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Abstract

A submerged fluid-filled cylindrical shell subjected to an external shock wave is addressed for the most general case when

the internal and external fluids have different properties. Three distinctly different scenarios of interaction are identified

depending on the parameter z defined as the ratio of the acoustic speed in the internal fluid to that in the external one. The

first scenario corresponds to the values of z below unity, and it can follow two sub-scenarios that exhibit qualitatively

different focusing and reflection sequences, with the transition between the sub-scenarios occurring at z � 0:52. The second
scenario, z ¼ 1, corresponds to the relatively well-studied case of two identical fluids, yet some interesting, previously

unreported effects are observed for such z as well. The third scenario corresponds to the values of z above unity, and it also

exhibits a number of unique features of the wave propagation and reflection. The dynamics of the complete internal-

external field is visualized and analyzed for the three scenarios, with the emphasis on both the theoretical significance of the

effects observed and their practical implications.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When one is concerned with the analysis of the shock response of a fluid-filled submerged thin-walled
structure, often the scenario where the internal and external fluids have different properties is of interest.
Underwater pipelines and storage tanks, cooling systems of chemical and nuclear reactors, and submersible
vehicles are all examples of engineering structures that simultaneously interact with two different fluids. From
the practical point of view, therefore, studying the shell-shock interaction under the assumption of different
properties of the internal and external fluids appears to be of particular importance. However, to the best of
the author’s knowledge, this most general case does not seem to have been addressed for a cylindrical shell, at
least as far as analyzing the hydrodynamic fields induced during the interaction is concerned. The present
paper aims at filling this gap.

Historically, the early studies of shell-shock interaction were mostly focused on the structural aspects of the
process, aiming at providing the naval architects and ocean engineers with the most critical estimates needed at
the initial stages of the ship and submarine design, such as maximum stresses in and deflections of the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

ci sound speed in the internal fluid,
ĉi ¼ cic

�1
e

ce sound speed in the external fluid, ĉe ¼ 1
cs sound speed in the shell material,

ĉs ¼ csc
�1
e

h0 thickness of the shell, ĥ0 ¼ h0r
�1
0

In modified Bessel function of the first kind
of order n

Kn modified Bessel function of the second
kind of order n

pa peak incident pressure, p̂a ¼ par
�1
e c�2e

p total pressure in the fluid, p̂ ¼ pr�1e c�2e

p0 incident pressure, p̂0 ¼ p0r
�1
e c�2e

pd diffraction pressure, p̂d ¼ pdr
�1
e c�2e

pi
r internal radiation pressure,

p̂i
r ¼ pi

rr
�1
e c�2e

pe
r external radiation pressure,

p̂e
r ¼ pe

rr
�1
e c�2e

r radial coordinate of the polar coordinate
system, r ¼ Rr�10

r0 radius of the shell, r̂0 ¼ 1
R0 radial distance to the source of the

incident wave, R̂0 ¼ R0r
�1
0

SR incident shock wave stand-off,
ŜR ¼ SRr�10

t time, t ¼ tcer
�1
0

v� transverse displacement of the middle
surface of the shell, v ¼ v�r�10

w� normal displacement of the middle sur-
face of the shell, w ¼ w�r�10

Es Young’s modulus, Ês ¼ Esr�1e c�2e

z ratio of the acoustics speeds in the
internal and external fluids, z ¼ cic

�1
e

y angular coordinate of the polar coordi-
nate system

l exponential decay rate, l̂ ¼ lcer�10

n Poisson’s ratio
xi

n internal response functions
xe

n external response functions
ri density of the internal fluid, r̂i ¼ rir

�1
e

re density of the external fluid, re ¼ 1
rs density of the shell material, r̂s ¼ rsr

�1
e

R radial coordinate of the polar coordinate
system, r ¼ Rr�10

t time, t ¼ tcer�10

f fluid velocity potential in the fluid,
f̂ ¼ fc�1e r�10

fi fluid velocity potential in the internal
fluid, f̂i ¼ fic

�1
e r�10

fe fluid velocity potential in the external
fluid, f̂e ¼ fec

�1
e r�10

f0 fluid velocity potential in the incident
wave, f̂0 ¼ f0c

�1
e r�10

fd fluid velocity potential in the diffracted
wave, f̂d ¼ fdc�1e r�10

fi
r fluid velocity potential in the internal

radiated wave, f̂
i

r ¼ fi
rc
�1
e r�10

fe
r fluid velocity potential in the external

radiated wave, f̂
e

r ¼ fe
rc�1e r�10

ð�Þn sin ny and ð�Þn cos ny denote the harmonics of (*). Unless stated otherwise, capitalized symbols
denote the Laplace transforms of the corresponding functions. Other symbols are defined in the
text.
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structure’s walls. The earliest work dealt with analysis of a few lowest modes and/or early-time
approximations (e.g. Refs. [1,2]), and several years later the first papers where complete time-histories of
the displacements and strains and/or surface pressure were analyzed were published (e.g. Refs. [3,4]), even
though most still considered two-dimensional simplifications of the interaction. By the early 1970s, rather
realistic three-dimensional structural analysis became possible (e.g. Refs. [5,6]), which continued to advance
through the decade, within the limitations imposed by the computational technologies of the time. The vast
majority of the work published in the 1950s–1970s was devoted to a submerged evacuated shell, a trend that is
not surprising at all if put in the historical context.

Even though quality experimental images of the shock wave diffraction on cylinders date back to as early as
the 1960s (e.g. Refs. [7,8]), the experimental studies of the interaction between elastic shells and shock waves
(or non-stationary acoustic pulses) published in the 1960s and 1970s appear to be somewhat limited. An
extensive and richly illustrated study of the acoustic fields in and around cylindrical shells (or rigid cylinders)
submerged in and/or filled with fluid and subjected to various acoustic pulses ([9] and also Refs. [10,11])
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appears to be one of the most informative investigations published up until the late 1990s in which actual
images of the acoustic fields induced by a non-stationary loading on an elastic shell were shown. Even though
the incident loads considered were mostly partially insonifying acoustic pulses and rays, the images presented
in the papers, especially those of the different types of radiated waves, are of considerable relevance to the
present study, as well as any other investigation of fluid-contacting shells where the elastic response of a
structure is a concern.

With the development of numerical methods, a major shift in the modeling of shell- and structure-shock
interaction occurred from analytical approaches to numerical ones sometime in the mid 1980s. An increasingly
large number of numerical studies addressing various aspects of the interaction were published in the late
1980s and through the 1990s, even though it seems that the primary focus of those studies was on rigid
structures, not elastic shells (e.g. Refs. [12–16]). The elastic aspects of the interaction were addressed as well —
in Ref. [17], for example, an elastic cylinder subjected to an external shock wave was considered, and the
structure-radiated waves were analyzed numerically; an elastic sphere was investigated experimentally in Refs.
[18,19]. The study [20], where an empty submerged cylindrical shell with end closures and external stiffeners
subjected to an underwater explosion was considered, and where the external hydrodynamic field and plastic
deformations of the structure were simulated numerically, is an example of a numerical study addressing a
structure closely approximating a real naval system.

Then, the late 1990s and the first few years of the new millennium saw an unprecedented growth in the number
and sophistication of studies published on coupled interaction between shells and shock waves and/or non-
stationary acoustic pulses. Ahyi, Pernod, Gatti, Latard, Merlen and Uberall [21] considered a submerged empty
cylindrical shell subjected to an ultra-short acoustic pulse and presented high-quality visualizations of the
corresponding acoustic field; both the scattering and radiation by the shell were addressed, with particular
attention paid to the different types of the radiated waves. Sandusky, Chambers, Zerilli, Fabini and Gottwald [22]
used numerical simulations to design a series of experiments aimed at detailed stress-strain analysis of a fluid-filled
shell responding to an external explosion. Wardlaw and Luton [23] numerically simulated an explosion inside a
fluid-filled cylindrical shell, and analyzed both a single shell and a two-shell arrangement; the influence of
cavitation, a phenomenon that is often of critical importance to the adequate simulating of shock-structure
interaction, was addressed as well. Chambers, Sandusky, Zerilli, Rye, Tussing and Forbes [24] studied the
pressure on the inner surface of a fluid-filled shell induced by an internal explosion. Mair [25,26] complied an
extensive and highly informative review of the computational approaches to the interaction between structures
and underwater explosions, and discussed the existing analytical and experimental benchmarks.

As for the work pertaining specifically to shell systems incorporating two fluids, we mention the studies by
Huang [27,28] who considered two concentric spherical [27] or cylindrical [28] submerged shells with fluid in
between the inner and outer shells, and the investigations by Zhang and Geers [29] and Sprague and Geers [30]
where a submerged filled spherical shell was addressed. Even though the solutions were obtained for the
general case of different fluids in the studies mentioned, the results were presented for the case of two identical
fluids (water). In the experimental study [9] mentioned earlier, a fluid-filled submerged shell was looked at in
some detail as well but, again, only the case of two identical fluids was considered. Thus, it appears that the
scenario where the fluids have different properties has received very little attention. Furthermore, even in the
case of two identical fluids, the many shock wave propagation and reflection features of the complete internal-
external hydrodynamic field, especially the more subtle secondary ones, do not seem to have been sufficiently
addressed either.

In the author’s earlier work [31,32], the interaction between a submerged fluid-filled cylindrical shell and a
shock wave was considered in some detail as well. However, the assumption was that the same fluid is inside
and outside the shell. Both wave reflection phenomena and fluid-structure interaction effects were discussed
for that scenario, and it was rather obvious from the analysis of the dynamics of the process that if the fluids
had been different, the wave patterns observed would have likely changed, sometimes very considerably. A
preliminary investigation showed that indeed was the case, and revealed some very interesting phenomena not
observed for the identical fluids. However, it was all too brief for one to render a more or less complete picture
of the interaction for two different fluids. The present work offers a detailed and systematic investigation of
the issue. Along with Refs. [31,32], it is also based on the author’s two studies of the external field for an empty
submerged shell [33,34].
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2. Mathematical formulation

We consider a circular cylindrical shell of radius r0 and thickness h0. We assume that h0=r051, and that the
deflections of the shell surface are small compared to its thickness, so the linear theory of thin shells can be
applied. The density, Poisson’s ratio, and Young’s modulus of the shell material are rs, n, and Es, respectively,
and the sound speed in the shell is cs ¼ E0:5

s frsð1� n2Þg�0:5. The transverse and normal displacements of the
middle surface of the shell are v� and w�, respectively. The shell is submerged into a fluid with the density re

and sound speed ce, and is filled with a fluid with the density ri and sound speed ci. Both fluids are assumed to
be irrotational, inviscid, and linearly compressible.

We consider a two-dimensional simplification of the problem, i.e. assume that the incident wave has no
longitudinal variation of pressure (a so-called ‘cylindrical’ shock wave). Although this is a very significant
simplification, it still appears to be reasonable in the context of the present study: the validity, limitations, and
advantages of such simplification were examined in detail in Ref. [33], and convincing arguments in favor of its
use for modeling systems of the type in question were presented; the issue is further clarified here as well when
the incident load is discussed. The polar coordinates ðR; yÞ based on the axis of the shell are employed. The
schematic of the problem is shown in Fig. 1.

The fluids are governed by the wave equations,

r2fi ¼
1

c2i

q2fi

qt2
(1)

and

r2fe ¼
1

c2e

q2fe

qt2
, (2)

where fi and fe are the internal and external fluid velocity potentials, respectively, and t is time.
Under the assumption of the validity of the Love-Kirchhoff hypothesis, the shell equations in displacements

are (e.g. Ref. [35]; note that here we assume the normal displacement to be positive inward, whereas in Ref.
[35] it is assumed to be positive outward; as a result, some of the terms appear in the equations below with
different signs than are found in that work)

1

r20

q2v�

qy2
�

1

r20

qw�

qy
þ k2

0

1

r20

q3w�

qy3
þ

1

r20

q2v�

qy2

� �
¼

1

c2s

q2v�

qt2
, (3)

1

r20
w� �

1

r20

qv�

qy
þ k2

0

1

r20

q4w�

qy4
þ

1

r20

q3v�

qy3

� �
¼ wpjR¼r0 �

1

c2s

q2w�

qt2
, (4)

where k2
0 ¼ h2

0=ð12r20Þ, w ¼ ðh0rsc
2
s Þ
�1, and p is the total acoustic pressure. The pressure p is comprised several

components,

p ¼ p0 þ pd þ pe
r � pi

r, (5)
r0

�
h0

shock wave
w

v

external fluid

internal fluid

�e, ce

�i, ci

R0 r0

Fig. 1. Schematic of the problem.
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where p0 is the incident pressure, pd is the diffraction pressure, pi
r is the internal radiation pressure, and pe

r is
the external radiation pressure.

The boundary conditions of the problem include the dynamic and ‘no-flow’ conditions on the interface,

qfi
r

qR

����
R¼r0

¼ �
qw�

qt
, (6)

qfe
r

qR

����
R¼r0

¼ �
qw�

qt
, (7)

and

qfd

qR

����
R¼r0

¼ �
qf0

qR

����
R¼r0

, (8)

the decay conditions at the infinity

fd�!0 and fe
r�!0 when R!1, (9)

the boundedness condition on the axis of the shell,

�1ofi
r

��
R¼0o1, (10)

and the periodicity conditions y-wise. The initial conditions are assumed to be zero.
The shell is subjected to an external cylindrical shock wave the pressure p0 and potential f0 in which are

given by

p0 ¼
paSR

R�
e�ðt�c�1e ðR

��SRÞÞl�1Hðt� c�1e ðR
� � SRÞÞ (11)

and

f0 ¼ �
lpaSR

reR�
e�ðt�c�1e ðR

��SRÞÞl�1Hðt� c�1e ðR
� � SRÞÞ, (12)

respectively, where

R� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

0 þ R2 � 2R0R cos y
q

, (13)

pa is the pressure in the front of the wave when it first impinges on the shell, l is the rate of exponential decay,
SR ¼ R0 � r0 is the shock wave stand-off (the distance between the source and the shell), and H is the
Heaviside unit step function.

As we mentioned earlier, some remarks need to be made regarding the wave described by Eqs. (11) and (12).
Namely, the wave does not satisfy the wave equation. This fact may appear to be a very significant drawback,
and one may question the validity and usefulness of a study that employs such a wave as the incident
load. However, it is the author’s opinion that in this particular case this is acceptable. There are two main
reasons why.

First, it has been shown in Ref. [32], and further discussed in Ref. [33], that the results obtained using the
two-dimensional wave (11) are very close to the stress-strain state observed in the middle cross-section of a the
same shell subjected to a three-dimensional spherical shock wave, a loading scenario that is most interesting
from the practical point of view. Furthermore, it was shown [36] that the middle cross-section of a shell
subjected to a spherical shock wave is where the dominating stress component reaches its global maximum.
Thus, using the simplified model based on Eq. (11) appears to provide the practitioner with the most critical
information about the peak stresses induced by a spherical shock wave. At the same time, switching from the
complete three-dimensional model to the simplified two-dimensional one dramatically reduces the respective
computational time.

Second, and not less importantly, from the numerical point of view the error due to using the wave (11)
instead of the actual cylindrical wave is negligibly small. Specifically, the maximum error upon substituting the
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potential (12) into the two-dimensional wave equation is in the order of 5% of the equation’s maximum term,
and even then it is reached in very localized regions, with the rest of the fluid domain producing much lower
values of the error, see Ref. [33] for details. This was further confirmed upon analyzing the images produced
using the wave (12) for an empty submerged shell where it was found that the non-physical effects due to using
such a wave are limited to low-magnitude negative pressure observed in the shadow zone after the incident
wave passed the shell, Fig. 8 of Ref. [33]. Furthermore, the effects in question are very easy to eliminate at the
post-processing stage because the pressure in the region in question is known to be zero from the physics of the
shock wave diffraction. We can therefore conclude that even from the numerical point of view using the wave
(11) appears to be quite acceptable.

Summarizing the above two points, we state that using the wave (11) allows one to obtain a very good
approximation of the stress-strain state in the most critical region of the shell subjected to a realistic three-
dimensional shock load. At the same time, the inaccuracies due to the fact that the simplified wave does not
satisfy the wave equation are minimal, and are limited to low-magnitude and easy-to-eliminate non-physical
pressure regions in predictable regions of the external fluid domain. The author believes that these are
sufficiently solid grounds for using the wave given by (11) and (12) instead of the less complex plane one. The
latter, however, is still briefly addressed later on.

We consider a dimensionless formulation of the problem, and normalize all variables to r0, ce, and re. Such
an approach, amongst other advantages (such as the uniform applicability of the dimensionless analysis),
allows for much more convenient numerical values of the time: for example, it takes two dimensionless time
units for the shock wave to move over the shell, compared to several milliseconds if a dimensional formulation
is considered. A hat normally distinguishes the dimensionless variables from their dimensional counterparts,
with the exception of the time t ¼ tcer�10 , the radial coordinate r ¼ Rr�10 , and the normal and transverse
displacements w ¼ w�r�10 and v ¼ v�r�10 , respectively.
3. Fluid dynamics

In order to obtain the pressure components, we first apply the Laplace transform to the dimensionless wave
equations (1) and (2),

q2F̂e

qr2
þ

1

r

qF̂e

qr
þ

1

r2
q2F̂e

qy2
� s2F̂e ¼ 0 (14)

and

q2F̂i

qr2
þ

1

r

qF̂i

qr
þ

1

r2
q2F̂i

qy2
� s2

c2e
c2i

F̂i ¼ 0, (15)

where F̂e and F̂i are the Laplace transforms of f̂e and f̂i, respectively, and s is the transform variable, and
then separate the spatial variables to arrive at the general solutions of Eqs. (14) and (15) in the form

F̂e ¼ fF
e
nKnðrsÞ þ Ge

nInðrsÞg cos ny; n ¼ 0; 1; ::: (16)

and

F̂i ¼ fF
i
nKnðrasÞ þ Gi

nInðrasÞg cos ny; n ¼ 0; 1; :::; (17)

respectively, where a ¼ cec�1i , In is the modified Bessel function of the first kind of order n, Kn is the modified
Bessel function of the second kind of order n, and F e

n, Ge
n, Fi

n, Gi
n are arbitrary functions of s.

After the boundary conditions are imposed, the Laplace transforms of the harmonics of the three potential
components are obtained,

F̂d
n ðr; y; sÞ ¼ BnðsÞ Xe

nðr; sÞ cos ny, (18)

F̂r;e
n ðr; y; sÞ ¼ sW nðsÞ Xe

nðr; sÞ cos ny, (19)



ARTICLE IN PRESS
S. Iakovlev / Journal of Sound and Vibration 322 (2009) 401–437 407
and

F̂r;i
n ðr; y; sÞ ¼ �sW nðsÞ Xi

nðr; asÞ cos ny. (20)

Here, the expansions

qf̂0

qr

�����
r¼1

¼
X1
n¼0

bnðtÞ cos ny (21)

and

w ¼
X1
n¼0

wnðtÞ cos ny (22)

are assumed, W n and Bn are the Laplace transforms of wn and bn, respectively, and Xe
n and Xi

n are the Laplace
transforms of the response functions of the problem, xe

n and xi
n, respectively, given by

Xe
nðr; sÞ ¼ �

KnðrsÞ

sK0nðsÞ
(23)

and

Xi
nðr; sÞ ¼

InðrsÞ

sI0nðsÞ
. (24)

The expressions for the pressure harmonics can now be easily obtained,

p̂d
n ¼ �

1ffiffi
r
p bnðtÞ �

Z t

0

bnðZÞ
dxe

n

dZ
ðr; t� ZÞdZ, (25)

p̂r;e
n ¼ �

Z t

0

d2wnðZÞ
dZ2

xe
nðr; t� ZÞdZ, (26)

and

p̂r;i
n ¼

rici

rece

Z t

0

d2wnðZÞ
dZ2

xi
nðr; cic

�1
e ðt� ZÞÞdZ, (27)

and we arrive at the diffraction and radiation pressure in the series form,

pd ¼
X1
n¼0

pd
n cos ny; pe

r ¼
X1
n¼0

pr;e
n cos ny; and pi

r ¼
X1
n¼0

pr;i
n cos ny. (28)

As is apparent from Eqs. (25)–(27), the computation of the pressure inside and outside the shell is reduced to
that of the response functions.

The functions xi
n and xe

n represent the response of the internal and external fluids, respectively, to the motion
of, or scattering by, the shell. The idea of considering the response functions as separate mathematical entities
appears to have been first introduced by Geers [3], who considered a slightly different form of the ‘surface’
(r ¼ 1) counterparts of xe

n. The one-dimensional version of xe
n was generalized for the case of the entire fluid

domain by the author in Ref. [34] where the derivation of the analytical expressions for xe
n can be found, along

with the discussion of various numerical aspects, as well as that of the computational methodology employed.
The internal response functions xi

n were analyzed in detail in Ref. [37], where the derivation of their series
expressions can be found, as well as the analysis of the series convergence and all the necessary proofs. Their
applied aspect, including the physical interpretation of the functions’ highly irregular nature, was addressed in
Ref. [31], along with the discussion of the numerical challenges one faces when trying to compute them for the
entire inner fluid domain. Even though we do not reproduce any of those results here, in order to give the
reader a general idea about the response functions, and also to illustrate the fundamental difference between
the physics of the response of the internal and external fluids, we include a brief discussion of xi

n and xe
n, as well

as their graphs for several representative values of n and r.
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The external response functions xe
nðr; tÞ exhibit a relatively regular behavior, Fig. 2. They have one peak

value at t ¼ r� 1 corresponding to the instant when the response of the shell arrives at the radial layer ðr; yÞ.
Prior to that instant, xe

nðr; tÞ ¼ 0, and after that, the functions decay as t increases, and also oscillate in a very
regular way, the frequency of the oscillations increasing with n. This relatively uncomplicated behavior is
representative of the quite straightforward physics of the external interaction — once generated at the shell
surface, the acoustic waves propagate outward without reflecting from the shell ever again, and for every mode
of the shell’s motion, every point in the fluid domain is only excited once.

The internal response functions xi
nðr; tÞ exhibit a considerably less regular behavior, which is representative

of the much more complex nature of the internal interaction. First of all, for every n, xi
n have an infinite

number of singularities and finite discontinuities, Fig. 3; the functions are shown as continuous, and the solid
dots indicate the value of the functions at the points of finite discontinuity (equal to a half of the sum of the lift
and right side limits at the point [37]). The finite discontinuities represent reflections of the pressure waves
from the shell’s interior surface, and the singularities represent the focusing of the waves at the point r ¼ 0, i.e.
on the axis of the shell. The singularities and finite discontinuities alternate, and their locations depend on r. In
the intervals between the singularities and finite discontinuities, the functions oscillate, but do so less regularly
than xe

nðr; tÞ. The frequency of the oscillations increases with n, and the singularities and discontinuities
approach each other when r! 0. As a result, when n is large and r is small, xi

nðr; tÞ exhibit a highly irregular
behavior, and are quite computationally challenging [31, Fig. 14].

From the computational point of view, the convergence of the pressure series is of importance, especially if
one intends to visualize the hydrodynamic fields. The convergence of the series for the external pressure, both
the diffraction and radiation one, was addressed in some detail in Ref. [34], so here we only summarize the
findings of that study. The diffraction pressure was found to be the worst convergent series [34, Table 1], with
as many as 300 harmonics needed to be taken into account in order to produce realistic (i.e., not exhibiting any
non-physical features) two-dimensional images of pressure patterns (it was observed that a numerical error
even as small as 0.5% may result in the images of the pressure patterns that have obvious non-physical
features [34, Fig. 12 and Table 2]). The number of terms needed in the diffraction pressure series can be
reduced to 150 if one is only concerned with reasonably accurate values of the pressure (to within 5% almost
everywhere in the domain of interest) but does not intend to use the data to visualize the pressure patterns. For
the external radiation pressure, 150 terms were found to be always sufficient. The series convergence for the
internal pressure was addressed in Refs. [31,32], and 150 terms were observed to be sufficient for adequate
0 1 2 3 4 5

t

0

0.2

0.4

0.6

0.8

1

� ne
(r

,t)

-0.4

-0.2

Fig. 2. External response function xe
nðr; tÞ for various r and n: n ¼ 50, r ¼ 1:00, solid black line; n ¼ 20, r ¼ 2:00, dashed black line; n ¼ 10,

r ¼ 3:00, solid gray line; n ¼ 5, r ¼ 4:00, dashed-dotted black line.
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�
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,t)
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Fig. 3. Internal response function xi
1ðr; tÞ for various r: r ¼ 0:25, solid black line; r ¼ 0:50, dashed black line; r ¼ 0:75, dashed-dotted black

line; r ¼ 1:00, solid gray line.
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visualization of the internal field. Thus, throughout the present work we always consider 150 terms in
the series representing the radiation pressure (both internal and external), and 300 terms in the diffraction
pressure series.

4. Structural dynamics

If we expand the displacements into the series,

v ¼
X1
n¼0

vn sin ny (29)

and

w ¼
X1
n¼0

wn cos ny, (30)

and rewrite the dimensionless shell equations in terms of the displacement harmonics vn sin ny and wn cos ny,
for each n we arrive at an integro-differential system for vn and wn,

g2
d2vn

dt2
þ c11n vn þ c12n wn ¼ 0, (31)

g2
d2wn

dt2
þ c21n vn þ c22n wn

¼ ŵ p̂0
n þ p̂d

n �

Z t

0

d2wnðZÞ
dZ2

xe
nðr; t� ZÞdZþ

rici

rece

Z t

0

d2wnðZÞ
dZ2

xi
nðr; cic

�1
e ðt� ZÞÞdZ

� �����
r¼1

, (32)

where

c11n ¼ n2 þ k2
0n

2; c12n ¼ c21n ¼ �n� k2
0n3; c22mn ¼ 1þ k2

0n4; and g ¼ ĉ�1s . (33)

The zero initial conditions for vn, wn, and their first derivatives complement Eqs. (31) and (32).
We also note that the terms in Eqs. (3) and (4) (and, consequently, Eqs. (31) and (32)) multiplied by k2

0

represent the bending stiffness, and, generally speaking, they need to be considered to model the interaction
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adequately. However, it has been demonstrated in Ref. [32], and further confirmed in Ref. [34], that for the
class of fluid-structure interaction problems discussed here, neglecting the bending stiffness terms does not
lead to significant changes in the acoustic field if the shell is sufficiently thin, i.e. if h0=r0p0:01 (the
contribution of the bending stiffness terms in that case is limited to a number of very high-frequency, low-
magnitude waves localized in certain, very narrow, regions). Since the focus of the present work is on the
analysis of the complexity brought in by the fact that the internal and external fluids are different, of primary
interest to us here are the wave phenomena in the fluids, not the relatively subtle structural dynamics features
and their effect on the acoustic fields. Thus, we limit our investigation to very thin shells with the thickness-to-
radius ratio of 0.01 or less, and neglect the bending stiffness.

The system (31) and (32) was approached numerically using finite differences. An explicit second-order
scheme was used, with the second derivatives approximated using central differences, and the integral terms
approximated using the trapezoidal rule. The scheme is admittedly simple, and one may question why a more
sophisticated, higher-order scheme was not employed instead. However, since the integro-differential systems
in question are ordinary, the computational time was not a determining factor here as the step size could be
decreased as much as was necessary to achieve convergence. The resulting finite-difference scheme is

viþ1
n ¼ 2vi

n � vi�1
n � h2g�2fc11n vi

n þ c12n wi
ng, (34)

wiþ1
n ¼ 2wi

n � wi�1
n þ Ohfdhðp

i
n � hJi

n � hIi
nÞ � c21n vi

n � c22n wi
ng, (35)

where g ¼ ce=cs, dh ¼ rf g
2r0ðrsh0Þ

�1, Oh ¼ 2h2rf fdhhðrf þ rsg
2Þ þ 2g2rf g

�1, h is the time step,

Ji
n ¼

Xi�1
j¼1

fwjþ1
n � 2wj

n þ wj�1
n gh

�2xi�j
n;ext (36)

I i
n ¼

rscs

rf cf

Xi�1
j¼1

fwjþ1
n � 2wj

n þ wj�1
n gh

�2xi�j
n;int, (37)

and xi
n;ext and xi

n;int stand for the node values of xe
nð1; tÞ and xi

nð1; tÞ, respectively.
The convergence of the scheme certainly is of interest and, although it has been studied in detail for the

external-fluid-only problem [34], it needs to be addressed for this more complex case as well. Whether the
value of z has any effect on the convergence is also of interest.
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Fig. 4. Convergence of the finite-difference scheme for z ¼ 0:50, the bending stiffness is ignored; h ¼ 0:0005, solid black line; h ¼ 0:001,
dashed black line; h ¼ 0:002, dashed-dotted black line; h ¼ 0:004, solid gray line.
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Fig. 4 shows the normal velocity of the shell surface at the head point for different step sizes for z ¼ 0:50; the
bending stiffness is ignored. One can see that when h ¼ 0:004, the scheme start to diverge after t ¼ 2:5.
Decreasing h from 0.004 to 0.001 leads to significant changes of _w, but after that, the scheme appears to have
converged (the average difference between _w computed with h ¼ 0:001 and 0.0005 is less than 2%). Thus, for
this value of z h ¼ 0:001 is sufficiently small.

When the bending stiffness is taken into account, the convergence of the scheme is noticeably worse.
Although at h ¼ 0:0005 the scheme still converges (and, in fact, does so even better than when the bending
stiffness is ignored, with the average difference between h ¼ 0:001 and 0:0005 being around 1%), it diverges
much faster for larger h (the scheme becomes unstable as early as t ¼ 0:10). This observation is consistent with
what was seen for a submerged evacuated shell [34].

Increasing z results in poorer convergence, Fig. 5 (z ¼ 1:00). Even when the bending stiffness is ignored, the
scheme becomes unstable at about t ¼ 0:30 for h ¼ 0:004, and at about t ¼ 1:50 for h ¼ 0:002. Yet, it still
converges after h ¼ 0:001, with the average difference between h ¼ 0:001 and h ¼ 0:0005 being around 2%.
When the bending stiffness is taken into account, the scheme becomes unstable for h ¼ 0:004 and 0:002 even
before t ¼ 0:10. Even then, the scheme start to converge when hp0:001, and the average difference between
the results produced by h ¼ 0:001 and 0:0005 is in the order of 1%.

As z increases, the situation becomes progressively worse for all h above 0.001, both when the bending
stiffness is taken into account and when it is not. However, for the entire range of z considered
(0:50pzp1:50), h ¼ 0:001 has always been found to ensure convergence of the scheme and provide acceptably
accurate results (the error below 5%). Thus, in our computations the step size h ¼ 0:001 has been selected for
all scenarios considered.

As for the convergence of the series for the strain and displacements, it has been analyzed as well. It was
established that the situation here is not much different from what was seen for an empty submerged shell [34].
That is, the strain and displacement series converge much better than the pressure ones, and much fewer harmonics
need to be taken into account (generally, less than 50, as opposed to 150 or even 300 required for the pressure).
5. Parameters analyzed and terminology

It was demonstrated in Ref. [32] that when the internal and external fluids are identical, the internal pressure
wave is simply a geometrical continuation of the incident wave inside the shell. That, however, changes when
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Fig. 5. Convergence of the finite-difference scheme for z ¼ 1:00, the bending stiffness is ignored; h ¼ 0:0005, solid black line; h ¼ 0:001,
dashed black line; h ¼ 0:002, dashed-dotted black line; h ¼ 0:004, solid gray line.
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the fluids are different: depending on the ratio of the acoustic speeds in the fluids, the front of the internal
shock wave will be either ahead of or behind the imaginary internal continuation of the external incident wave.
Since the interaction was observed to be dominated mostly by the wave reflection and focusing phenomena
[31,32], such difference in the locations of the fronts will lead to significantly different wave patterns in the
fluids, especially the internal one, as well as considerably different structural dynamics. The variation of the
densities of the fluids will have an effect on the pressure magnitude, but not the geometry of the acoustic field.
Of course, the appearance of the shell-induced component of the acoustic field also depends on the acoustic
speed in the shell material. That, however, is of secondary importance due to the considerably lower
magnitude of the radiated pressure.
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Fig. 6. Dynamics of the acoustic field in the sonic case of z ¼ 1:00.
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It therefore appears that there is a single most important parameter that determines the appearance of the
internal and external acoustic fields, namely the ratio of the acoustic speeds in the internal and external fluids.
Even though this is a rather obvious conclusion, it is quite difficult to predict exactly how the acoustic fields
will change when the ratio varies. Our effort, therefore, will be concentrated on determining how the change of
the ratio influences the wave patterns, and, possibly, defining a few characteristic types of patterns
corresponding to different ranges of the ratio. We denote this ratio of the acoustic speeds as z, and define it as

z ¼
ci

ce

. (38)
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Depending on the value of z, three qualitatively different scenarios of interaction are possible: the ‘default’
case of two identical fluids, z ¼ 1 (we will refer to this scenario as the ‘sonic’ one), a scenario where the
acoustic speed in the internal fluid is lower than that in the external, zo1 (we term it the ‘subsonic scenario’),
and the case where the acoustic speed in the internal fluid is higher than in the external, z41 (the ‘supersonic
scenario’). We note that the terminology suggested is, to some extent, ambiguous (we are only considering
sonic waves here), but it adequately reflects the physics of the processes, and thus appears to be suitable in
the present context. An extensive summary of the acoustic properties of a wide variety of fluids can be found
in Ref. [38].
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Throughout this section, we consider a steel shell with h0=r0 ¼ 0:01, cs ¼ 5000m=s, rs ¼ 7800 kg=m3, and
n ¼ 0:3 submerged into water, ce ¼ 1400m=s and re ¼ 1000 kg=m3. The properties of the internal fluid vary
depending on the scenario considered. As for the incident shock load, we consider the same large-stand-off
shock wave as before (e.g. Ref. [31,33]), i.e. a shock wave with the source located at the distance of four radii
of the shell from the shell’s surface. As was discussed in Ref. [31], the present linear model is most suitable for
modeling such a shock wave, as opposed to a close explosion for which a linear model is hardly suitable. The
parameters of the wave, i.e. the rate of the exponential decay l and peak pressure in the front pa, were chosen
to be 0.0001314 s and 250 kPa, respectively.

6. Sonic scenario (z ¼ 1:00)

We first address the case of two identical fluids. Even though this case has been previously addressed in
much detail [31,32], only the internal field was visualized and discussed, not the entire internal-external field.
As a result, the effect of the internal field on the external one was not clear. Here we eliminate that drawback,
and focus on the complete internal-external analysis, and, in particular, discuss a number of interesting and
sometimes unexpected features the external field exhibits in the presence of the internal fluid.

Fig. 6 shows the dynamics of the acoustic field for the shell filled with and submerged into water. (We note
here that in some of the images throughout the paper, the pressure corresponding to the highest halftone in the
legend (white) is lower than the actual highest pressure in the image (usually attained in a very localized
region, as is the case when focusing is visualized). This has been done in order to ensure a more balanced
distribution of the halftones in the respective images, and their better overall appearance.) There are several
interesting features of the field that we would like to comment on. First of all, a phenomenon that only became
apparent now, when the internal and external fields are visualized simultaneously. Namely, the Mach stems in
the internal and external fluids are each other’s geometrical continuation, and they contact the surface of the
shell at the same points; the phenomenon is particularly apparent after t ¼ 2:00. Fig. 7 shows the instant
t ¼ 2:25 separately at a larger scale, with the internal and external Mach stems labeled MSI and MSE,
respectively.

This is a very interesting observation. It constitutes another, less obvious but more physically significant
level of the shell’s ‘transparency’ to a shock wave: along with the transparency in the sense that the internal
wave is a geometrical continuation of the incident wave inside the shell [32], we now observe the transparency
in terms of the shock wave reflection phenomena. In other words, it is almost as if the Mach stems were a
MSE

MSI

Fig. 7. Mach stem pattern at t ¼ 2:25 in the sonic case of z ¼ 1:00.
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hydrodynamic phenomenon that existed in the fluid on its own, and would merely propagate right through the
‘transparent’ shell without any change of shape or pressure magnitude. We also emphasize that the internal
Mach stems are due to the secondary Mach reflection that follows the primary regular one, and the external
Mach stems are the result of the primary reflection which is Mach. This is yet another link between the internal
and external reflection processes which exhibit different types of the primary reflection for most of the process.

The connection between the internal and external wave reflection phenomena does not end with the primary
Mach stems ‘complementing’ each other. Later in the process, the multiple regular reflection develops in the
internal fluid, a phenomena which was discussed in the present context in Ref. [31], and was observed
experimentally for a physically similar setup by Sun and Takayama [39], and, with a lesser degree of the
setup’s similarity, by Skews and Kleine [40, Fig. 9(a)]. A well-developed triple regular reflection is clearly seen
at, for example, t ¼ 3:80 and 5:00 (the latter waves are, in fact, the last three self-similar reflected waves of a
quadruple regular reflection with the primary wave having already reflected from the shell surface). One can
observe that the transition of the internal multiple regular reflection into the external fluid occurs continuously
throughout the process, and is a very interesting phenomenon which could not be observed in the studies of
the internal field alone.

The transition can be noticed as early as t ¼ 2:80, and by t ¼ 3:50, the external ‘continuation’ of the
secondary internal Mach stems is fully developed. We emphasize that not only the geometry of the stem is
preserved, the pressure sign is not changed either, and one observes regions of negative pressure of
approximately the same magnitude adjacent to the shell surface. The process continues, and by t ¼ 3:80 the
transition of the tertiary Mach stems has occurred, reaching the fully developed state by t ¼ 4:20. Finally, by
t ¼ 4:80, the transition of the Mach stems of the fourth-order is seen to have fully occurred.
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As a result of this multiple transition process, there are four wavefronts propagating upstream behind the
scattered wave, with positive and negative pressure alternating. This is yet another illustration of just how
incomparably more complex the interaction is when the internal fluid is present — the only upstream-
propagating wave observed due to wave reflection phenomena for a submerged evacuated shell was the
scattered one [33]. It is also particularly clear now that from the acoustical point of view, a fluid-filled shell
subjected to a non-stationary pulse is a much more active and ‘interesting’ source than an evacuated shell, an
observation that is of particular importance for applications where acoustic signatures of submerged objects
are a concern.
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We also note that, in spite of the presence of the many secondary features caused by the wave reflection
phenomena discussed, the front of the incident wave remains virtually ‘intact’ after the incident wave passes
over the shell, both in terms of its geometry and the pressure magnitude. This is not the case for an evacuated
shell (e.g. Ref. [33]) where the front of the scattered wave past the shell is considerably different from what is
observed in the absence of the shell, neither is it the case for any z other than unity, as we will see shortly.

From the practical point of view, this feature of the interaction implies that a shell filled with the same fluid
as the surrounding one does not considerably change the intensity of the impact the shock wave has on
structures located downstream, even when they are located quite close to the shell. This observation gives
another meaning to the notion of transparency of a shell to a shock wave (introduced in Refs. [27,28] and
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further elaborated for the present case in Ref. [32]): now it is possible to talk about the ‘global transparency’ in
a sense that a submerged fluid-filled shell does not seem to significantly reduce the shock load on structures
positioned downstream, as opposed to the ‘local transparency’ discussed in Ref. [32] where the mechanism of
the transition of the external wave inside the shell was the primary concern.

Another remark we would like to make concerns the shell-induced waves, i.e. the acoustic waves induced in
the fluids by the elastic waves propagating in the shell (e.g. Refs. [21,31–33]). First of all, we note that in Fig. 6,
the internal and external shell-induced fields appear to have dramatically different intensities: the former is
clearly visible whereas the latter is not. This is due to the fact that the internal shell-induced pressure is
negative, and is often the only negative pressure observed inside the shell at a given instant. The external
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pressure, however, is positive, but is always lower in magnitude than the incident and scattered components,
and as a result, it appears to be of much lower intensity than its internal counterpart. To make sure both
components are shown equally well, the positive pressure range was narrowed down in Fig. 8 which shows a
few selected snapshots of the early interaction.

One can clearly observe how the elastic waves propagating in the shell radiate into the fluids inducing
negative pressure inside the shell and positive outside; the respective pressure has approximately the same
magnitude. Since the acoustic speeds in the internal and external fluids are identical, the advancements of the
waves normally to the shell surface are the same at any given point, even though the shapes of the internal and
external radiated fields are obviously not. The same holds true when the circumferentially propagating elastic
waves superpose at the tail point and continue to propagate upstream: the radiated fields have different
geometries determined by the curvature of the shell, but the normal advancements of the waves induced by the
superposition are still the same.

This uniformity of the internal and external shell-induced fields is a unique feature of the sonic interaction,
and will no longer be the case when the internal and external fluids have different properties. The radiation of
elastic waves into the fluids continues throughout the interaction, and is partly visible in some of the snapshots
of Fig. 6. The dynamics of the complete internal-external shell-induced field is not addressed here: its physics is
rather simple, even though the fields themselves are often difficult to observe due to the presence of other
waves. An adequate picture of the complete shell-induced field in the sonic case can always be rendered by
combining the images of the internal [31] and external [33] shell-induced fields.

7. Supersonic scenario (z41:00)

It seems that there are not particularly many fluids of industrial significance that have acoustic speeds
significantly exceeding the acoustic speed in water [38]. Thus, we will consider a hypothetical fluid that has the
acoustic speed that only exceeds that of water by 50%, and has the same density, i.e., ci ¼ 2100m=s (z ¼ 1:50)
and ri ¼ 1000 kg=m3. All other parameters of the system remain the same.

The acoustic field in this case, Fig. 9, is very different from the scenario of two identical fluids. The internal
pressure wave is no longer a geometrical continuation of the incident wave inside the shell, and its front, even
though still convex, has the curvature that exceeds that of the incident wavefront. Much more importantly, the
wave fronts in the internal and external fluids are not aligned anymore, and contact the shell at different
points, the internal front being far ahead of the external one. Furthermore, not only the internal shock wave
MSIE

MSI

MSE

Fig. 10. Mach stem pattern at t ¼ 1:60 in the supersonic case of z ¼ 1:50.
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propagates ahead of the external one, it also ‘leaks’ back into the external fluid downstream inducing very
significant pressure in the regions not yet affected by the incident wave. This certainly is an interesting
phenomenon since now there are not one but two high-magnitude waves propagating downstream in the
external fluid, even relatively early in the interaction — the primary scattered one, and the secondary one
transmitted via the internal fluid back into the external one.

The existence of such a secondary field is also important in a different way. Namely, now we have not one
but two ‘head’ waves propagating in the external fluid, the first one is due to the radiation of the elastic wave
propagating in the shell into the fluid, and the second one is due to the radiation into the external fluid of the
pressure wave propagating in the internal one. The former is still low-magnitude, while the latter is of the same
order of magnitude as the diffracted-radiated waves, which is very much in contrast with the sonic scenario
where the head waves were always low-magnitude. This phenomenon is of definite interest in general, but it
becomes critical in applications where the exact timing of the response of the system is of importance: along
with the low-magnitude response that arrives at a certain point downstream of the shell prior to the incident
wave (discussed in detail in Ref. [33]), in the supersonic case there also exists a high-magnitude response that
precedes the incident loading.

We note that not only the front of the internal wave ‘leaks’ outside the shell, the internal Mach stems do so
as well (the snapshots at t41:30, and also Fig. 10 where the internal Mach stems are labelled MSI, MSIE
stands for their ‘extension’ outside the shell, and MSE stands for the Mach stems of the external reflection).
However, now the Mach stems of the external reflection are no longer geometrical continuation of the
respective Mach stems of the internal reflection, and one observes a discontinuity between the internal Mach
stems and their external reflection counterparts. As it was the case when the fluids were identical, the multiple
regular reflection taking place in the internal fluid manifests itself in the external fluid as well, t42:10, in the
ways that are very similar to the sonic case. We also note that the pressure patterns of the other two
fundamental features of the interaction, the reflection and subsequent focusing of the internal wave, are
practically identical to those observed in the sonic case, even though shifted in time, and there is no need to
discuss them here.

The shell-induced fields are different as well in this case: due to the difference in the acoustic speeds in the
fluids, the shell-induced waves propagate with different velocities normally to the shell surface, Fig. 11, where
a low-positive pressure close-up of two sequential snapshots of the early interaction is shown.

Summarizing the analysis of the supersonic case, it appears that, even though shifted in time and de-
synchronized with the incident and scattered fields, the reflection and focusing of the internal shock wave
follows the same pattern as in the sonic case. The most fundamental difference, aside from the timing, is the
presence of two ‘head’ waves of substantially different magnitudes: the low-magnitude shell-induced wave and
the high-magnitude wave due to the ‘transition’ of the incident wave back into the external fluid through the
internal one. The ‘leaking’ of the internal Mach stems outside the shell is definitely worth mentioning as well
since now the external ‘continuations’ of the internal Mach stems no longer coincide with the Mach stems of
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Fig. 11. Close-up of the dynamics of the shell-induced field in the supersonic case of z ¼ 1:50.
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the external reflection. Further increasing z will lead to a more and more pronounced difference in the location
of the fronts of the internal and external waves, and likely to the increasing curvature of the internal
wavefront, but will not qualitatively change the wave pattern observed.

8. Subsonic scenario (zo1:00)

The subsonic scenario seems to be of greater practical relevance than its supersonic counterpart since there
appear to be a larger number of fluids of industrial significance with the acoustic speeds considerably lower
than that of water [38]. We will demonstrate that it is also the richest scenario in terms of the features of the
acoustic field. We consider a hypothetical fluid with the acoustic velocity equal to a half of that in water, and
with the same density as water, ci ¼ 700m=s (i.e., z ¼ 0:50) and ri ¼ 1000 kg=m3. All other parameters of the
system are the same as before.

Fig. 12 shows the dynamics of the acoustic field as the subsonic interaction develops. There are several
features that make the present case fundamentally different from the two previously addressed scenarios. First
of all, the front of the internal wave is no longer convex, it is concave, and has a rather complex, continuously
evolving geometry. Furthermore, despite the significant difference in the acoustic speeds, the internal and
external wave fronts contact the shell surface at the same point, very much unlike in the supersonic case. The
physics behind such a feature of the internal wavefront is rather interesting, but not immediately apparent,
and requires some elaboration.

It was shown [31] that in the sonic case, the internal pressure at the beginning of the interaction was mostly
determined by the normal velocity of the shell surface moving inward. Since the propagation of the internal
wave occurred at the same speed as the incident and scattered waves, the internal and external wave fronts
contacted the shell surface at the same point, and exerted comparable pressure on it. In the present case the
situation is different. Even though the normal velocity profile is very similar to that observed in the sonic case,
due to the different wave properties of the internal fluid, the shell’s motion induces a completely different
internal acoustic field. Namely, there still is a high-pressure internal wave originated at the very beginning of
the interaction, e.g. the snapshot at t ¼ 0:20. However, now it propagates with a considerably lower velocity
than the external (scattered) wave. The latter, at the same time, continues to constantly contribute to the
internal field through exerting pressure on the outer shell surface, but since there is no internal front of
matching geometry that exerts pressure on the shell from the inside, the external field completely determines
the internal field in the proximity of the contact point.

Since the external wave propagates at a speed which is considerably higher than the internal acoustic speed,
the corresponding near-surface high-pressure regions of the internal field are present far ahead of where the
acoustic response of the internal fluid would be detected in the absence of the external loading. At the same
time, the high-pressure wave originated at the head point at the very beginning of the interaction travels
downstream at the acoustic speed of the internal fluid, and thus is far behind the near-surface regions. The
result is the concave shape of the wavefront.

We therefore emphasize that, in the subsonic case, the term ‘wavefront’ in the context of the
internal fluid becomes somewhat ambiguous: usually when one refers to the front of an acoustic wave, it is
assumed that it propagates with the velocity equal to the acoustic speed in the medium. Here, however, we
observe an acoustic wave that has a ‘front’ propagating with a velocity that is perceivably higher
than the acoustic speed in the fluid (for example, the snapshot at t ¼ 1:10: the internal high-magnitude
pressure is detected at locations where it clearly would not be if there were no external wave). Of course,
as one would expect, no laws of physics are violated here, and the seemingly non-physical behavior
is purely due to the geometry of the shell: the acoustic wave itself, once originated at the surface, propagates
precisely at the internal acoustic speed. The possible confusion arises from the fact that the region itself

where the acoustic wave is induced is moving downstream with supersonic (relative to the internal fluid)
velocity.

Thus, even though the situation observed can be explained rather easily, one definitely needs to be aware of
it to avoid physically incorrect interpretation of the wave patterns, and from here on, when using the word
‘front’ for the internal wave in the subsonic case, we keep in mind the remarks made. We also note that one
possible way to alleviate this ambiguity is to focus on the central, high-magnitude region of the internal front



ARTICLE IN PRESS
S. Iakovlev / Journal of Sound and Vibration 322 (2009) 401–437 423
which represents the response of the fluid at the very beginning of the interaction, and which always
propagates at the acoustic velocity in the internal fluid.

The point of contact between the internal and external fronts is clearly identifiable in the lit zone (yp90�)
and right after the transition into the shadow zone. As the front progresses into the shadow zone, the contact
becomes less defined, and eventually (after t � 2:40) practically disappears. This is due to the fact that in the
shadow zone, the external wave does not have a pressure discontinuity associated with it, and the magnitude
of the pressure in it decreases considerably as well. The internal field responds accordingly, and is dominated,
in terms of the magnitude, by its central part, e.g. the snapshot at t ¼ 2:15. When the external Mach stems
merge at the tail point at t � 2:70, the internal front closes in at the tail point as well, and the respective
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Fig. 12. Dynamics of the acoustic field in the subsonic case of z ¼ 0:50.
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radiated wave starts to propagate upstream. Such behavior, technically, appears to constitute the reflection of
the internal pressure wave from the tail region. This phenomenon, however, needs clarification.

If we looked at the waves propagating in the internal fluid in the absence of the shell, they, obviously, would
not cover the shell’s diameter in 2.70 time units. Therefore, as was discussed earlier, the fact that the ‘front’ of
the internal wave reached the tail point at t � 2:70 is exclusively due to the existence of the external fluid, not
the wave effects in the internal one. The central part of the internal front, however, does propagate at the
internal acoustic speed. Thus, to be terminologically correct and consistent with the sonic and supersonic
cases, by the ‘reflection’ of the internal wave from the shell surface we shall mean the reflection of its central
part propagating at the internal acoustic speed.
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We also mention that there is another fundamental difference in the physics of the internal wave in the
subsonic case, at least when z is sufficiently small: there is no specific reflection pattern observed where
the wave contacts the shell surface, neither regular nor Mach. This further supports the argument that the
dynamics of the near-surface regions of the internal fluid is determined by the effects in the external fluid, not
the shock wave reflection phenomena. It is also an indication that the internal wave observed in this case is not
a shock wave in the classical sense but is a combination of the initial response of the internal fluid to the
incident shock (the central region of the front) and the effects of the incident and scattered waves as they
propagate in the external fluid (the regions in the proximity of the walls).
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The geometry of the internal front is worth commenting on as well. Almost perfectly circular (or, perhaps,
parabolic) at the beginning of the interaction, it starts to exhibit a non-uniform curvature later on (t � 1:00),
becomes apparently non-circular by t � 2:00, and by t � 2:40, it takes on an almost rectangular-like shape.
After the near-surface regions of the front merge at t � 2:70 (about the same time when the Mach stems of the
secondary reflection merge in the sonic case), they begin to propagate upstream. Meanwhile, the central region
of the front is still propagating downstream, and after t � 2:80 starts to disintegrate into three distinct parts,
two high-magnitude ones and one lower-magnitude. Eventually (t � 3:30), the regions propagating upstream
and downstream collide, resulting in the V-shaped (the snapshot at t ¼ 3:40) and later almost X-shaped
(t ¼ 3:70 and 3.90) high-pressure formation propagating downstream.

During this stage of the process, the pressure in the high-magnitude formation mentioned increases very
considerably, and at t ¼ 3:90, for example, it exceeds the peak incident pressure, pa, by more than 25%. Such
high pressure attained in such a localized region certainly constitutes focusing, and its existence so late in the
interaction is alone sufficient for one to be particularly concerned with the subsonic scenario. Shortly after the
focusing occurs, the high-pressure region falls on the shell surface and reflects from the tail region. This
corresponds to the instant when the central region of the internal wavefront finally reaches the tail point, and
thus constitutes the reflection of the internal wave in the classical sense. The pressure rise associated with the
reflection is detected as well, and the peak reflection pressure exceeds the maximum incident one by more than
100%, t ¼ 4:06. The practical significance of such pressure rise is obvious, and it should be particularly
emphasized that by the instant in question, not only the incident wave has moved over the shell, its front has
moved the shell’s diameter away from the structure.

We would also like to emphasize two other aspects here. First, the focusing observed occurs before the
central region of the internal wave front reflects from the tail region of the shell. This fact constitutes an
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essential difference between the present and sonic reflection and focusing mechanisms, and is of definite
theoretical interest (in the sonic case, the reflection of the internal wave from the tail region preceded the
focusing [31]). Second, it so happens that, in the chosen scenario of z ¼ 0:50, the focusing occurs very close to
the shell surface, and there is not enough time to observe the evolution of the post-focusing pressure pattern
before reflection from the shell surface takes place.

We also note that it is somewhat difficult to pinpoint the precise spatial and temporal location of the
focusing: the pressure is high and of approximately same magnitude during a finite time interval preceding the
reflection (approximately ½3:85; 3:95�), without a distinct peak at any particular point. The geometry of
the respective high-pressure region is not too helpful here either — it is approximately X-shaped with the
highest pressure in the middle for a relatively long time, with no particular instant standing out. Thus,
discussing the timing of the focusing in this case, it probably makes more sense to talk about the focusing
interval, not a specific focusing instant. The magnitude of the focusing pressure, however, can be determined
quite accurately, with less than 5% error.

From the practical point of view, the possible negative effects of the high focusing/reflection pressure are
worsened by the fact that it is sustained for a relatively long time. Specifically, it exceeds the peak incident
pressure when t � 3:7024:15, which is more than 20% of the incident wave passage time (i.e., the time it takes
for the incident wave to move over the shell).

The unique features of the subsonic scenario are not limited to the occurrence of the focusing prior to the
reflection from the tail region. After the reflection, the reflected wave starts to propagate upstream, and a
region of negative pressure emerges behind its front, t � 4:30; the front is W-shaped by that time, with a
distinct pressure peak at the center. The negative pressure in the region in question can be quite low, up to
20% in magnitude of the peak incident pressure. Moreover, the region is quite extensive, and exists for a long
time, t � 4:3026:00, or 85% of the incident wave passage time. This, once again, demonstrates that the
present scenario is completely different from the sonic one where high-magnitude negative pressure did exist
late in the interaction, but was very localized, and was observed for a very short time. Furthermore, the
existence of the extensive regions of low pressure would certainly be a significant concern if the possibility of
cavitation were investigated.

There is another phenomenon of definite interest that takes place after the reflection of the internal wave
from the tail region. Namely, at t � 4:3024:50, there is another very localized region where the pressure is very
high; in fact, it is so high that it exceeds the peak incident pressure by about 10% at t ¼ 4:46 (clearly visible in
the snapshot for t ¼ 4:45). This, again, constitutes focusing, but this time, it succeeds the reflection. We,
therefore, can conclude that in the subsonic case, there can occur not one but two focusings, one before the
reflection, and one after. The fact that the second focusing occurs so late in the interaction is yet another
reminder that the late interaction in the subsonic case definitely needs to be closely monitored when one is
concerned about high pressure. We note that the post-focusing wavefront is bell-shaped, not ellipsoidal as was
the case for the sonic scenario, and the transition from the pointed to bell shape occurs shortly after the second
focusing, at t � 4:50. The difference observed is particularly striking if one recalls that the geometry of the
reflecting surface did not change, only the parameters of the medium.

We note that most of the remarks made so far concerned the internal field. There, however, is an important
feature of the external field that is unique to the subsonic interaction. Namely, the reflection of the internal
wave from the tail region induces high-pressure region in the external fluid adjacent to the shell surface at
t � 4:1024:15, which develops into a pressure wave that propagates downstream, with a clearly defined ‘front’
and the subsequent pressure drop behind it. We emphasize that the word ‘front’ appears in quotations marks
since the wave observed is not a shock wave in the classical sense — there is no pressure discontinuity
associated with it. Its effects, however, are virtually the same as would be those of a shock wave originated at
the tail point, at least as far as the practitioner is concerned.

The existence of this pressure wave is of importance for two reasons. First, the specifics of the interaction in
the present case are such that the external fluid adjacent to the tail region does not experience significant
pressure rise throughout the entire interaction up until the instant in question. Second, from the practical
point of view, the wave pattern observed implies that, effectively, two shock waves are seen to propagate in the
external fluid downstream of the shell, i.e., along with the primary (scattered) wave, a secondary shock wave is
observed as well. It exists very late in the interaction — even at t ¼ 5:00 it is clearly detectable (i.e. at the times
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when the incident wave passed the shell by one and a half of its diameter), and the pressure in its front is high
enough for one to be concerned about the wave’s effects. This interesting feature of the interaction becomes
critically important when the effect on the secondary structures located downstream of the primary shock-
responding one is analyzed, or when the timing of the system’s response is a concern. We particularly
emphasize that the pressure in this external wave is very high during the early stages of its existence
(t ¼ 4:1024:30): it exceeds pa by almost 30% at t ¼ 4:10. This is very much unlike the sonic case where the
external pressure in the region adjacent to the tail point never exceeded the peak incident pressure, and is yet
another unique feature of the subsonic interaction.

We also mention that the high-magnitude ‘fronts’ of the reflected internal and the reflection-induced
external waves contact the shell surface at the same points (compare the snapshots for t ¼ 4:45 and 4.60), so
there is, once again, a clear connection between the internal and external wave reflection phenomena, even
when it comes to secondary waves and the very late interaction. We also note that, from the practical point of
view, the diversity of the effects observed implies that under the subsonic scenario of interaction, the shell
remains a very active acoustic source long after the incident wave has passed over it.

Another important difference in the acoustic fields concerns the shell-induced waves, Fig. 13, where a
narrower positive pressure range is shown to ensure an adequate appearance of the low-magnitude external
radiated waves; only a few representative snapshots are included. The shell-induced waves still have the same
velocity of propagation along the shell surface, but the velocity of propagation normally to the shell surface
inward is different from that outward: unlike the sonic and supersonic cases, the normal advancement of the
internal shell-induced waves is much slower than that of the external ones. The same also applies to the shell-
induced pressure patterns observed after the superposition of the elastic waves at the tail point. Even though
certainly an interesting phenomenon, such a difference in the velocity of propagation of the shell-induced
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Fig. 13. Close-up of the dynamics of the shell-induced field in the subsonic case of z ¼ 0:50.



ARTICLE IN PRESS
S. Iakovlev / Journal of Sound and Vibration 322 (2009) 401–437 429
waves does not constitute a qualitative difference in the physics of the radiation: as long as the shell remains
the same, the timing of the superpositions of the elastic waves does not change, neither does the number of
passages of the waves around the shell in any given time interval.

We note that since for low values of z it takes much longer than four dimensionless time units for the
internal wave to reflect from the tail region and return back to the head point, the usual time span considered
(0:00ptp5:00) is not always sufficient to adequately represent the process. For that reason, Fig. 14 shows the
very late (5:00ptp10:00) evolution of the internal field for the case of z ¼ 0:50 (only the internal field is
shown). One can see that even though the very general features of the process are still the same as in the sonic
case (propagating upstream and reflecting from the head region), the pressure patterns are quite different. We
emphasize that the process is still very phenomenologically rich: for example, yet another focusing is observed
at t � 9:30, and the Mach stems are clearly detectable at t ¼ 7:50. Of particular interest is the fact that this
complex features of the acoustic field are observed at the instants when the incident wave has passed over the
shell and moved away from it by at least one and a half of the shell’s diameter, i.e. the times that would
certainly be deemed ‘uninteresting’ for the case of an evacuated shell.

Analyzing the focusing and reflection in the present case, the following needs to be emphasized. For the
considered ratio of the acoustic speeds, the first focusing occurs almost at the shell surface. This, however, is
not always the case, and as z changes, the location and timing of the focusing will change as well. Even though
this is a rather obvious conclusion, is not clear at all exactly how the focusing pattern changes with z. To
clarify the issue, we look at two more subsonic interactions, z ¼ 0:36 and 0:64, the acoustic speeds of 500 and
900 m/s, respectively, and analyze the dynamics of the pressure patterns observed. Since we are concerned here
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Fig. 14. Late interaction in the subsonic case of z ¼ 0:50.
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with the focusing and reflection inside the shell, the external field is not important in that context, and we only
visualize the internal field, and only do so for the relevant time intervals. Since the geometry of the pressure
patterns is our primary concern here, the halftones are assigned individually in each of the snapshots to ensure
their optimal appearance.

In the case of z ¼ 0:36, Fig. 15, the first focusing occurs at a considerable distance from the shell surface at
t ¼ 4:48, with high focusing pressure exceeding the peak incident one by about 30%. The post-focusing wave
pattern has time to develop sufficiently before the reflection from the tail region starts at t ¼ 5:60 resulting in
another localized high-pressure region with pressure exceeding pa by about 15% at t ¼ 5:63. As was the case
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Fig. 15. Focusing and reflection for z ¼ 0:36.
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for z ¼ 0:50, the maximum pressure between the focusing and reflection remains quite high — it never drops
below 75% of pa, although now the two phenomena are clearly separated. After the reflection occurs, the
reflected wave propagates upstream with a distinct localized region of high pressure of about 50% of pa
attained between t ¼ 5:95 and 6.10. Even though such behavior certainly constitutes second focusing, we
emphasize that, for such a low value of z, the pressure peak in question is attained not at a point but along a
finite segment of the internal wavefront, and its exact timing is difficult to pinpoint since the pressure is
approximately the same during the finite time interval mentioned.
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Fig. 16. Focusing and reflection for z ¼ 0:64.
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In the second case, z ¼ 0:64, Fig. 16, the internal acoustic speed is high enough so that no focusing prior to
the reflection from the tail region is observed, and the first peak pressure (exceeding pa by about 20%) at
t ¼ 3:19 is due to the reflection. The post-reflection focusing, however, is still clearly observed at t ¼ 3:70, with
the peak pressure exceeding pa by about 40% . Thus, for this relatively high value of z we observe the well-
familiar ‘reflection-focusing’ mode of interaction inherent to the sonic scenario, even though the pressure
pattern is still very different from the sonic case.

We have therefore established that, depending on z, the subsonic case itself can follow two qualitatively
different sub-scenarios: one where the focusing occurs both before and after the reflection from the tail region
(we term it the ‘FRF mode’), and one where the focusing only takes place after the internal wave reflects from
the tail region (the ‘RF mode’). There exists a transitional mode where the first reflection and focusing occur
simultaneously. The critical value of z separating the two modes, FRF and RF, is approximately 0.52, and any
z in the close proximity of this critical value will yield almost simultaneous reflection and focusing. The
existing of these two distinct modes of interaction with the transitional mode separating them is yet another
indication of the uniqueness and complexity of the subsonic interaction, and yet another reminder of the need
for a comprehensive design-stage analysis of systems involving two fluids with significantly different
properties.

We note that, as was discussed when the focusing in the sonic case was addressed [31], knowing the location
of the high-pressure regions is of particular practical importance when internal elements are placed inside a
fluid-filled shock-responding shell (secondary pipes, equipment, etc.). This is even more so in the present case
where focusing could happen not once but twice. The good news is, however, that there are regions of the
internal fluid that seem to never experience particularly high pressure throughout the entire interaction, for
example, for z ¼ 0:50 those defined by y 2 ½�135�;�150�� and r40:60. Thus, when the prevailing direction of
the shock loading is known, it is possible to place the internal elements inside the shell in such a way that the
adverse effects of the shock on them will be minimized.

It is also interesting to point out that because during the early interaction the front of the internal wave is
concave for z ¼ 0:50 and convex for z ¼ 1:00, the transition from one shape to the other is expected to occur
somewhere between those two values. Specifically, it seems reasonable to expect that there exists a value of z
such that the shape of the front of the internal wave is very close to a straight line (something very similar to
what one would observe for the case of a plane incident wave under the sonic scenario). Fig. 17 demonstrates
that this is indeed so: several snapshots of the acoustic field at t ¼ 1:10 are shown for different values of z, and
the transition from a concave to convex wavefront is seen to occur at z � 0:86, with the only exception being
the close proximity of the shell surface. Even though the shape of the internal wavefront does not seem to have
any practical importance, the feature observed appears to be of theoretical interest.

Another interesting feature worth mentioning here is that for very low values of z, the shell-induced waves
propagate in the internal fluid with such a low (relative to the acoustic speed in the shell) velocity that their
inward advancement normally to the shell surface in the lit zone and the tail region are comparable, e.g.
z ¼ 0:21, Fig. 17. The result is the formation of a narrow, almost ring-like region of negative pressure adjacent
to the shell surface, with the pressure in it having similar magnitude throughout. This is an interesting
phenomenon on its own, but it is of particular practical significance when cavitation is a concern: it appears
that if the pressure in the region in question falls below the cavitation threshold, the separation of the shell and
fluid will occur along a very significant part of the shell’s circumference, and after the collapse of the cavitation
zone, at least a half of the shell will experience reloading.

9. Benchmark plots

All the images presented so far have been those of two-dimensional pressure fields. However, if one intends
to use the solution developed to produce benchmarks for verification of numerical codes, two-dimensional
plots are not always suitable (they allow one to see the overall dynamics of the process very well, but are
limiting when exact numerical values are of interest). Thus, traditional one-dimensional plots are certainly
welcome here as well, and are the subject of this section.

Although a ‘cylindrical’ incident shock wave (with its advantages and limitations outlined above) has been
considered to produce the two-dimensional images, here we will be using a plane incident wave with the same
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Fig. 17. Transition of the shape of the internal wavefront from concave to convex as z increases.
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rate of exponential decay and the same pressure in the front. Although the results produced by such a wave
will be less resemblant of what is seen for a three-dimensional shell and a spherical incident wave, this still
appears to be a reasonable choice since a plane wave has no physical inconsistencies associated with it,
and thus is more suitable as a test loading. Furthermore, a plane incident wave was used in the study by
Geers [3] that largely inspired the author to adopt the approach introduced in that work to the simulation
of the internal hydrodynamic fields. That, in turn, led to the present work. The plane wave is assumed to
have the same parameter as before, i.e. the pressure in the front of 250 kPa and the exponential decay rate
of 0.0001314 s.

Two functions were chosen for the benchmark plots. First, we plot the hydrodynamic pressure at two points
on the outer structural surface (the head and tail points) for three values of z considered in this study, z ¼ 0:50,



ARTICLE IN PRESS
S. Iakovlev / Journal of Sound and Vibration 322 (2009) 401–437434
1.00, and 1.50, Fig. 18. No noise filtering was applied in this case, and the graphs represent the ‘raw’ result of
the summation of the respective series, thus retaining all the errors due to the series convergence. This is
intended to demonstrate the limitations of the solution developed when it is necessary to obtain extremely
accurate results, but also, and more importantly, to show that the error due to the series convergence is very
small in the present case, and even the direct series summation results in near-perfect curves.

We note that the difference between the curves for different z is much more dramatic at the tail point than at
the head one. This is not surprising at all since what we see at the head point is mostly determined by the initial
response of the system, and is not significantly influenced by the wave propagation and reflection phenomena
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in the internal fluid. The tail point is completely different in that sense — the arrival of the internal pressure
wave at the tail point plays a determining role in what the pressure time-history looks like there. Since for
different z we have considerably different times of arrival of the internal wave, the plots look very different as
well. The only time internal where the plots are qualitatively similar is between t ¼ 0:87 (the time of arrival of
the elastic waves circumferentially propagating in the shell) and the time of arrival of the internal wave for
z ¼ 1:50. During this interval, the pressure is determined by the elastic waves propagating in the shell, not the
wave phenomena in the fluids.

Fig. 19 shows the normal displacement of the shell surface at the head and tail points for the same values of
z as above. In this case, the difference between the time-histories for different z is significant even at the head
point. This is due to the fact that the elastic waves in the shell propagate at a velocity that significantly exceeds
the acoustic speed in the fluids. Thus, the head point ‘feels’ the elastic response caused by the internal wave
reflection off the tail region much sooner, and this is why the plots start to differ significantly after t � 1:8. The
same is even more true for the tail point where the dynamic responses are similar until about t ¼ 1:30 (the time
of arrival of the internal wave at the tail point for z ¼ 1:50), after which they differ considerably and are
determined by the wave effects in the internal fluid.

10. Conclusions

A fully linear boundary-value problem was formulated for the interaction between a single submerged fluid-
filled cylindrical shell and an external shock wave for the most general scenario where the internal and external
fluids are different. A two-dimensional linear simplification of the problem was considered, and a semi-
analytical solution was obtained.

Before summarizing our findings, we emphasize that because the model used here has been extensively
validated in the author’s earlier work [2,3] with the very good agreement with a number of experiments
observed, the fact that no experimental data seem to exist for the interaction scenarios addressed here does not
appear to be a limiting factor, and we believe it to be possible to state with some degree of confidence that the
results presented here can be viewed as a reasonably close approximation of the reality.

The ratio of the internal and external acoustic speeds, z, was proposed as the single most important
parameter determining the appearance of the acoustic fields induced by the interaction. Three distinctly
different interaction scenarios were identified and analyzed: the scenario where the internal acoustic speed is
lower than external, zo1 (termed the ‘subsonic scenario’), the scenario where the internal and external fluids
are identical, z ¼ 1 (the ‘sonic scenario’), and the one where the internal acoustic speed is higher than external,
z41 (the ‘supersonic scenario’).

Even in the simplest case of z ¼ 1, a number of interesting effects were observed. Specifically, the Mach
stems produced by the reflection of the pressure wave from the interior surface of the shell geometrically
match the Mach stems of the external reflection, and the two sets of stems appear to be each other’s
geometrical continuation. This is a very interesting feature of the sonic interaction, and it adds, at another
level, to the previously discussed notion of the transparency of a shell to an external shock wave. The
multiple regular reflection that develops along the internal wall of the shell during the late interaction
manifests itself in the external fluid as well, and it seems appropriate to refer to this phenomenon as ‘leaking’
of the multiple internal Mach stems into the external fluid. Thus, the influence of the effects in the internal
fluid on the external field was emphasized, and it was reiterated that, from the acoustical analysis point of
view, a fluid-filled shell is a much more active and phenomenologically complex source that its evacuated
counterpart.

The supersonic scenario, z41, resembles, in many respects, the sonic scenario, but all the phenomena
occurring in the internal fluid are offset in time, and occur earlier than they would if the fluids were identical.
The fundamental difference from the sonic case, however, is in the fact that due to the higher internal acoustic
speed, the wave in the internal fluid propagates much faster than the scattered wave in the external one, and it
radiates back into the external fluid in the regions that are not yet affected by the incident or scattered waves.
As a result, one observes not one but two high-magnitude pressure fronts in the external fluid, one being the
scattered wave, and the other the radiated wave in question, along with the low-magnitude shell-induced wave
that propagates ahead of the two high-magnitude ones. The ‘leaking’ of the multiple Mach stems of the
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internal reflection into the external fluid is observed as well, but the continuity between the primary Mach
stems of the internal and external reflection is no longer the case.

The subsonic scenario, zo1, is the most interesting of the three, and is also richest in terms of the diversity
and complexity of wave reflection and focusing phenomena occurring. It is qualitatively different from the
other two scenarios in what the internal pressure wave looks like and in the physics behind such appearance,
and, depending on z, it can follow two different sub-scenarios. The first sub-scenario exhibits the familiar ‘RF’
sequence, with the peak focusing pressure only reached after the reflection. The second sub-scenario follows a
very different, ‘focusing–reflection–focusing’ (FRF) sequence, with peak focusing pressure reached both before

and after the reflection from the tail region takes place. The transition from the FRF to RF mode occurs at
z � 0:52, and when z is close to the transitional value, the first focusing occurs right on or very near the shell
surface, thus coinciding with the reflection.

It is of particular practical importance that when z is significantly less than unity, the reflection and focusing
sequences occur very late in the interaction, often at times when the incident wave not only has passed over the
shell, but also moved away from it by its diameter or more. The existence of high pressure regions so late in the
interaction certainly suggests redefining the time interval during which the maximum pressure is closely
monitored, and prompts one to address the instants that would not be of any particular practical interest for
the case of an evacuated shell, or even that of identical fluids inside and outside the shell. It is also interesting
to point out that the front of the internal pressure wave in the subsonic case gradually changes its shape from
concave to convex as z increases, and the transition between the two occurs at z � 0:86 when the front is
almost plane.

Another interesting and unique feature of the subsonic scenario is that when z is close enough to the critical
value of 0.52, the reflection of the internal wave from the shell surface induces a distinct pressure wave in the
external fluid and, effectively, one observes two different high-magnitude waves propagating downstream of
the shell, the first being the scattered wave, and the second being the reflection-induced wave, the shape of its
front closely resembling that of a shock wave with a source located at the tail point. A secondary but
interesting feature of this external wave is that its front contacts the shell at the same points as the internal
reflected wave that propagates upstream, which further supports the observations made earlier about the often
present geometrical continuity existing between the internal and external wave reflection phenomena.

Several interesting ideas for future research stem out from this study. In particular, the observed diversity of
wave reflection phenomena will, not doubt, have important implications when the stress-strain state of the
shell is a primary concern, especially when a complete three-dimensional structural analysis is carried out. The
possibility of cavitation in the system considered is of definite interest as well, even if the respective study will
initially only be limited to hypothesizing about possible cavitation scenarios. The solution developed here is
another addition to the series of converged analytical and semi-analytical solutions of shell-shock interaction
problems that the author has been working on for some time, and it seems to be a suitable candidate for use as
a benchmark for validating numerical codes.
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