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Abstract

We present analytical and numerical studies of phase-coherent dynamics of intrinsically localized excitations (breathers)

in a system of two weakly coupled nonlinear oscillator chains. We show that there are two qualitatively different dynamical

regimes of the coupled breathers, either immovable or slowly moving: the periodic wandering of the low-amplitude

breather between the chains, and the one-chain-localization of the high-amplitude breather. These two modes of coupled

breathers can be mapped exactly onto two solutions of a pendulum equation, detached by a separatrix mode. We also show

that these two regimes of the coupled breathers are similar, and are described by a similar pair of equations, to the two

regimes in the nonlinear tunneling dynamics of two weakly coupled Bose–Einstein condensates. On the basis of this

analogy, we predict a new tunneling mode of two weakly coupled Bose–Einstein condensates in which their relative phase

oscillates around p=2 modulo p.
r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear excitations (solitons, kink-solitons, intrinsically localized modes and breathers) can be created
most easily in low-dimensional (one-dimensional (1D) and quasi-1D) systems [1–9]. Recent experiments have
demonstrated the existence of intrinsically localized modes and breathers in various systems such as coupled
nonlinear optical waveguides [10], low-dimensional crystals [11], antiferromagnetic materials [12], Josephson
junction arrays [13,14], photonic structures and micromechanical systems [15], a-helices [16] and proteins [17],
and a-uranium [18]. Slowly-moving breathers and supersonic kink-solitons were also described in 1D
nonlinear chains [6,7,19–21], DNA macromolecules [22] and quasi-1D polymer crystals [23].

One-dimensional arrays of magnetic or optical microtraps for Bose–Einstein condensates (BECs) of
ultracold quantum gases with tunneling coupling provide a new field for the studies of coherent nonlinear
dynamics in low-dimensional systems [24,25]. In the mean-field theory, the tunneling coupling between two
BECs is similar to the linear coupling between two optical waveguides [26] or two oscillator chains (nonlinear
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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phononic waveguides). In this paper, we show that phase-coherent dynamics of macroscopic ensembles of
classical particles in two weakly linked nonlinear oscillator chains has a profound analogy, and is described by
pair of equations, similar in every respect to the tunneling quantum dynamics of two weakly linked interacting
(nonideal) BECs in a macroscopic double-well potential (single bosonic Josephson junction) [27]. The
exchange of energy and excitations between the coupled classical oscillator chains takes on the role which the
exchange of atoms via quantum tunneling plays in the case of coupled BECs. Therefore such phase-coherent
energy and excitation exchange can be considered as a classical counterpart of macroscopic tunneling
quantum dynamics.

We show that there are two qualitatively different dynamical regimes of the coupled breathers, the
oscillatory exchange of the low-amplitude breather between the chains (wandering breather), and one-chain-
localization (nonlinear self-trapping) of the high-amplitude breather. These two regimes, which are detached
by a separatrix mode with zero rate of energy and excitation exchange, are analogous to the two regimes in
nonlinear dynamics of macroscopic condensates in a single bosonic Josephson junction [27]. Essentially the
phase-coherent dynamics of the coupled classical breathers is described by a pair of equations, which coincides
with the pair of coupled mean-field equations describing coherent atomic tunneling in a single bosonic tunnel
junction [28,29]. The predicted evolution of the relative phase of the two weakly coupled coherent breathers in
both regimes is also analogous to the evolution of relative quantum mechanical phase between two weakly
coupled macroscopic condensates, which was directly measured in a single bosonic Josephson junction by
means of interference [27]. All these results bring to light a striking similarity, both in display and evolution
equations, between the classical phase-coherent excitation exchange and macroscopic tunneling quantum
dynamics which can motivate new predictions and experiments in both fields. For instance, we predict a new
tunneling regime of two coupled BECs in which their relative phase oscillates around p=2 modulo p, which can
be observed by means of interference. This regime is different from the regime of Josephson oscillations,
realized in experiments [27], when the relative phase of two weakly coupled BECs oscillates (or fluctuates [30])
around zero (modulo 2p). The obtained here dispersion and evolution equations and the form of the coupled
phase-coherent nonlinear excitations can be applied both to wandering macroscopic Bose–Einstein
condensate, slowly moving along two weakly linked bosonic waveguides, and to wandering macroscopic
(weakly localized) breather, slowly moving along two weakly linked macromolecules, a-helices or DNA.
2. Model and analytical predictions

We consider two linearly coupled nonlinear oscillator chains (with unit lattice period and unit mass). Each
chain we model with the Fermi–Pasta–Ulam (b-FPU) Hamiltonian, which is one of the most simple and
universal models of nonlinear lattices and which can be applied to a diverse range of physical problems [31]:

H ¼
X

n

X2
i¼1

1

2
pðiÞ2n þ

1

2
kðiÞðu

ðiÞ
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þ
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" #
, (1)

where uðiÞn is displacement of the nth particle from its equilibrium position in the ith chain, pðiÞn ¼ _uðiÞn is particle
momentum, kðiÞ, b and C are, respectively, intra-chain linear, nonlinear and inter-chain linear force constants.
We assume that the coupling is weak, C51, and therefore do not include the nonlinear inter-chain interaction.
The b-FPU Hamiltonian (1) describes, e.g., purely transverse particle motion [6]. The torsion dynamics of
DNA double helix can also be approximated by two weakly coupled b-FPU chains [22].

We are interested in high-frequency and therefore short-wavelength dynamics of the coupled chains, when
the displacements of the nearest-neighbor particles are mainly antiphase. For this case we introduce
continuous envelope-functions for the particle displacements in the chains, f ðiÞn ¼ uðiÞn ð�1Þ

n and f ðiÞn � f ðxÞi.
These envelope-functions f ðxÞi are supposed to be slowly varying on the interatomic scale in both chains,
qf i=qx51, which allows us to write corresponding partial differential equations for these functions; see, e.g.,
Refs. [2,6,20,32]. Then from Eq. (1) we get the following equations for f ðxÞðiÞ, i ¼ 1; 2:

€f
ðiÞ
þ o2

mif
ðiÞ
þ

q2f ðiÞ

qx2
þ 16bf ðiÞ3 � Cf ð3�iÞ

¼ 0, (2)
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where omi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kðiÞ þ C

p
is characteristic frequency above the maximal phonon frequency in the ith isolated

chain.
In order to deal with the amplitude and phase of the coupled nonlinear excitations, it is useful to introduce

complex wave fields Cðx; tÞi for each chain, cf. Ref. [32]:

f ðx; tÞðiÞ ¼ 1
2
½Cðx; tÞi þCðx; tÞ�i �. (3)

Then from Eqs. (2) and (3) we get the following coupled equations for Cðx; tÞi, i ¼ 1; 2:

1

2

q2Ci

qt2
þ

q2Ci

qx2
þ o2

miCi

� �
þ 6bjCij

2Ci ¼
C

2
C3�i (4)

and complex-conjugated equations for C�i . To describe a slowly moving breather, wandering between two
weakly coupled nonlinear chains with positive (repulsive) anharmonic force constant b, we assume the
following form for the complex fields C1 and C2:

C1 ¼ Cmax
exp½iðkx� otÞ�

cosh½l1ðx� VtÞ�
cosY exp �

i

2
D

� �
, (5)

C2 ¼ Cmax
exp½iðkx� otÞ�

cosh½l2ðx� VtÞ�
sinY exp

i

2
D

� �
, (6)

where o, V51 and k51 are, respectively, frequency, slow velocity and small wavenumber related with the
moving breather, li describe inverse localization lengths; D ¼ Dðt� kx=oÞ stands for the relative phase of the
coupled chains, while the parameter Y ¼ Yðt� kx=oÞ describes the ‘‘relative excitation’’ (excitation
imbalance) of the two chains z ¼ ðn1 � n2Þ=ðn1 þ n2Þ ¼ cos 2Y, where ni ¼ jCij

2 is local density of excitations
in the ith chain, cf. Refs. [28,29].

Using Eqs. (4), (5) and (6), after some algebra we obtain dispersion equations for the introduced
parameters,

o2 ¼
1

2
ðo2

m1 þ o2
m2Þ þ 3bC2

max � k2
� C

cosD
sinð2YÞ

,

l21 ¼ 6bC2
maxcos
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maxsin

2Y;V ¼
qo
qk

(7)

and evolution equations for Y and D:

_Y ¼
C

2o
sinD, (8)

_D ¼
1

2o
ðo2
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m2Þ þ

3bC2
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cosð2YÞ þ

C

o
cosD cotð2YÞ. (9)

In the derivation of Eqs. (8) and (9), it was assumed explicitly that the ratio cosh½l1ðx� VtÞ�= cosh½l2ðx�
VtÞ� is equal to one. The latter is valid for small-amplitude breathers with long localization lengths, l1;251. In
this case the above assumption, which is exact for the central region of the breathers, x� Vt � 0, will be
(approximately) valid for a large number of particles, which form weakly localized (macroscopic) wandering
breather in weakly coupled nonlinear chains. Eqs. (8) and (9) can be written in an equivalent form for the
relative excitation z and relative phase D, when z ¼ cos 2Y and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

¼ sin 2Y:

_z ¼ �
C

o

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p
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zffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
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Here the variables z and D are canonically conjugate, _z ¼ �qHeff=qD, _D ¼ qHeff=qz, with the effective
Hamiltonian Heff ¼ 3bC2

max=2oz2 � C=o
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

cosDþ z=2oðo2
m1 � o2

m2Þ.
The very same Eqs. (10) and (11) for z and D, which are equivalent to Eqs. (8) and (9) for Y and D, were

derived in Refs. [28,29] in the mean-field theory of quantum coherent atomic tunneling and coherent
oscillations between two weakly coupled BECs, which were later used in the analysis of the experimental
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realization of a single bosonic Josephson junction [27]. In our case, generic evolution Eqs. (10) and (11)
describe the exchange of lattice excitations between the (nonidentical in general) chains rather than the
exchange of atoms via quantum tunneling.

It is noteworthy that equations, similar to Eqs. (8) and (9), describe the dynamics of two weakly coupled
nonlinear oscillators. Therefore wandering breathers can be considered as weakly coupled phase-coherent
nonlinear macroscopic oscillators.

For two identical chains, om1 ¼ om2 � om, the ansatz

cosD ¼ AðtÞ= sinð2YÞ, (12)

where A ¼ 0 for sinð2YÞ ¼ 0, gives us from Eqs. (8) and (9) that

cosD ¼ �
3bC2

max

2C
sinð2YÞ ¼ �

3bC2
max

2C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2
p

. (13)

This solution, being exact solution of Eqs. (8) and (9), (10) and (11), conserves the effective Hamiltonian:
Heff ¼ 3bC2

max=2o. The important feature of this solution is that the relative phase D is self-locked to the value
p=2 modulo p by the total excitation imbalance z ¼ �1 of the two coupled chains. The phase portrait of
Eq. (13) on the z2D plane is given by ðk cosDÞ2 þ z2 ¼ 1, where k ¼ 2C=3bC2

max, see Fig. 1.
Finally, for two identical weakly coupled chains with k ¼ 1 and om ¼ 2 we get from Eqs. (8), (9) and (13)

the nonlinear physical-pendulum equation for X ¼ 4Y:

€Xþ O2
0 sinX ¼ 0, (14)

where O0 ¼ 3bC2
max=4. We solve this equation with the initial condition Yð0Þ ¼ 0, which corresponds to zero

complex field C2 in the second chain at t ¼ 0 (or zð0Þ ¼ 1), and which is realized in our numerical simulations.
Therefore we assume that Xð0Þ ¼ 0, Dð0Þ ¼ p=2 and _Xð0Þ ¼ C. The general solution of Eq. (14) is well known
and can be written in terms of elliptic functions, with the elliptic modulus k ¼ 2C=3bC2

max. The case of k ¼ 1
corresponds to the separatrix between the two qualitatively different dynamical regimes of the pendulum
equation (14).

For kb1 or bC2
max5

2
3 C, Y linearly grows with the ‘‘running’’ time ~t � t� ðk=oÞx, while D � Dð0Þ ¼ p=2:
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In this regime Y spans the full range from 0 to 2p, which corresponds to the complete excitation exchange
between the nonlinear chains and therefore to the breather, wandering between the two chains. The rate of the
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Fig. 1. Phase portrait (relative excitation z versus relative phase D) of a breather in two coupled nonlinear chains, which describes the

solution ðk cosDÞ2 þ z2 ¼ 1, k ¼ 2C=3bC2
max, given by Eq. (13). Lines 1, 2, 3, 4, 5, and 6 correspond to k ¼ 0:5, 0.8, 1, 1.25, 2 and 10. Lines

1 and 2 describe the self-trapped mode, lines 4–6 describe the wandering breather, line 3 describes the separatrix.
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Fig. 2. Energy of immovable breather, with V ¼ 0, in chains 1 and 2 versus time, obtained from numerical solution of Eq. (1) for two

coupled b-FPU chains with the initial breather excitation in chain 1 (with immovable chain 2) with frequency o ¼ 2:03 (a), o ¼ 2:098
(b), o ¼ 2:0981 (c) and o ¼ 2:10 (d). The chains with b ¼ 1 and C ¼ 0:1, and absorbing edges were used in simulations.
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excitation exchange in this mode, ðC � O2
0=CÞ=2 for kb1, continuously decreases with the increase of the ratio

bC2
max=C below the separatrix. The solution Y � C ~t=4 and D � p=2 can be obtained directly from the

linearized coupled Eq. (4).
A similar tunneling regime can be also realized for the BEC in a double-well potential when the condensate

is initially loaded into one of the wells, zð0Þ ¼ �1, cf. Ref. [26]. In such a regime the relative phase of the
coupled BECs oscillates around p=2 modulo p, see Eq. (15), which can be observed by means of interference.
This tunneling regime is similar, but also different from, the regime of Josephson oscillations, already realized
in experiments [27], in which the relative population of two BECs (which is an equivalent of the relative
excitation in two coupled oscillator chains) is always less than one and the relative phase of the coupled BECs
oscillates around zero (modulo 2p). In the opposite limit k51 or bC2

maxb2C=3, one has

Y �
C

3bC2
max

sin
3

4
bC2

max
~t

� �
; D �

p
2
þ

3

4
bC2

max
~t. (16)

This dynamical regime corresponds to the asymmetric nonlinear mode (known, e.g., for two coupled
nonlinear waveguides [33–35]), in which one system, chain 1 here, carries almost all vibrational energy, while
the other is almost at rest, and the energy exchange between the chains is relatively small. This dynamical
regime is similar to the macroscopic quantum self-trapping of the BEC in a single bosonic Josephson junction
[27]. The separatrix k ¼ 1 is characterized by zero rate of energy exchange and corresponds to a stationary
solution of Eqs. (8), (9) and (13) (for Yð0Þ ¼ 0, Dð0Þ ¼ p=2):

Y ¼ p=4; D ¼ p; _Y ¼ _D ¼ 0. (17)

3. Numerical simulations and comparison with analytical predictions

In Fig. 2 we show the energy of a breather in two weakly coupled chains versus time, which was computed
from the numerical solution of Eq. (1) for two weakly coupled b-FPU chains for the breather excitation in
chain 1 with frequency o below, (a), very close, (b) and (c), and beyond, (d), the separatrix. Two identical
chains with k ¼ 1, b ¼ 1 and C ¼ 0:1, and absorbing edges were used in the simulations. The latter is
necessary to get rid of weak radiation, caused by the wandering breather (and which will stay in the system
forever in the case of periodic boundary conditions). For the chain parameters used, k ¼ 1 corresponds to
o ¼ 2:1 and CðsÞmax ¼ 0:2582. A drastic decrease of the energy exchange rate is seen very close to the separatrix,
plots (b) and (c) in comparison with (a) and (d).

We also obtain similar numerical results for the slowly moving wandering breather, see Fig. 3. Slowly
moving wandering BECs (in weakly interacting limit) can be realized in two coupled bosonic waveguides with
initial total population imbalance, zð0Þ ¼ �1. It is worth mentioning that the form and frequency of a breather
in an isolated chain can be obtained only in the self-trapping breather mode. Indeed, according to Eqs. (7), (13)
and (16), in the limit C! 0 one has Y ¼ 0 in Eqs. (5) and (6) and the breather frequency is equal to

o ¼ om þ
3

2
bC2

max �
k2

4
. (18)

This expression for the breather frequency is fully consistent with the known expressions for a single
stationary or slowly moving breather in the small-amplitude limit, see, e.g., Refs. [2,32]. To get this expression
for o, one has explicitly taken into account in Eq. (5) the linear increase in time (winding up) of the relative
phase D in the self-trapping mode, given by Eq. (16). Similar winding up of the relative phase of two weakly
coupled macroscopic BECs in the nonlinear self-trapping mode has been recently directly measured in a single
bosonic Josephson junction by means of interference [27]. This finding gives us an additional argument in
favor of the similarity between macroscopic tunneling quantum dynamics and phase-coherent dynamics of
weakly coupled macroscopic breathers.
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4. Conclusions

In conclusion, we have found, both analytically and numerically, two qualitatively different regimes of
energy exchange between phase-coherent breathers (macroscopic oscillators) in two weakly linked nonlinear
oscillator chains. These regimes have a profound analogy, and are described by a similar pair of equations, to
the anharmonic Josephson plasma oscillations and nonlinear self-trapping, recently observed in a single
bosonic Josephson junction. The similarity between the classical phase-coherent excitation exchange and
macroscopic tunneling quantum dynamics found here can encourage new experiments in both fields.
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