ¼ 1.
The condition sn(t,k) ¼ 0 leads to cn2(t,k) ¼ 1. Thus

a0 þ b0 ¼ 0. (20)

From Eqs. (11)–(13), it can be obtained that k ¼ 0.
The condition dn(t,k) ¼ 0 leads to cn2(t,k) ¼ (k2�1)/k2. Thus

a0ðk
2
� 1Þ=k2

þ b0 ¼ 0. (21)

From Eqs. (11)–(13), k ¼ 1 can be obtained.
Case 2: c140, c2o0. In this case, the saddle point is H(�c1/c2,0). Hence, it is requited that

lim
t!1

x0 ¼ �c1=c2, (22)

lim
t!�1

x0 ¼ �c1=c2, (23)



ARTICLE IN PRESS
S.H. Chen et al. / Journal of Sound and Vibration 322 (2009) 381–392 385
which are equivalent to the following conditions:

x0 ¼ a0 cn
2ðt; kÞ þ b0 ¼ �c1=c2, (24)

_x0 ¼ �2a0o0 cnðt; kÞ snðt; kÞdnðt; kÞ ¼ 0. (25)

Same as Case 1, the conditions require that k must be equal to either 0 or 1.
Since k ¼ 0 corresponds to the trivial solution, the homoclinic solution of Eq. (6) requires k ¼ 1.
It is known [27] that

cnðt; 1Þ ¼ dnðt; 1Þ ¼ sech t, (26)

snðt; 1Þ ¼ tanh t. (27)

Hence, the homoclinic solution of Eq. (6) can be obtained by letting k ¼ 1 in Eqs. (9)–(13) i.e.

x0 ¼ a0 sech
2 tþ b0, (28)

_x0 ¼ �2a0o0 sech
2 t tanh t, (29)

t ¼ o0t, (30)

o2
0 ¼ jc1j=4, (31)

a0 ¼ 3jc1j=2c2, (32)

b0 ¼ �ðjc1j þ c1Þ=2c2. (33)

As limt!1 sech t ¼ limt!�1 sech t ¼ 0, it is obviously that limt!1 x0 ¼ limt!�1 x0 ¼ b0. It can easily
be proved that Eq. (28) satisfies Eq. (6) and the homoclinic conditions in (Eqs. (15) and (16)) or (Eqs. (22)
and (23)).

3. The hyperbolic perturbation method

To demonstrate the hyperbolic perturbation procedure, we consider the nonlinear autonomous system of
the form

€xþ c1xþ c2x2 ¼ �f ðm;x; _xÞ, (34)

where e is a small positive parameter, m is a control parameter.
The periodic solution of this equation has been studied by Chen et al. [13] using the elliptic perturbation

method. It is assumed that the approximate solution xn (n ¼ 0,1,2,y) at each order has the form of the
solution to its generating equation, i.e., Eq. (6). With this assumption, the cumbersome integral involving the
elliptic function in determining xn can be avoided. All the numerical results in Ref. [13] are in excellent
agreement with those obtained by the R–K method, even if the value of parameter e is moderately large.
Hence, the elliptic perturbation method has been demonstrated to be an efficient method.

The purpose of this paper is focused on obtaining the homoclinic solution of Eq. (34). Similar per-
turbation procedure and assumption of the elliptic perturbation method will be employed in the present
perturbation method.

When e ¼ 0, the homoclinic solution of Eq. (34) is the same as Eq. (28). When ea0, one can assume [13] that
the homoclinic solution of Eq. (34) can still be written in the form of Eq. (28), i.e.

x ¼ a sech2 tþ b0. (35)

However, a and t will depend on the parameter e. By expanding a in the powers of e, i.e.

a ¼ a0 þ �a1 þ � � � (36)
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and letting

dt
dt
¼ oðtÞ ¼ o0 þ �o1ðtÞ þ � � � , (37)

Eq. (35) can be rewritten as

x ¼ x0 þ �x1 þ � � � , (38)

where

xn ¼ an sech
2 tþ bn ðn ¼ 0; 1; . . . ; bn ¼ 0 for nX1Þ. (39)

After substituting Eqs. (37) and (38) into Eq. (34), equating coefficients will yield the following equations:

�0 : o2
0x000 þ c1x0 þ c2x

2
0 ¼ 0, (40)

�1 : o0
d

dt
ðo1x

0
0Þ þ o1

d

dt
ðo0x00Þ þ o0

d

dt
ðo0x

0
1Þ þ ðc1 þ 2c2x0Þx1 ¼ f ðm;x0;o0x

0
0Þ, (41)

�2 : o0
d

dt
ðo0x00Þ þ o2

d

dt
ðo0x

0
0Þ þ o1

d

dt
ðo0x02Þ þ o0

d

dt
ðo1x

0
1Þ þ o1

d

dt
ðo0x

0
1Þ þ o1

d

dt
ðo1x00Þ

þ ðc1 þ 2c2x0Þx2 þ c2x
2
1 ¼ f 0xðm;x0;o0x00Þx1 þ f 0_xðm;x0;o0x00Þðo0x01 þ o1x

0
0Þ; etc. (42)

in which x0 ¼ dx=dt, f 0x ¼ qf =qx and f 0_x ¼ qf =q _x.
It can be seen that Eq. (40) is obtained from the Eq. (6) via the transformation in Eq. (37). Hence, the

homoclinic solution of Eq. (40) can be expressed in the form of Eq. (28).
Multiplying both sides of Eq. (41) by x00 and integrating it from t0 to t, one can obtain

o0o1x0
2
0

���t
t0
¼

Z t

t0
f ðm;x0;o0x

0
0Þx
0
0 dt�

a1

a0
ðo0x

0
0Þ

2

����
t

t0

� x1ðc1x0 þ c2x
2
0Þ
��t
t0

(43)

From Eq. (39),

x0n ¼ �2an sech
2 t tanh t. (44)

Recalling that xn(7N) ¼ bn, xn(0) ¼ an+bn (bn ¼ 0 for nX1), x0nð0Þ ¼ 0 and letting t0 ¼ �N, t ¼+N in
Eq. (43), one obtains Z þ1

þ1

f ðm; x0;o0x
0
0Þx
0
0 dt ¼ 0. (45)

Letting t0 ¼ 0, t ¼+N in Eq. (43), one obtainsZ þ1
0

f ðm; x0;o0x
0Þx00 dtþ a1½c1ða0 þ b0Þ þ c2ða0 þ b0Þ

2
� ¼ 0. (46)

Furthermore, substitution of Eq. (28) into Eq. (43) leads toZ t

0

f ðm;x0;o0x
0
0Þx
0
0 dt� o0o1x

02
0 �

a1

a0
ðo0x

0
0Þ

2
� x1ðc1x0 þ c2x2

0Þ þ a1½c1ða0 þ b0Þ þ c2ða0 þ b0Þ
2
� ¼ 0. (47)

The values of m, a1 and o1 can be determined from Eqs. (45), (46) and (47), respectively. Therefore, the
necessary condition for the homoclinic solution being the solution of the nonlinear autonomous system in
Eq. (34) is that m in Eq. (45) can be solved.

One can follow the perturbation procedure to determine the next order solution x2 and o2. However, the
procedure would be increasingly cumbersome as the order goes up. More importantly, the computation results
show that the solution up to the order ex1 is fairly accurate even for the moderately large parameter e. A few
remarks on the hyperbolic perturbation method are made.

Remark 1. Eq. (45), with which the value of parameter m can be determined, is derived step-by-step in the
present perturbation procedure. This result agrees with that obtained by Belhaq et al. [26] using both the



ARTICLE IN PRESS
S.H. Chen et al. / Journal of Sound and Vibration 322 (2009) 381–392 387
elliptic Lindstedt–Poincaré method and the Melnikov method. The same result obtained by different methods
demonstrates that the derivation of formulae in the present perturbation procedure is correct. Thus, the
hyperbolic perturbation method is reliable.

Remark 2. Comparing with the elliptic Lindstedt–Poincarémethod [13], the main distinguishing feature of the
present method is that the hyperbolic functions are employed instead of the elliptic functions. The differential
and integral operations on the hyperbolic functions are easier than those of the elliptic functions.

Remark 3. With the assumption in (35) and the nonlinear time transformation (37), the operations to
determine x1(t) and _x1ðtÞ in the present method by calculating the constant a1 and o1(t) are more straight
forward than those in other perturbation procedures.

4. A study of the generalized van der Pol oscillator

As an application of the present method, the following generalized van der Pol equation is studied:

€xþ c1xþ c2x2 ¼ �ðmþ m1x� m2x
2Þ _x. (48)

In other words,

f ðm;x; _xÞ ¼ ðmþ m1x� m2x
2Þ _x (49)

in which m1 and m2 are constants whilst m is considered as a control parameter. Let

IðtÞ ¼
Z

f ðm;x0;o0x
0
0Þx
0
0 dt ¼

Z
o0ðmþ m1x0 � m2x

2
0Þx
02
0 dt (50)

in which x0 is the zero order solution. By expressing x0, _x0 and o0 in the form of Eqs. (28), (29) and (31),
respectively, and substituting them into Eq. (50), the latter becomes

IðtÞ ¼ 4a0a2
0ðA1 þ A2 sech

2 tþ A3 sech
4 tþ A4 sech

6 tÞ tanh3 t, (51)

where

A1 ¼
2

15
mþ

8

105
a0 þ

2

15
b0

� �
m1 �

16

315
a2
0 þ

2

15
b2
0 þ

16

105
a0b0

� �
m2, (52)

A2 ¼
1

5
mþ

4

35
a0 þ

1

5
b0

� �
m1 �

8

105
a2
0 þ

1

5
b2
0 þ

8

35
a0b0

� �
m2 ¼

3

2
A1, (53)

A3 ¼
1

7
a0m1 �

2

7
a0b0 þ

2

21
a2
0

� �
m2, (54)

A4 ¼ �
1

9
a2
0m2. (55)

Thus, Eq. (45) can be rewritten as:

IðtÞjþ1�1 ¼ 0. (56)

To have the equation satisfied, A1 should be zero, i.e.

A1 ¼ 0. (57)

Thus, from Eq. (53), one obtains

A2 ¼ 0. (58)

From Eq. (57), one can determine the parameter with which the generalized van der Pol equation has a
homoclinic orbit.
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Substituting Eq. (50) into Eq. (46) gives

a1 ¼ �
IðtÞjþ10

c1ða0 þ b0Þ þ c2ða0 þ b0Þ
2
. (59)

With the condition in Eq. (53),

a1 ¼ 0. (60)

By incorporating Eqs. (50), (51), (57) and (60) into Eq. (47),

o1ðtÞ ¼
IðtÞ
a0x020

¼ ðA3 þ A4 sech
2 tÞ tanh t (61)

Finally, the homoclinic solution of Eq. (48) can be expressed as

x ¼ a0 sech
2 tþ b0 þOð�2Þ, (62)

_x ¼ �2a0½o0 þ �o1ðtÞ� sech
2t tanh tþOð�2Þ. (63)

5. Examples

In this section, three examples will be considered. To show the efficacy and accuracy of the present method,
its results will be compared with those obtained by R–K method.

Example 1. In this example, the following equation is considered:

€xþ 2x� x2 ¼ �ðmþ x� x2Þ _x, (64)

which is a case of the oscillator in Eq. (48) with c1 ¼ 2, c2 ¼ �1 and m1 ¼ m2 ¼ 1. From Eqs. (31), (32), (33)
and (57), a0 ¼ �3, b0 ¼ 2, o0 ¼ 1/O2 and m ¼ 0.2857142857 can be obtained. Through Eqs. (54) and (55),
A3 ¼ 3/7 and A4 ¼ �1. The homoclinic solution of Eq. (64) is solved to be

x ¼ �3 sech2 tþ 2þOð�2Þ; _x ¼ 6
1ffiffiffi
2
p þ �o1ðtÞ
� �

sech2t tanh tþOð�2Þ,

o1ðtÞ ¼
3

7
� sech2 t

� �
tanh t.

The homoclinic orbits for the cases of e ¼ 0.5 and 1.5 are shown in Figs. 3(a) and (b) respectively. It can be
seen that the saddle point is (2,0) and the center is (0,0). The limit cycles obtained by the elliptic perturbation
method [13] at k ¼ 0.6 and 0.8 are also shown in the figures for illustrating the features of the phase portraits.
Comparisons are made with R–K method.

In this paper, the procedure of using R–K integration method to determine the value of parameter m of the
homoclinic orbit follows that of Merkin and Needham [28]. Numerical integration is conducted for a given
value of e starting from a value of m with which there is a limit cycle. It is repeated for increasing or reducing
m until a value of m is reached such that there is no limit cycle. Then, by successfully reducing the interval of
m within which a limit cycle is destroyed, a critical value mc can be identified such that a limit cycle can be
found at m ¼ mc but not at m ¼ mc7D where D is a small preset tolerance. Here, D is taken to be 10�10. Using
this trial and error approach, mc ¼ 0.2870602991 when e ¼ 0.5 in Eq. (63). The value is very closed to but
slightly smaller than the value mc ¼ 0.2857142857 obtained by the present hyperbolic perturbation method.

Example 2. In this example, the following equation is considered:

€xþ xþ x2 ¼ �ðm� x� x2Þ _x (65)

which is a case of the oscillator in Eq. (48) with c1 ¼ c2 ¼ 1, m1 ¼ �1 and m2 ¼ 1. From Eqs. (31), (32), (33)
and (57), a0 ¼ 3/2, b0 ¼ �1, o0 ¼ 1/2 and m ¼ 0. Through Eqs. (54) and (55), A3 ¼ 0 and A4 ¼ �1/4.
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The homoclinic solution of Eq. (65) is solved to be

x ¼ 3
2
sech2 t� 1þOð�2Þ; _x ¼ �3 1

2
þ �o1ðtÞ

� 	
sech2 t tanh tþOð�2Þ,

o1ðtÞ ¼ �1
4
sech2 t tanh t.

The homoclinic orbits for the cases of e ¼ 0.5 and 2 are shown in Figs. 4(a) and (b), respectively. The saddle
point is (�1,0), while the center is (0,0). The limit cycles obtained by the elliptic perturbation method [13] for
the cases k ¼ 0.75 and 0.85 are also shown in the figures to illustrate the features of phase portraits.
Comparisons are made with R–K method.

Example 3. In this example, the following equation is considered:

€x� x� 2x2 ¼ �ðmþ 0:5x� x2Þ _x (66)

which is a case of the oscillator in Eq. (48) with c1 ¼ �1, c2 ¼ 2, m1 ¼ 0.5 and m2 ¼ 1. From Eqs. (31), (32),
(33) and (57), a0 ¼ �3/4, b0 ¼ 0, o0 ¼ 1/2 and m ¼ 0.4285714290. Through Eqs. (54) and (55), A3 ¼ �3/28
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Fig. 4. Homoclinic orbits and limit cycles of Eq. (65) for (a) e ¼ 0.5; (b) e ¼ 2. JJJ denotes the homocyclic orbit predicted by the

present method; +++ denotes the limit cycle predicted by the elliptical perturbation method for k ¼ 0.75 and 0.85; — denotes the limit

cycle predicted by Runge–Kutta method.

S.H. Chen et al. / Journal of Sound and Vibration 322 (2009) 381–392390
and A4 ¼ �1/16. Then, the homoclinic solution of Eq. (66) is solved to be

x ¼ �3
4 sech

2 tþOð�2Þ; _x ¼ 3
2

1
2þ �o1ðtÞ
� 	

sech2 t tanh tþOð�2Þ,

o1ðtÞ ¼ � 3
28
þ 1

16
sech2 t


 �
tanh t.

The homoclinic orbits for the cases of e ¼ 0.8 and 1.5 are shown in Figs. 5(a) and (b), respectively. The saddle point is
(0, 0) while the center is (�0.5, 0). The limit cycle phase portraits obtained by the elliptic perturbation method [13] for
the cases k ¼ 0.75 and 0.85 are also shown in the figures. Comparisons are made with R–K method.

It can be seen from the Figs. 3–5 plotted for Examples 1–3 that all the results obtained by the elliptical
perturbation method are in good agreement with those obtained by the R–K method even for the moderately
large value of e. The homoclinic orbit is closed to the result of R–K method at the critical value of m ¼ mc.
Nevertheless, it is worth pointing out that the result of R–K method at m ¼ mc is still a limit cycle which is a
periodic solution. After that, a homoclinic orbit, which is a solution with infinite period, is formed by
destruction of the limit cycle.

6. Conclusions
(1)
 The hyperbolic perturbation method presented in this paper is an effective method for determining
homoclinic solutions of certain strongly nonlinear autonomous oscillators in which hyperbolic functions
are the exact homoclinic solution of the generating equation. Based on the functions, the hyperbolic
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present method; +++ denotes the limit cycle predicted by the elliptical perturbation method for k ¼ 0.75 and 0.85; — denotes the limit

cycle predicted by Runge–Kutta method.
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perturbation method can lead to the analytical expression for the homoclinic solutions of the nonlinear
autonomous oscillators.
(2)
 With the assumption that the approximate solution xn (n ¼ 0,1,2,y) at each order has the same form as
the solution of its generating equation and the nonlinear time transformation in (37), the operations for
determining x1(t) and _x1ðtÞ in the present method is more straight forward than those in other
perturbation procedures.
(3)
 All the homoclinic orbits obtained by present method in the examples are closed to those obtained by R–K
method at the critical parameter m ¼ mc even for moderately large value of e.
(4)
 The present hyperbolic perturbation method can be generalized for determining the heteroclinic solutions
of certain strongly nonlinear autonomous oscillators.
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