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Abstract

Two-dimensional (2D) models of nanocrystalline media with close proximity (a hexagonal lattice) and with non-dense

packing (a square lattice) are considered in this paper. It is supposed that particles have a round shape and possess two

translational and one rotational degrees of freedom. The differential equations describing the propagation of acoustic and

rotational waves in such media have been derived. Analytical relationships between the macroelasticity constants of the

medium and microstructure parameters have been found. These relationships appear to be different for nanocrystalline

media with hexagonal and square lattices. It has been shown that identification of macroparameters of a nanocrystalline

medium can be obtained by measurement of wave velocities and the form of dispersion dependences of acoustic and

rotational waves.

r 2008 Published by Elsevier Ltd.
0. Introduction

Actual materials have a hierarchically organised inner structure. An adequate description of the dynamic
processes in a material with structural hierarchy necessitates the consideration of micro-, meso- and
macrostructural levels, which interact with each other. From the physical viewpoint, the transition of a
material to the nanostate is provided by the occurrence of size effects in its physical–mechanical properties
[1–4]. Size effects mean the entire complex of phenomena associated with the modification of material
properties due to variation in particle size and the increasing role of the boundaries in the system properties,
and also due to the commensurability of the length of an elastic wave with the size of the particles. A signal
that can collect data about the properties of a material is necessary for the identification and the detection of
size effects. It is convenient to employ acoustic waves as a source of information because they are natural
oscillations of a medium and their characteristics depend on its structure. For example, the basic physical and
mechanical characteristics of a material can be found by comparing the experimentally retrieved dispersion
dependencies of the acoustic waves with calculated data [5,6]. However, the identification of a material using
acoustic waves is impossible without a mathematical model to establish a correlation between the structural
parameters of a material and the characteristics of the elastic waves [6–8].
ee front matter r 2008 Published by Elsevier Ltd.
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There are two approaches to the mathematical modelling of media with nanostructure. The first approach is
in the transition from models at an atomic level to mesoscale models. It is based on the laws of quantum
theory. In this case, the model of a medium represents a discrete system of particles connected by forces of
interaction that are found from basic principles [9]. The informative analysis of such models is impossible by
means of analytical methods for real systems consisting of large numbers of particles, and numerical modelling
is rather laborious. The main advantage of this approach consists of explaining the origins of physical
properties that are not justified by classical theory.

On the other hand, the purpose of any theory is not only to develop general principal problems but also to
obtain particular results, interpret the experimental data, and rationally understand the nature of phenomena,
which has great applied significance. This task—in our case a task of revealing the mechanical and acoustic
properties of crystalline nanostructures—can be successfully solved on the basis of simplified semi-empirical
methods. In this respect, it is rational to obtain from the theory only the relations between quantities
characterizing the physical–mechanical properties of a material, while numerical values of parameters
contained in the theoretical formula should be found experimentally. The second direction of investigations
lying on the junction of a solid mechanics and a solid-state physics is provided by development of similar
theories. It is devoted to improvement of classical models of media on account of including the new qualitative
characteristics that are typical for real discrete structures [5,6,10,11].

At present, general micropolar theories such as Cosserat continuum and some others derived from
general reasoning are frequently used for the modelling of structural materials. These phenomenological
theories contain a large number of material constants that have to be found experimentally, and their
connection with the material structure is not always clear. The method of structural modelling is a good
alternative here. This method involves selection in a material of some minimal volume (i.e. a structural
cell), which is capable of characterising the basic features of the macroscopic behaviour of a material [1,6,12].
The cell is considered as a construction whose operation is provided by its intrinsic structure and by the
interaction with its environment. For structural modelling, the nanocrystalline material is represented by a
regular or quasi-regular lattice, with small-size bodies possessing internal degrees of freedom (rather than
material points) occupying the lattice sites. Domains, granules, fullerenes, nanotubes, or clusters of
nanoparticles can play the role of such bodies. Media constructed in such a way are called metamaterials.
Distinct from phenomenological models, structural models in explicit form contain parameters describing the
geometrical arrangement of a material (lattice period, and shape and size of particles) and consequently they
are the most appropriate models for the study of the influence of size effects on the macroproperties of a
material. The clear coupling between a structure and a phenomenology discloses major opportunities for the
purposeful design of materials with given physical–mechanical properties. Structural models enable one not
only to reveal the qualitative influence of local structure on the effective moduli of elasticity but also to
perform numerical estimations of their quantities, these being generally unavailable from phenomenological
theories [6–8].

In this paper, dynamic models are presented for two-dimensional (2D) nanocrystalline media with
hexagonal and square lattices, the sites of which are occupied by rigid particles possessing rotational degrees of
freedom. The dependence of the dispersion properties of normal waves on the lattice parameters is analyzed.
The paper is organised as follows.

The geometry of lattices with dense (hexagonal) and non-dense (square) packaging consisting of round
particles that make small rotations with respect to their mass centres is considered in Section 1. The kinematic
and force characteristics of such structures are introduced. The continuum approximation of the structural
model for a nanocrystalline medium with a rotation degree of freedom is given in Section 2. The relationships
between the ultrasonic characteristics of a material and the parameters of its structure are obtained in Section 3.
The comparative analysis of the dispersion properties of normal waves propagating along different
crystallographic directions is executed in Section 4. The variant of the gradient model for low-frequency
acoustic waves is discussed in Section 5. The influence of the medium structure on the effective elastic moduli in
the low-frequency range, where the rotational degree of freedom of the particles is negligible, is investigated in
Section 6. In Section 7, the governing equations of the continuum approximation are compared with the
Cosserat theory, and quantitative estimations of the material constants are performed for some types of
metamaterials with the parameters of actual nanocrystalline structures.
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1. Kinematic and dynamic characteristics of a structural model

The geometrical description of a structure is the first step in the modelling process. The periodic cell of the
structure to be explored is defined, and its characteristic sizes and kinematic variables featuring the current
state are introduced at this stage. Hexagonal (Fig. 1a) and square (Fig. 1b) lattices, the sites of which are
occupied by the homogeneous round particles with diameter d and mass M, will be considered below. The
hexagonal lattice corresponds to a close-packed arrangement of nanostructural particles, while the square one
corresponds to a non-compact packing. In the initial state, the mass centres of the particles are located in the
lattice sites, and the distance between the neighbouring particles equals a. The lattice sites N are enumerated
using a couple of indices: the index i determines the site location along the horizontal x-axis, and j defines the
site position along the vertical y-axis. Each particle has three degrees of freedom: the mass centre
displacements uij(t) and wij(t), respectively, along the x- and y-axis and the rotation jij(t) with respect to the
axis passing through the mass centre of the particle (Fig. 2). The current-state location of the mass centre of
the particle of interest is determined by the coordinates xijðtÞ ¼ x0

ij þ uijðtÞ, yijðtÞ ¼ y0
ij þ wijðtÞ, where x0

ij and y0
ij

are the equilibrium state coordinates. The kinetic energy of a unit cell can be calculated after the introduction
of the kinematic variables. Both lattices are simple and each of them contains only one particle in a unit cell;
therefore, the kinetic energy of a cell is considered to be equal to the kinetic energy of a particle:

Ti;j ¼
M

2
_u2

i;j þ _w2
i;j

� �
þ

J

2
_j2

i;j, (1)

where J ¼Md2/8 is the moment of inertia of the particle about the axis passing through its mass centre. The
upper dots denote derivatives with respect to time.

The following step in the modelling process is the description of force interactions between the particles
when they deviate from the equilibrium states. We shall consider small oscillations of the particles near the
lattice nodes, when displacements of the particles are small in comparison with the size of a unit cell, and
particle rotations are also small. Under these requirements, force and moment interactions of the particles can
be described by a potential representing a polynomial of low degree. In the harmonic approximation, the
interaction potential is the quadratic form of the system state variables, and the anharmonic effects are
featured by terms of the third (quadratic nonlinearity) and fourth (cubic nonlinearity) orders.

The potential energy per cell of a periodic structure is equal to the potential energy of a particle located at
site N, with coordinates (i, j), and interacting with its neighbours. In a hexagonal lattice, the interaction of a
particle with six nearest neighbours is taken into account, for which the mass centres lie on vertices of an exact
Fig. 1. A hexagonal (a) and a square (b) lattice consisting of round particles.
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Fig. 2. Schematic of the kinematic system.

Fig. 3. Schematics for force interactions for a hexagonal (a) and a square (b) lattice.
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hexagon lying on a circle of radius a (the first coordination sphere) (Fig. 1a and 3a). For the square lattice, each
particle is supposed to interact directly with eight nearest neighbours in the lattice. The mass centres of four of
them are on the horizontal and vertical lines (particles of the first coordination sphere of radius a), while the
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mass centres of the other four neighbouring particles lie along the diagonals (particles of the second

coordination sphere of radius a
ffiffiffi
2
p

) (Fig. 3b). As the particles are of finite size, the interaction between them has
force and moment components depending on the location and orientation of the particles. In the harmonic
approximation, the potential energy of a lattice can be represented by the following expression:

UN ðDnrq
k;j;DnrjÞ ¼

X2
k;s¼1

X
n;r;l;m

q2U

qðDnrqkÞqðDnrqsÞ
Dnrq

kDlmqs þ
X

n;r;l;m

q2U

ðqDlmjÞ
2
DlmjDnrj

þ
X2
k¼1

X
n;r;l;m

q2U

qðDnrqkÞqðDlmjÞ
Dnrq

kDlmjþ
X2
k¼1

X
n;r

q2U
qðDnrqkÞqj

ðDnrq
kÞj

þ
q2U

ðqjÞ2
j2. (2)

Here, fqk
ijg ¼ fq

1
ij ; q

2
ijg ¼ fuij ;wijg are the components of the vector of the mass centre displacements of a

particle located at a site with indices (i, j), Dnrq
k ¼ ðqk

iþn jþr � qk
ijÞ=a are quantities for the relative variation of

the distances between the interacting particles, Dnrj ¼ ðjiþn jþr � jijÞ=a are quantities for the relative

variation of the orientation angles of the interacting particles, and coefficients n ¼71, r ¼71 determine the
spatial positions of neighbouring particles. As a rule (including this paper), quantities Dnrq

k and Dnrj are
supposed to be small (see details after Eq. (2b)).

The second-order derivatives of the potential energy are the constants of quasi-elastic interactions of the
particles and represent elements of force matrices of the crystalline structure. In the phenomenological
theories, the force constants should be found experimentally. Their connection with the geometrical structure
and with the scheme of force interactions in a concrete crystalline lattice is not clear. From general energy
reasoning and the requirements of symmetry of the lattice, it is possible to receive only some restrictions on the
values of the force constants. Usage of the structural approach enables one to find an explicit dependence
between the elements of the force matrices and the parameters characterising the inner structure of the lattice,
i.e. its period, sizes, and shape of its particles.

For structural modelling of crystalline media, an equivalent force scheme is introduced as a system of rods
or springs that incorporates the transmission of forces and moments between the structural elements instead of
a field description of the interaction of the particles [1,13]. The mechanical characteristics of the connecting
rods and springs should be generally determined from the requirement of equality of the strain energy in the
investigated object and in its model. However, another way is used in practice. A one-to-one correspondence
between the microstructure parameters and the effective elastic moduli or acoustic wave characteristics that
can be measured experimentally, is found using the model. Then, the characteristics of the rods and springs are
calculated. Using these relations, it is possible also to solve the inverse problem, i.e. to estimate the effective
elastic moduli due to the known values of the mechanical characteristics of the connection elements. In the
present paper, spring models are used for modelling nanocrystalline structures [5,6,14,15].

In order to describe the structural models and to determine the force interaction scheme, it is convenient to
change the round particles to polygons, whose shape coincides with a periodic cell. The springs that transmit
force interactions between the particles are attached to the vertices of a polygon.

In the case when a lattice possesses hexagonal symmetry, Eq. (2) for the potential energy of the particle with
label N ¼ N(i, j) takes on the form1:

UN ¼
1

4

X
ðn;rÞ

k0D2
1ðn;rÞ þ k1ðD

2
2ðn;rÞ þD2

3ðn;rÞÞ þ k2ðD
2
4ðn;rÞ þD2

5ðn;rÞÞ

� �
: (2a)

Here, Dl(n,r) (l ¼ 1, 2, 3, 4, 5) are variations in the distances between the corresponding points of a particle
N(i, j) and its neighbours with labels (i+n, j+r), where n ¼71 is a shift of the number along the horizontal
axis, r ¼ 0,71 is a shift of the number along the vertical axis, and coefficients k0, k1, and k2 are the parameters
1Hereinafter, we shall mark by character a those formulas that are valid for the hexagonal lattice, and by character b for the square

lattice.
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of the force interactions: k0 characterizes central interactions at extension/compression of the material, k1
describes non-central interactions at extension/compression of the material and moments of rotations of the
particles, whereas k2 characterizes force interactions of the particles of shear deformation in the material. In
the model representation, parameters k0, k1, and k2 can be interpreted as representing the rigidity of the
corresponding springs: central (in Fig. 3a such a spring is marked by number 1), non-central (2 and 3), and
diagonal (4 and 5) [6,8], and the connection points of the springs k1 and k2 coincide with the vertices of the
exact hexagon entered in a particle. Expressions for Dl(n,r) are given in Appendix A.

In the square lattice, the potential energy of the particle of number N ¼ N(i, j) also depends on the
parameter of interaction with granules of the second coordination sphere, k3:

UN ¼
1

2

k0

2

X4
m¼1

D2
0m þ

k1

2

X8
m¼1

D2
1m þ

k2

2

X8
m¼1

D2
2m þ

k3

2

X4
m¼1

D2
3m

 !
. (2b)

Here, Dlm (l ¼ 0, 1, 2, 3) are variations in the distances between the corresponding points of a particle N(i, j)
and its neighbours. Expressions for Dlm are given in Appendix B. Both Eqs. (2a) and (2b) contain additional
factor 1

2
because the potential energy of the spring is equal to the sum of the potential energies of two particles,

which are connected by this spring.
After substitution of relations for Dl(n,r) into Eq. (2a) and expressions for Dlm into Eq. (2b), all finite

differences in formulas (2a) and (2b) should be transformed to the form Dgi ¼ ðgi;j � gi�1;jÞ=a,
Dgj ¼ ðgi;j � gi;j�1Þ=a, where g ¼ u,w,j, and half-sums Fi ¼ ðji;j þ ji�1;jÞ=2 should be selected. Then, we
shall assume that the calculated quantities Dui�Dwi�jij�e (here e51 is a measure of cell deformation) and
Fi ¼ jij�0,5aDji5p/2 are small. As a result, the expression for the potential energy per particle (cell) is
obtained, which, to an accuracy of terms of order e2, has the same form for both the lattices considered:

Uij ¼ B1ððDuiÞ
2
þ ðDwjÞ

2
Þ þ B2ððDujÞ

2
þ ðDwiÞ

2
Þ þ

d2

8
B3ððDjiÞ

2
þ ðDjjÞ

2
Þ

þ B4ðDuiDwj þ DujDwiÞ þ B5ðDwiFi � DujFjÞ þ B5j2
ij. (3)

Here, the first two terms with coefficients B1 and B2 describe the energy of longitudinal and shear
deformations, the third and sixth contributions characterize the energy provided by non-central (moment)
interactions of the particles, and the fourth and fifth terms stand for the energy of coupling of the translational
motion and rotations of the particles. Coefficients B1,y,B5 are expressed in terms of the micromodel
parameters, but differently for the hexagonal and square lattices:

B1 ¼
9a2

16
k0 þ 2k1 þ

2ða2 � adÞ þ d2

l220
k2

 !
; B2 ¼

3a2

16
k0 þ 2k1 þ

2ða2 � adÞ þ 5d2

l220
k2

 !
,

B3 ¼
9a2

16
2k1 þ

a2

l220
k2

 !
; B4 ¼

3a2

8
k0 þ 2k1 þ

2ða2 � adÞ � d2

l220
k2

 !
; B5 ¼

9a2d2

4l220
k2, (4a)

B1 ¼
a2

2
k0 þ 2k1 þ

2h2

r2
k2 þ k3

� �
; B2 ¼

a2

2

d2

r2
k2 þ k3

� �
,

B3 ¼ a2 k1 þ
a2

r2
k2

� �
; B4 ¼ a2k3; B5 ¼

a2d2

r2
k2, (4b)

where l20 ¼ a2�ad+d2 is the initial length of spring k2, h ¼ a� d=
ffiffiffi
2
p

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0; 5d2

þ h2
p

are, respectively,
the lengths of the horizontal and diagonal springs in the initial state.

The equations describing the lattice dynamics can be obtained from the Lagrange equations of the second
kind

d

dt

qL

q _gðlÞij

 !
�

qL

qg
ðlÞ
ij

¼ 0.
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In the last formula, L ¼
P

i;jðTi;j �Ui;jÞ is the Lagrange function compiled from expressions (1) and (4),
g
ðlÞ
ij and _gðlÞij are the generalized coordinates (g

ð1Þ
ij ¼ uij , g

ð2Þ
ij ¼ wij , g

ð3Þ
ij ¼ jij) and the generalized velocities.

Obtaining differential-difference equations is useful for numerical simulation of the system response to
external dynamic forcing in the wide frequency range, up to threshold values. However, for a comparison of
the proposed mathematical model of a nanocrystalline medium with the known theories of solids, it is
convenient to pass over from the discrete to the continuous description.
2. Continuum approximation of the structural model

For long-wavelength perturbations, when lba (where l is a characteristic spatial scale of deformation),
discrete labels i and j can be changed by means of continuous spatial variables x ¼ ia and y ¼ ja. In this case,
the functions specified at discrete points are interpolated by the continuous functions and their partial
derivatives in accordance with the standard Taylor formula:

uiþp;jþqðtÞ ¼ uðxþ pa; yþ qa; tÞ ¼ uðx; y; tÞ þ a p
qu

qx
þ q

qu

qy

� �
þ � � � . (5)

Similar expansions are also used for functions wi71,j71(t) and ji71,j71(t). Here, p ¼ cos(pn/3), q ¼ sin(pn/3)
(n ¼ 0, 1, 2, 3, 4, 5) for the hexagonal lattice and p ¼ 0,71, q ¼ 0,71 for the square lattice. Depending on the
number of terms kept in Eq. (5), one can consider various approximations of the discrete model for a
nanocrystalline medium [6,15].

If only quantities of order O(a) are taken into consideration in expansions (5), then the 2D Lagrange
function L (Lagrangian) takes on the form

L ¼
M

2
ðu2

t þ w2
t þ R2j2

t Þ �
M

2
c21ðu

2
x þ w2

yÞ þ c22ðw
2
x þ u2

yÞ þ R2c23ðj
2
x þ j2

yÞ

h
þs2ðuxwy þ uywxÞ þ 2bðwx � uyÞjþ R2o2

0j
2
�
. (6)

Using the Lagrange function (7), a set of differential equations of the first approximation describing the
dynamic processes in a nanocrystalline medium is derived in agreement with Hamilton’s variational principle:

utt ¼ c21uxx þ c22uyy þ s2wxy � bjy; wtt ¼ c22wxx þ c21wyy þ s2uxy þ bjx,

jtt ¼ c23ðjxx þ jyyÞ � o2
0jþ

b
R2
ðuy � wxÞ. (7)

Here, the following notation has been introduced: ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bi=M

p
(i ¼ 1 to 3) are the velocities of

propagation of longitudinal, transverse, and rotational2 waves, respectively, s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B4=M

p
is the coefficient of

coupling between the longitudinal and transverse deformations, b ¼ B5/M is the parameter of coupling of

microrotations with the transverse and longitudinal waves, o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jB5j=MR2

q
is the minimal frequency of the

microrotation wave, below which it does not propagate, and R ¼
ffiffiffiffiffiffiffiffiffiffiffi
J=M

p
¼ d=

ffiffiffi
8
p

is the radius of the mass

moment of inertia of the medium microparticles relative to the mass centre.
Eqs. (7) describe the dynamics of a nanocrystalline medium accounting for local interactions of the grain,

and differs from the equations of the classical theory of elasticity by the additional equation for the
microrotation wave. In the continuous approach, this equation follows from the conservation law of moment
of momentum (or angular momentum), if the internal moments of the particles of the medium are introduced
into the consideration [16]. It should be noted that the third Eq. (7) describing the microrotations of the
particles differs from the first two, as it has a solution that is homogeneous in space and oscillating in time with
frequency o0.
2The rotational wave has a dispersion of waveguide (Klein–Gordon) type and therefore c3 represents the asymptotic value of the phase

and group velocities of the waves in the high-frequency range.
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3. Dependence of acoustic characteristics of a material on its structure

The quadratic forms of the wave velocities in Eq. (7) are expressed in terms of the force constants of the
micromodel, k0, k1, k2, k3, the distance between the particles a, and their diameter d:

c21 ¼
3
ffiffiffi
3
p

4r
k0 þ 2k1 þ 2�

d2

a2 � ad þ d2

� �
k2

� �
; c22 ¼

ffiffiffi
3
p

4r
k0 þ 2k1 þ 2þ

3d2

a2 � ad þ d2

� �
k2

� �
,

c23 ¼
3
ffiffiffi
3
p

4r
2k1 þ

a2

a2 � ad þ d2
k2

� �
; b ¼

3d2
ffiffiffi
3
p

2rða2 � ad þ d2
Þ

k2; s2 ¼ c21 � c22, (8a)

c21
1

r
k0 þ 2k1 þ

2ða
ffiffiffi
2
p
� dÞ2

d2
þ ða

ffiffiffi
2
p
� dÞ2

k2 þ k3

 !
; c22 ¼

1

r
2d2

d2
þ ða

ffiffiffi
2
p
� dÞ2

k2 þ k3

� �
,

c23 ¼
2

r
k1 þ

a2

d2
þ ða

ffiffiffi
2
p
� dÞ2

k2

� �
; b ¼

2d2

rðd2
þ ða

ffiffiffi
2
p
� dÞ2Þ

k2; s2 ¼
2k3

r
. (8b)

Here, r is the density of the 2D medium (r ¼M/a2 for the square lattice [6], and r ¼ 2M
�

a2
ffiffiffi
3
p

for the
hexagonal lattice [8]; hence, the hexagonal lattice represents more compact packing in comparison with the
square lattice).

It is necessary to note that in both models the critical (minimal) frequency, o0, depends on parameter b,
and, by virtue of its dimensionality, on the radius of gyration of particles, R ¼ d=

ffiffiffi
8
p

:

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jbj=R2

q
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj=d2

q
(9)

and parameters c2, b, and s are inter-related by the following relationship:

b ¼ c22 � s2=2 (10)

and in the hexagonal lattice due to the last equality (8a)

b ¼ 1
2ð3c22 � c21Þ. (10a)

The analysis of relations (8a) and (8b) shows that the wave velocities depend on the size of the particles in
the nanocrystalline (granular) media. So, the dependencies of the velocities of the longitudinal (c1), transverse
(c2) and rotational (c3) waves on the relative size of particles d/a are given in Fig. 4 (for the hexagonal lattice)
and Fig. 5a and b (for the square lattice). In all cases, k1/k0 ¼ 0.1 and curves 1 correspond to the value
Fig. 4. Dependencies of elastic wave velocities on the size of particles in a hexagonal lattice. k1/k0 ¼ 0.1, k2/k0 ¼ 0.1 (curves 1), k2/k0 ¼ 0.5

(curves 2).
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Fig. 5. Dependencies of elastic wave velocities on the size of particles in a square lattice. k1/k0 ¼ 0.1, k2/k0 ¼ 0.1 (curves 1), k2/k0 ¼ 0.5

(curves 2), k3/k0 ¼ 0.65 (a), k3/k0 ¼ 1 (b).
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k2/k0 ¼ 0.1, while curves 2 stand for the value k2/k0 ¼ 0.5. In the case of a medium with cubic symmetry, k3/k0
is assumed to be equal to 0.65 (Fig. 5a) or 1 (Fig. 5b). All velocities are normalised by the longitudinal wave
velocity c0 (c

2
0 ¼ 3k0

ffiffiffi
3
p

=4r in a hexagonal lattice and c20 ¼ k0=r in a square lattice), taking account only of the
central interactions (i.e. for k1 ¼ k2 ¼ 0). From these figures, it is clear that the longitudinal wave velocity
decreases monotonically as the grains grow in size, while the transverse wave velocity, c2, on the contrary,
increases monotonously. The rotational wave velocity has a maximum for some value of d/a. In the range of
small moment interactions (k25k0), the grain size does not essentially affect the quantities of the wave
velocities (see curve 1).

In turn, the parameters k0, k1, k2, k3, and grain size d can be expressed in terms of the acoustic
characteristics of the medium due to formulas (8)–(10):

k2 ¼
rða2 � ad þ d2

Þ

3d2
ffiffiffi
3
p ð3c22 � c21Þ; k1 ¼

r

3
ffiffiffi
3
p 2c23 �

ba2

d2

� �
,

k0 ¼
4r

3
ffiffiffi
3
p c21 � c23 �

ða� dÞ2

2d2
b

� �
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 3c22 � c21
		 		q

=o0, (11a)

k3 ¼ rs2=2; k2 ¼
rðd2
þ ða

ffiffiffi
2
p
� dÞ2Þ

4d2
ð2c22 � s2Þ,

k1 ¼
r
2

c23 �
a2

d2
ð2c22 � s2Þ

� �
; k0 ¼ rðc21 � c22 � c23Þ þ

ra
ffiffiffi
2
p

d
ð2c22 � s2Þ. (11b)

Thus, Eqs. (8)–(11) establish one-to-one correspondences between the micromodel parameters and the
macrocharacteristics of a medium. This inter-relation can be used, in particular, for diagnostics of
nanomaterials due to data of wave (acoustic) experiments.
4. Dispersion properties of normal waves

We shall search for the solutions of Eq. (7) as plane harmonic waves in the form
uðr; tÞ; wðr; tÞ;jðr; tÞ / exp½iðot� krÞ�, where o is an oscillation frequency, kr ¼ kxx+kyy is a variation of a
wave phase along the direction of propagation. Then, from the equation of motion, one can obtain the
dispersion equation

o6 � A1o4 þ A2o2 þ A3 ¼ 0 (12)
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with coefficients

A1 ¼ ðc
2
1 þ c22 þ c23Þk

2
þ o2

0,

A2 ¼ ðc
2
1c22 þ c21c

2
3 þ c22c23Þk

4
þ ððc21 � c22Þ

2
� s4Þk2

xk2
y þ o2

0ðc
2
1 þ c22 � b=2Þk2,

A3 ¼ o2
0c21ðb=2� c22Þk

4
þ o2

0½bðc
2
2 � c21 þ s2Þ � ðc21 � c22Þ

2
þ s4�k2

xk2
y � c21c

2
2c23k

6

þ c23ðs
4 � ðc21 � c22Þ

2
Þk2k2

xk2
y, (13)

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. Transformation into the polar coordinate frame kx ¼ k cos y and ky ¼ k sin y yields

k2
xk2

y ¼
1
4
sin2 2y. It is necessary to note that equality c21 � c22 ¼ s2 is valid for the hexagonal lattice, and

coefficients of the k2
xk2

y term are equal to zero in this case. This fact indicates isotropy of the medium with

hexagonal symmetry. For an isotropic medium, the dispersion equation (12) can be written in a much more
simple form

ðo2 � c21k2
Þ o4 � ððc22 þ c23Þk

2
þ o2

0Þo
2 þ c22c23k

4
þ o2

0c
2
2k2
�

b
2
o2

0k
2


 �
¼ 0. (14)

It is also possible to derive the same equation by considering of the wave propagating only along the axis of
symmetry, when y ¼ 0 (i.e. k ¼ kx). The dispersion curves determined by Eqs. (14) and (12) are represented in
the normalised form (in (k/k0, o/o0) coordinates, where k0 ¼ o0/c2) in Fig. 6a and b, respectively. In both
figures, the following designations are introduced: L is the longitudinal mode, T the transverse mode, and R

the rotational mode. The graphics have been plotted for numerical data corresponding to NaF crystals:

c1/c2 ¼ 1.79, c3/c2 ¼ 0.69, b=c22 ¼ 0:158 (see Table 1). In Fig. 6b, the dispersion dependencies for the waves

propagating along the x-axis (y ¼ 0) are plotted in the left-hand half-plane, while the dispersion curves for the
waves travelling angularly y ¼ p/6 along the x-axis are displayed in the right-hand half-plane. From this
Fig. 6. Dispersion curves for a medium with hexagonal (a) and square (b) lattices.
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Table 1

Structural parameters for crystals with hexagonal and cubic symmetry.

Structural parameters Crystals

Hexagonal Cubic

Be Cd Zn LiF NaF NaBr

Experimental data

Density (kg/m3)

rV 1816 8642 7140 2600 2800 3200

Elasticity constants (109N/m2)

C11 292.3 114.5 161.1 113.00 97.00 32.55

C12 26.7 39.5 34.2 48.00 25.60 13.14

C44 – – – 63.00 28.00 13.26

Calculated characteristics

Wave velocities (m/s)

c1 12,687 3640 4750 6593 5890 3190

c2 11,470 2027 3603 5477 3295 2045

c3 9317 1404 2823 3164 2262 1024

Normalised threshold frequency of rotational waves o0d (m/s)

o0d 10,810 2721 11450 13587 5237 1095

Elasticity coefficients in the Cosserat theory (109N/m2)

l 26.7 39.5 34.2 48.00 25.60 13.14

m 132.8 37.5 63.5 63.00 28.00 13.26

g/R2 157.7 17.0 56.9 26.04 14.33 3.36

k 212.2 �4.0 58.5 30.00 4.8 0.24

Normalised parameters of force interactions between the particles (109N/m2)

k0/a 83.81 61.28 65.28 46.01 58.19 16.11

k1/a 8.381 6.128 6.528 4.601 5.819 1.611

k2/a 74.921 �1.412 20.654 19.897 3.183 0.159

k3/a – – – 48.00 25.60 13.14
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figure, it is seen that the dispersion of a transverse mode is more indicative for the waves propagating
angularly y ¼ p/6.
5. Approximation of the second-order gradient theory of elasticity

If the frequencies of the acoustic waves are smaller than o0, the spin wave does not propagate and the
microrotations of the particles of the medium are determined by a displacement field. The inter-relationship
between the microrotations j and displacements u and w can be found from the third Eq. (7) by the method of
stepwise approximations. In the first approximation,

jðx; tÞ � 1
2
ðuy � wxÞ. (15)

Taking account of Eq. (15) in the Lagrangian of Eq. (6) leads to the ‘‘freezing’’ of the rotational degree of
freedom. Thus, in the medium, as in the classical theory, there are only two translational degrees of freedom,
and the 2D density of the Lagrange function L takes on the form

L ¼
r
2

u2
t þ w2

t þ
R2

2
ðuyt � wxtÞ

2

� �
�

r
2

c21ðu
2
x þ w2

yÞ þ c22ðw
2
x þ u2

yÞ þ
R2

4
c23ððuxy � wxxÞ

2




þðuyy � wxyÞ
2
Þ þ s2ðuxwy þ uywxÞ �

b
2
ðwx � uyÞ

2

�
. (16)
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In contrast to the classical case, in Lagrangian (16), there are terms containing second-order derivatives
from the displacements u and w. The terms uyt and wxt take into account the contribution of the rotational
motions to the kinetic energy, and the terms with spatial derivatives uxy, wxx, etc. describe the contribution to
the potential energy of the stresses provided by bending of the lattice. The differential equations describing the
propagation and interaction of the longitudinal and transverse waves in the nanocrystalline medium in the
low-frequency approximation have the form

utt � c21uxx � c22 �
b
2

� �
uyy � s2 þ

b
2

� �
wxy ¼ �

R2

2

q
qy

q2

qt2
ðuy � wxÞ � c23Dðuy � wxÞ


 �
,

wtt � c22 �
b
2

� �
wxx � c21wyy � s2 þ

b
2

� �
uxy ¼

R2

2

q
qx

q2

qt2
ðuy � wxÞ � c23Dðuy � wxÞ


 �
. (17)

Here, the symbol D means the Laplacian D ¼ q2=qx2 þ q2=qy2.
Equations such as Eq. (17) are usually called equations of the second-order gradient theory of elasticity, as

the terms with spatial fourth-order derivatives take into account the coupled stresses arising at the
translational displacements of the particles. From Eq. (17), it follows that in the considered low-frequency
approximation, the transverse wave velocity is diminished by quantity b/2, and the parameter s2 increases by
the same quantity.

6. Determination of effective modules of macroelasticity

We investigate the influence of the structure of a medium on the effective moduli of macroelasticity, which
are determined experimentally in three-dimensional (3D) media. The role of a ‘‘bridge’’ between the 2D and
3D models can be represented by the 2D degeneration of the well-known Lamé equations for media with
hexagonal symmetry [17]

rV utt ¼ C11uxx þ C66uyy þ
1
2
ðC11 þ C12Þwxy,

rV wtt ¼ C66wxx þ C11wyy þ
1
2
ðC11 þ C12Þuxy (18a)

and with cubic symmetry

rV utt ¼ C11uxx þ C44uyy þ ðC12 þ C44Þwxy,

rV wtt ¼ C44wxx þ C11wyy þ ðC12 þ C44Þuxy. (18b)

Here, rV is the volume density of the medium (rV ¼ r/a for the square lattice, and rV ¼ r
ffiffiffi
6
p

=2a for the
hexagonal lattice, since in the latter case the volume of a 2D elementary cell is equal to V 2 ¼ 0:5a2

ffiffiffi
3
p

and the
volume of a 3D elementary cell equals V3 ¼ 0:5a3

ffiffiffi
2
p

[18]).
In the previous section, it has been shown that the basic Eq. (7) degenerate into Eq. (17) in the low-

frequency range. Eq. (17) will coincide with Eqs. (18a) and (18b), if we desire to neglect the fourth-order
derivatives. By comparing the coefficients in Eqs. (18a) and (18b) and in the right-hand sides of Eq. (17), one
can find the relationship between the velocities of propagation of the longitudinal and shear waves and the
parameter s and b, on the one hand, and the second-order elastic constants C11, C12, C44, and C66, on the other
hand:

c21 ¼
C11

rV

; c22 �
b
2
¼

C66

rV

¼
C11 � C12

2rV

, (19a)

c21 ¼
C11

rV

; c22 �
b
2
¼

C44

rV

; s2 þ
b
2
¼

C12 þ C44

rV

. (19b)

Such inter-relationships enable one to express the elasticity constants in terms of the parameters of the
material microstructure:

C11 ¼
9
ffiffiffi
2
p

8

k0 þ 2k1

a
þ

2ða2 � adÞ þ d2

a2 � ad þ d2

k2

a

� �
; C12 ¼

3
ffiffiffi
2
p

8

k0 þ 2k1

a
þ

2ða2 � adÞ � d2

a2 � ad þ d2

k2

a

� �
, (20a)
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C11 ¼
k0 þ 2k1 þ k3

a
þ

2ða
ffiffiffi
2
p
� dÞ2

d2
þ ða

ffiffiffi
2
p
� dÞ2

k2

a
; C12 ¼

k3

a
; C44 ¼

d2

d2
þ ða

ffiffiffi
2
p
� dÞ2

k2

a
þ

k3

a
. (20b)

From Eqs. (20a) and (20b), it follows that the relationships C0
11 ¼ 9ðk0 þ 2k1 þ 2k2Þ

ffiffiffi
2
p

=8 ¼ 3C0
12 and

C0
12 ¼ C0

44 take place for media consisting of material points and possessing, accordingly, hexagonal and cubic
symmetry. Generally, equalities

C11 � 3C12 ¼
9d2

ffiffiffi
2
p

4ða2 � ad þ d2
Þ

k2

a
, (21a)

C44 � C12 ¼
d2

d2
þ ða

ffiffiffi
2
p
� dÞ2

k2

a
(21b)

are valid for non-zero particle sizes. However, relationships C11o3C12 and C44oC12 are accordingly valid for
many crystals with hexagonal and cubic symmetry. In such cases, as follows from Eqs. (21a) and (21b), the
force constant k2 is negative (see Table 1). Hence, in the expression for the potential energy (3) coefficient B5 of
terms with the rotational degree of freedom is also negative (see Eqs. (4a) and (4b)). Such a situation takes
place, for example, for some molecular crystals [19].

The inverse dependences can be obtained from Eqs. (21a), (21b), (20a) and (20b):

k2 ¼
2að1� hþ h2

Þ
ffiffiffi
2
p

9h2
ðC11 � 3C12Þ,

k0 þ 2k1 ¼
2a

ffiffiffi
2
p

9
C11 þ 3C12 þ

2ðh� 1Þ

h2
ðC11 � 3C12Þ


 �
, (22a)

k3 ¼ aC12; k2 ¼ aðC44 � C12Þ 1þ

ffiffiffi
2
p

h
� 1

 !2
0
@

1
A,

k0 þ 2k1 ¼ aðC11 � C12Þ � 2aðC44 � C12Þ

ffiffiffi
2
p

h
� 1

 !2

, (22b)

where h ¼ d/a is the relative size of the particles. Normalised parameters of force interactions are determined
due to formulas following from Eqs. (22a) and (22b):

k2

a
¼

2ð1� hþ h2
Þ
ffiffiffi
2
p

9h2
ðC11 � 3C12Þ,

k1

a
¼

2
ffiffiffi
2
p

9ðK þ 2Þ
C11 þ 3C12 þ

2ðh� 1Þ

h2
ðC11 � 3C12Þ


 �
, (23a)

k3

a
¼ C12;

k2

a
¼ ðC44 � C12Þ 1þ

ffiffiffi
2
p

h
� 1

 !2
0
@

1
A; k1

a
¼

1

K þ 2
C11 � C12 � 2ðC44 � C12Þ

ffiffiffi
2
p

h
� 1

 !2
2
4

3
5.
(23b)

Here, K ¼ k0/k1 is the relation between the central and non-central forces of interaction. Relationships (23a)
and (23b) can be useful for the estimation of quantities of the force constants contained in the discrete models
of nanocrystalline media, if the macroelasticity moduli and typical particle sizes are known.

Spin waves in ferromagnetics [20] are close analogues of microrotation waves in solids with a granular
structure. At present, there is no direct experimental proof of the existence of rotational waves in solids, so an
estimate of the values of the velocity and critical frequency of such a wave in a granular medium would be of
great interest. From Eqs. (8a), (8b), (23a) and (23b), it is possible to obtain an expression for the velocity of a
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microrotation wave:

c3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rV ðK þ 2Þ
C11 þ 3C12 þ

4h� 2þ K

2h2
ðC11 � 3C12Þ

� �s
, (24a)

c3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

rV ðK þ 2Þ
C11 þ C12 � 2C44 þ

K þ 4h
ffiffiffi
2
p
� 2

h2
ðC44 � C12Þ

" #vuut . (24b)

Theoretical estimates of the value of the velocity of a rotational wave and its critical frequencies

o0d ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 � 3C12j j=rV ;

p
(25a)

o0d ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 C44 � C12j j=rV

p
(25b)

are listed as an example in Table 1 for some crystals with hexagonal (beryllium (Be), cadmium (Cd), zinc (Zn)),
and cubic symmetry (LiF, NaF, NaBr). In this table, values for the elasticity constants C11, C12, and C44, as
well as the density rV, were taken from known experimental data at normal temperature (see Ref. [21]). Values
of the longitudinal, c1, and transverse, c2, wave velocities have been calculated from Eqs. (19a), (19b), (9),
(25a), and (25b):

c1 ¼

ffiffiffiffiffiffiffiffi
C11

rV

s
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 � 2C12

rV

s
, (26a)

c1 ¼

ffiffiffiffiffiffiffiffi
C11

rV

s
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C44 � C12

rV

s
. (26b)

The rest of the quantities listed in the table have been calculated from formulas derived in this paper: the
rotational wave velocity—due to formulas (24a) and (24b), the normalised threshold frequency of this wave—
due to Eqs. (25a) and (25b), and the parameters of force interactions—due to formulas (23a) and (23b). The
calculations were carried out for h ¼ 0.9 and K ¼ 10 (for which the central interactions dominate). Analysis
showed that for 0.9oho0.99, quantities c3, k0, k1, and k2 varied by less than 10%.

It is clear from this table (see also Figs. 4 and 5a, b) that the rotational wave velocity is minimal for all the
considered materials, and the threshold frequencies lie in the hypersonic range. Therefore, if it is to be
supposed that the size of a crystal grain d ¼ 10 nm ¼ 10�8m, then for hypothetical nanocrystalline material
with elasticity constants and density, as for cadmium, o0E2.721� 1011 s�1, and for nanomaterial with
parameters of LiF o0E1.359� 1012 s�1. Therefore, in the sonic and ultrasonic ranges, the microrotation
waves can be neglected. However, their presence can be of principal importance for high-frequency processes.

7. Calculation of material constants in the continuum Cosserat theory

It is interesting to compare Eq. (7) with equations for the dynamics of a 2D Cosserat continuum obtained
by other authors [16,22,23] consisting of centrally symmetric particles. The Lagrangian of this continuum has
the form

L ¼
rV

2
ðu2

t þ w2
t þ R2j2

t Þ �
1

2
Bðu2

x þ w2
yÞ þ mþ

k
2

� �
ðw2

x þ u2
yÞ þ gðj2

x þ j2
yÞ

h
þ lþ m�

k
2

� �
ðuxwy þ uywxÞ þ 2kðwx � uyÞjþ 2kj2

i
. (27)

Here, B is a macroelasticity constant of the second order, l and m are Lamé constants, and g and k are
phenomenological constants to be found from experiments. In the case of the isotropic Cosserat continuum,

B ¼ lþ 2m. (28)
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From a comparison of Lagrangians (27) and (6), it is clear that the acoustic characteristics of a medium can
be expressed in terms of the constants of the Cosserat theory:

c21 ¼
B

rV

; c22 ¼
2mþ k
2rV

; s2 ¼
2lþ 2m� k

2rV

; c23 ¼
g

rV R2
; b ¼

k
rV

(29)

and for a medium with hexagonal symmetry the first Eq. (29) taking relation (28) into account, takes on the
form

c21 ¼
lþ 2m
rV

.

The dependence being inverse to Eq. (29), with the allowance for the relation 2c22 � s2 ¼ 2b for both models,
and the equality s2 ¼ c21 � c22 for the hexagonal lattice only is written in the form

l ¼
rV ðc

2
1 � c22Þ

2
¼ C12; m ¼

rV ðc
2
1 þ c22Þ

4
¼

C11 � C12

2
,

k ¼ rVb ¼
rV

2
ð3c22 � c21Þ ¼ C11 � 3C12; g ¼ rV R2c23, (30a)

B ¼ rV c21 ¼ C11; l ¼ rV ðc
2
2 � bÞ ¼ C12; m ¼ rV c22 �

b
2

� �
¼ C44,

k ¼ rVb ¼ 2ðC44 � C12Þ; g ¼ rV R2c23. (30b)

Here the constants of the Cosserat medium are also expressed in terms of the elasticity constants of the
second order, due to Eqs. (19a) and (19b). Parameter g can be expressed in terms of the elasticity constants
only in the case of additional assumptions about the values of K ¼ k0/k1 and h ¼ d/a (see Eqs. (24a) and
(24b)). It should be noted that the relation m�l ¼ k/2 follows from Eqs. (30a) and (30b). The relation shows
that in the models considered, the Lamé constants l and m are interlinked through the parameter k, which is
responsible for the interaction between the microrotations of the particles and the shift strains. The value of a
threshold frequency of a microrotation wave also depends on parameter k:

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jkj=rV R2

q
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj=rV d2

q
.

Relations (30a) and (30b), together with Eqs. (8a) and (8b), enable one to obtain quantitative estimations for
the coefficients, which are included in decomposition of the internal energy in the Cosserat theory, for various
materials (see, for example, Table 1). Earlier performance of such estimates was impossible. It should be noted
that similar relations were obtained in Ref. [22]; however in that work the size of the particles had not been
introduced in an explicit form, and therefore the dependence of the material constants on this remained unclear.

8. Conclusions

In this paper, 2D dynamic models of nanocrystalline media have been developed. It has been shown that the
structure of the equations obtained, Eq. (7), coincides with the equations of the 2D Cosserat continuum.
However, in the Cosserat continuum, the coefficients contained in the governing equations are determined
empirically, while in the proposed models the coefficients depend explicitly on the sizes of the particles and on
the parameters of their force interaction. The dependency of the acoustic wave velocities on the size of the
grains has been theoretically analyzed. Estimates performed in the work show that in real crystalline media
the rotational wave velocity must be less than the translational wave velocities, and the threshold frequency of
the rotational wave lies in the hypersonic range. In the field of low (sonic and ultrasonic) frequencies, the
rotational degrees of freedom of particles are negligible, and Eq. (7) reduce to the well-known Lamé equations
(18a) and (18b) for a medium with cubic symmetry. But even in this case, the effect of the medium
microstructure is still left in the form of the relationship between the macroscopic characteristic parameters of
the medium and the micromodel parameters (see Eqs. (8a), (8b), (20a), and (20b)).

The research was carried out under the financial support of the RFBR (project no. 07-02-00172).
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Appendix A. Spring extensions for the hexagonal lattice

Spring extensions Dl(n,r) calculated for small dimensionless displacement differences Dun;r ¼ ðuiþn;jþr � ui;jÞ=
a�Dwn;r ¼ ðwiþn;jþr � wi;jÞ=a�ji;j�� (here e is a measure of cell deformation) and Fn;r ¼ ðji;j þ jiþn;jþrÞ=2 ¼
ji;j � 0; 5aDjn;r5p=2 have the following form:

D1ðn;rÞ ¼
a

2
ðnDun;r þ r

ffiffiffi
3
p

Dwn;rÞ,

D1ðn;0Þ ¼ naDun;0,

D2;3ðn;rÞ ¼
a

4
ð2nDun;r þ 2r

ffiffiffi
3
p

Dwn;r � rd
ffiffiffi
3
p

Djn;rÞ,

D2;3ðn;0Þ ¼ na Dun;0 	
d
ffiffiffi
3
p

4
Djn;0

� �
,

D4ðn;nÞ ¼
na

2l20
ða� 2dÞDun;n þ a

ffiffiffi
3
p

Dwn;n þ ad
ffiffiffi
3
p

Fn;n

� �
,

D5ðn;nÞ ¼
na

2l20
ðaþ dÞDun;n þ ða� dÞ

ffiffiffi
3
p

Dwn;n � ad
ffiffiffi
3
p

Fn;n

� �
,

D4;5ðn;0Þ ¼
a

2l20
nð2a� dÞDun;0 	 d

ffiffiffi
3
p

Dwn;0 	 nad
ffiffiffi
3
p

Fn;0

� �
,

D4;5ð�1;	1Þ ¼
a

2l20
�ðaþ dÞDu�1;	1 	 ða� dÞ

ffiffiffi
3
p

Dw�1;	1 þ ad
ffiffiffi
3
p

F�1;	1
� �

,

D4;5ð	1;�1Þ ¼
a

2l20
	ða� 2dÞDu	1;�1 � ða� dÞ

ffiffiffi
3
p

Dw	1;�1 � ad
ffiffiffi
3
p

F	1;�1
� �

, (31)

where l20 ¼ a2�ad+d2 is the initial length of the springs k2. In Eq. (31), n ¼71, r ¼71. In the expressions
for D2,3 and D4,5 the upper signs of symbols7 and8 are taken as extensions of springs 2 and 4, and the lower
ones—for springs 3 and 5.

Appendix B. Spring extensions for the square lattice

Before calculating spring extensions let us note that, because of the symmetry of the lattice, if we rotate it by
901 or 1801, some springs transform into other springs. Due to this, we need not write down 24 expressions for
deformations of all the springs. One expression can be suitable for extensions of several springs. Spring
extensions calculated for small dimensionless displacement differences Dui ¼ ðui;j � ui�1;jÞ=a�Dwi ¼ ðwi;j �

wi�1;jÞ=a�ji;j��51 (here e is a measure of cell deformation) and Fi ¼ ðji;j þ ji�1;jÞ=2 ¼ ji;j � 0; 5aDji5p=2,
have the following form3:

D0ði�1;jÞ ¼ aDui�D0ðiþ1;jÞ; D0ði;j�1Þ ¼ aDwj�D0ði;jþ1Þ; Dl;r
1ði�1;jÞ ¼ aDui 	

ad

2
ffiffiffi
2
p Dji�Dr;l

1ðiþ1;jÞ,

Dr;l
1ði;j�1Þ ¼ aDwj 	

ad

2
ffiffiffi
2
p Djj�Dl;r

1ði;jþ1Þ; Dþ;�2ði�1;jÞ ¼
a

r
hDui 	

dffiffiffi
2
p Dwi 	

dffiffiffi
2
p Fi

� �
�D�;þ2ðiþ1;jÞ,

Dþ;�2ði;j�1Þ ¼
a

r
hDwj 	

dffiffiffi
2
p Duj �

dffiffiffi
2
p Fj

� �
�Dþ;�2ði;jþ1Þ,

D3ði�1;j�1Þ ¼
affiffiffi
2
p ðDui þ Duj þ Dwi þ DwjÞ�D3ðiþ1;jþ1Þ,

D3ðiþ1;j�1Þ ¼
affiffiffi
2
p ðDui � Duj � Dwi þ DwjÞ ¼ D3ði�1;jþ1Þ, (32)

where h ¼ a� d=
ffiffiffi
2
p

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0; 5d2

þ h2
p

are, respectively, the lengths of horizontal and diagonal springs in
the initial state. Here, the first lower index for D means the type of spring (0, 1, 2, or 3) and the second lower
label, in brackets, shows the coordinates of the particle connected by this spring with particle N. In Eq. (32),
3Linear terms for the spring extensions are retained in Eq. (32) only.
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some formulas are written for the extensions of two or four springs, as mentioned above. First, the spring
extensions indicated by the signs of equivalence have been obtained by the substitution of all indices i by i+1
and j by j+1. Secondly, the special upper labels are introduced in order to distinguish the springs with
parameters k1 and k2 in pairs. Sign l is used for the left springs, and r—for the right ones, for pairs of
horizontal and vertical springs. Here the springs are considered to be left or right taking the viewpoint of an
observer located at the centre of particle N and looking at the neighbouring particle. The diagonal spring pairs
can point in one direction, with the viewpoint of the same observer, either clockwise (upper label +) or
counter clockwise (label �). In both cases, the upper indices of D are separated by commas (+, � or r, l), and
in symbols7 and8 the upper sign is taken for extensions of the springs with the first label, and the lower one
with the second number.
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