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Abstract

Systematic experimental investigation of the finite amplitude dynamics of a multiple internally resonant suspended
cable-mass, subjected to anti-phase support motion at primary resonance, is accomplished. Upon getting hints from a basic
system configuration assumed as reference setup about the multiple bifurcation event possibly governing transition to
complex dynamics, an improved experimental apparatus is used to make it technically accessible. Results obtained by
varying three control parameters, namely the frequency and amplitude of excitation and the temperature of a thermostatic
chamber embedding the experimental system, allow us to characterize in-depth various occurring classes of motion in
terms of time and spatial complexity, to describe peculiar and/or persistent features of transition to nonregular dynamics,
and to trace them back to a canonical scenario from bifurcation theory. Variable response paths are detected via
bifurcation diagrams and spectra of singular values of measurement results, and overall behaviour charts are built in the
excitation parameter space. Considering the temperature as a controllable parameter shows to be fundamental for: (i)
indirectly setting cable material properties to values for which the conjectured codimension 2 bifurcation becomes
apparent, (ii) qualitatively referring the experimental unfolding of regular and nonregular cable dynamics to the theoretical
unfolding of the divergence-Hopf bifurcation normal form, and (iii) determining system response not only in the strict
neighbourhood of the organizing divergence-Hopf bifurcation but also in the ensuing postcritical regions where the
dependence of material damping on temperature affects secondary bifurcations to low-dimensional homoclinic chaos.
© 2009 Elsevier Ltd. All rights reserved.

1. Background and motivation

Finite amplitude dynamics of suspended cables have been addressed in the last two decades by referring to
variably refined theoretical models, through purely analytical, numerical or mixed treatments [1-4]. Yet, there
is a need for understanding the actual nonlinear behaviour of suspended cables also through physical models,
which are important both for validating theoretical predictions and for detecting new or complex phenomena
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Nomenclature POM proper orthogonal mode
Bifurcations ) total signal power

d-H divergence-Hopf bifurcation [dentified motion classes
he homoclinic explosion

H Hopf bifurcation

pd period doubling bifurcation
pf pitchfork bifurcation

CHMk chaotic response

PmMFk periodic motions

QPmMk quasiperiodic motions on two torus
with m attractor periodicity and &k

Ei E;;jfelgglrjgﬁtion number of involved POMs, generally
sy saddle cycle F:oinc.iding wiFh the dimension of .the
sn saddle-node bifurcation invariant manifold M where the motion
develops
Cable-mass suspension modes ®) resonant
(S) symmetric
H1 first symmetric out-of-plane (horizontal) 8O symmetric couple
mode
H2 first antisymmetric out-of-plane (hori- Parameters
zontal) mode
Vi first symmetric in-plane (vertical) mode s support motion amplitude, peak-peak
V2 first antisymmetric in-plane (vertical) voltage of input signal to the shaker
mode amplifier
T temperature (°C)
Decomposition of the flow v frequency (Hz)
u damping
Di signal power percentage associated with
the ith POM

associated with system nonlinearities but often un-modeled in theoretical analyses. This has produced a few
experimental investigations on different cable models, however restricted to the analysis of either system
response in regular regime [5,6] or of specific response features of nearly taut [7-9] or sagged [10] cables.

In contrast, quite a systematic analysis of experimental nonlinear cable dynamics has been accomplished in
a few papers dealing with a hanging cable/mass system subjected to different harmonic motions of the
supports and realizing, for relatively low excitation frequencies, a fairly reliable model of the bare suspended
cable. By considering various external/internal resonance conditions, interest has been first devoted to
analyzing and classifying the local and overall system response—in either a regular or nonregular regime—in a
control parameter plane [11,12], and then to characterizing some main features of complex response and
bifurcation mechanisms by properly reconstructing the dynamics from experimental measurements [13,14].

A general overview on the richness and robustness of two different—quasiperiodic and homoclinic—
bifurcation scenarios to chaos occurring in various regions of control parameter space has been presented in
Ref. [14], by referring to various internally resonant cables, kinds of support motion, and external resonances.
However, while the quasiperiodic transition to chaos through a tori breakdown has been addressed quite
exhaustively and satisfactorily [13], only some preliminary, yet promising, results were obtained as regards the
scenario seemingly involving the global bifurcation of a homoclinic invariant set of the flow. Yet, homoclinic
bifurcation to low-dimensional chaos involving just two main—though variable—proper orthogonal modes
(POMs) shows to be quite a robust scenario with respect to variations of both cable geometrical-mechanical
parameters and excitation conditions [14], thus being a scenario of general interest.

Thus, focusing on the homoclinic bifurcation of a multiple internally resonant cable under anti-phase
support motion at primary resonance, the present work aims at going in-depth into the experimental
characterization of this transition scenario, by analysing the relevant peculiar and/or persistent bifurcation
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features and by possibly tracing them back to a canonical scenario from dynamical systems theory. More
specifically, the interest is in: (i) performing a systematic physical investigation aimed at characterizing in
detail the most robust response features, (ii) possibly frameworking the experimental results within a reference
theoretical scenario, and (iii) understanding phenomena responsible for the onset of experimental nonregular
dynamics in the relevant background.

From a theoretical viewpoint, homoclinic (and heteroclinic) orbits are known to play an important role in
the mechanisms responsible of transition to chaos in multi-degree-of-freedom (d.o.f.) dissipative dynamic
systems [15,16], and the relevant framework [17,18] can indeed furnish a valuable interpretative support to the
experimental investigation. It is worth reminding one that homoclinic orbits, which are trajectories
bi-asymptotic to a saddle limit set, provide a recurrent mechanism for global folding of the phase space,
whereas the saddle set furnish the local stretching, folding and contraction representing the necessary
prerequisites for the eventual onset of homoclinic chaos.

Within this general context, we aim at verifying the hypothesis that a preliminarily observed scenario of
transition to chaos could be explained by experimentally localizing and characterizing a divergence-Hopf
(d-H) codimension 2 bifurcation point in control parameter space, and by investigating the local unfolding of
the system dynamics.

As a matter of fact, “multiple bifurcations hold the key to the understanding of the origin of complicated
behaviours in dynamical systems” [19], with the secondary and higher order bifurcations occurring in the
relevant neighbourhood often leading to complex dynamics. Typically, in dynamical systems theory, it has
been found that nonlinear phenomena predicted by local bifurcation studies also persist for parameter values
substantially far from those required for degeneracy [19], so that, provided the relevant ‘organizing centre’ is
localized, the local unfolding of the dynamics can often explain the system behaviour not only locally.

Local bifurcations are classified according to the stability eigenvalues crossing the imaginary axis, and their
codimension is the difference between the dimension of the parameter space and the dimension of the corresponding
bifurcation boundary or, equivalently, the number of constraints (i.e., independent conditions) imposed on the
control parameters to attain the critical point (Ref. [16], see also Ref. [15]). A codimension 2 bifurcation like the d-H
is characterized by a double instability where a stationary instability (vanishing of a real eigenvalue) interacts with an
oscillatory one (vanishing of the real part of a complex conjugate couple of eigenvalues) producing a critical point
(0, +iw) and one associated eigenspace of marginal stability of dimension three.

Such a codimension 2 local bifurcation can produce all of the invariant sets needed to give rise to homoclinic
chaos when, by varying a control parameter, the periodic invariant set approaches the saddle one up to
becoming homoclinic to it.

In view of identifying the canonical bifurcation scenario which is likely to be lurking in the background of
experimental cable results, some symmetries—though imperfect—exhibited by the physical system and by its
response are also of main importance. Overall, it has been stated that systems possessing symmetries
generically undergo multiple bifurcations [20]. In particular, in the unfolding of d-H bifurcation the existence
of homoclinic bifurcation has been established [21].

All of the previous issues claim for accomplishing a systematic investigation of the suspended cable
transition scenario, aimed at: (i) qualitatively and quantitatively characterizing the variable, regular and
nonregular, classes of system motion in various control parameters ranges in terms of time and spatial
complexity and (ii) detecting the conjectured occurrence of the d-H bifurcation point which is likely to trigger
the homoclinic bifurcation to chaos.

The work is organized as follows. In Section 2, upon shortly describing the setup and the techniques
adopted in the experimental investigation, the overall response of the reference system in the excitation
parameter space is presented, by providing some first hints on the transition from the directly excited single-
mode periodic motion up to complex response. The improved, thermally conditioned, experimental system is
presented in Section 3, and is then referred to for systematically unfolding the dynamics of the cable-mass
suspension system with respect to three varying control parameters, with temperature being added to the
excitation amplitude and frequency. This allows us to highlight a strong response sensitivity to temperature
variations, while at the same time referring the experimentally observed bifurcation paths to a known
canonical scenario from dynamical systems theory. Specifically, the most robust paths and classes of motion in
the range of medium temperatures are presented in Section 4, with the unfolding of the experimental regular
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dynamics around the d-H point being interpreted against a theoretical scenario in Section 5. Sections 6 and 7
are respectively devoted to characterizing the experimental nonregular dynamics most reliably identified at low
temperature values, and to referring them to a coherent known scenario of transition to chaos. The paper ends
with some conclusions and a few perspectives about parallel on-going theoretical developments.

2. Response regimes and transition to chaos in the reference experimental system

When dealing with continuous systems undergoing finite amplitude vibrations, there is a strong possibility
of response regimes involving several spatial modes in regular or nonregular nonlinear behaviour. Reliable
and complete descriptions of many possible regimes in control parameter space are of main importance. Rich
and varied response charts exhibiting regions of different classes of motion are usually obtained, depending on
also the realization of meaningful external/internal resonance conditions. Quasiperiodic and chaotic motions
are often seen to occur mostly in between regions of clearly dominating low-dimensional regular responses.
Accordingly, one major effort is devoted to investigating possible finite dimensionality in the complex
dynamics of infinite-dimensional systems, and to detecting minimum numbers and features of configuration
variables actually needed to describe complex motions.

As far as the cable is concerned, an experimental model of an elastic cable with concentrated masses hanging
from two supports undergoing vertical, harmonic, anti-phase motion is considered (Fig. 1). System mechanical
and geometrical properties realize a condition of 2:2:1 internal resonance amongst the frequencies of the first
antisymmetric in-plane (vertical, V2) mode, the first antisymmetric out-of-plane (horizontal, H2) mode, and
the first symmetric out-of-plane (horizontal, H1) mode. No-contact devices (optical cameras) are used to
measure the two (in-plane and out-of-plane) components of motion of four masses at variable locations along
the cable.

Previous isolated results allow one to conjecture that a scenario involving the global bifurcation of an
homoclinic invariant set could be responsible for transition to chaos when the system is excited at primary
resonance of the first antisymmetric in-plane mode (V2) [14]. Experimental observations furnish some evidence
of the onset of such an homoclinic invariant set when the forcing frequency reaches the upper bound of the
stability region—in the excitation parameter space—of a two-component quasiperiodic response involving
shapes which resemble quite well the V2 and H2 modes of the model. An overview of the observed classes of
motion is given in Table 1. Dimensionality is characterized in terms of both time and spatial complexity. Time
complexity is evaluated by calculating invariant measures of the dynamics through the delay embedding
procedure [22-25]. Besides Poincaré map inspection and power spectra analysis, information about the
dimension of the quasiperiodic and chaotic attractors is obtained from correlation dimension evaluations [26]
carried out on time-delay reconstructed phase spaces. In turn, spatial complexity is tackled via two
approaches: (i) by relating the embedding dimension of the reconstructed attractors to the dimension of the
linear phase space, which gives information on the involved number of d.o.f., and (ii) by analysing the spatial
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Fig. 1. (a) Mechanical model with system parameters and dynamic characteristics and (b) experimental setup.
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Table 1
An overview of motion class characterization.
Attractor Dimension Modes
D¢ Dg Dg D-T No. POMs Dp
Periodic PIM1 1 2 1-3 1 1 3 V2
PIM2 1 2 1-3 2R 2 5 V2H2
Quasiperiodic QP1IM2 2 4 2-5 2 2 5 V2H2
QP2M3 2 4 2-5 3R 3 7 V2HI1H2
Chaotic CHM2 2.39 4 3-7 2 (94.2%) 5 V2H2
CHM3 3.18 6 4-9 3 (96.8%) 7 V2HI1H2

D is the attractor estimated correlation dimension, Dg is the embedding dimension corresponding to dimension invariant saturation, Dg
is the expected embedding dimension variation range according to the relationship [D]< Dp<(2[Dc]+ 1), where [] means the nearest
greater integer (the upper bound limit is given by the Mané theorem), D—T column shows the dimension of possibly resonant (R) invariant
tori if it exists, No. POMs column shows the number of experimental eigenfunctions identified and the relevant signal power percentage if
less than 98%, Dp is the dimension of phase—space required to display the main system dynamics, last column lists the natural cable-mass
modes to whom the experimental eigenfunctions can be referred.
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Fig. 2. Frequency-response curves for low forcing levels: (a) f=200mV and (b) f= 700 mV.

structure of the nonregular flow through the proper orthogonal decomposition [27], which allows the
identification of the dominant experimental eigenfunctions corresponding, from the mechanical viewpoint, to
the configurations most visited, on average, during the system spatio-temporal evolution.

Classification of motions is made based on topological dimension of manifolds where they develop
(growing, in regular regime, from one to three-torus) and on correlation dimension of attractors (from one to
three in regular regime, coinciding with their local topological dimension; non-integer in chaotic regime).
Regular motions are labeled PmMk, periodic, QPmMFk quasiperiodic on two torus, with the labels giving
information on the attractor periodicity (m) and on the number of involved POMs (k), the latter coinciding
with the dimension of the invariant manifold where the motion develops unless the manifold is resonant ®.

Yet, major efforts in experimental analyses actually consist of properly characterizing: (i) the reference
bifurcation paths leading to complex attractors, (ii) the extent of regions of complex response, and (iii) the
robustness of transition mechanisms in parameter space. A reference bifurcation path for the considered cable
ensues from the frequency-response diagram of Fig. 2a, which is obtained for growing excitation frequency v
and a quite low value (f = 200 mV) of support motion amplitude measured by the peak-peak voltage of the
input signal to the shaker amplifier. The resonant one-mode periodic solution P1M1, involving the directly
excited V2 mode, bifurcates through a pitchfork (pf) bifurcation towards a two-mode periodic solution P1M2.
Actually, two two-mode solutions coexist corresponding to clockwise and counter-clockwise ‘balloonings’
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Fig. 3. First two POMs evaluated inside the lower dimension chaotic region.

contributed by both the (in-plane) V2 mode and the driven (out-of-plane) H2 mode—involved in a nearly 1:1
internal resonance—with different phase shifts. The branches of the two contributing components are also
reported in Fig. 2a, whereas the corresponding dominant POMs are shown in Fig. 3, with p,, 2 being the signal
power percentage associated with the ith POM and total one, respectively. Both two-mode solutions become
unstable due to a saddle-node (sn) bifurcation, where the response jumps down onto the nonresonant branch
of the one-mode periodic solution PIM1. Sweeping the frequency down highlights a classical superposition
region between one-mode and two-mode solutions.

When increasing the excitation amplitude, the system starts exhibiting transition to chaos. The frequency-
response curve in Fig. 2b, corresponding to 700 mV, shows that, at a critical frequency value, each of the two
coexisting two-mode solutions loses stability—via a seemingly homoclinic explosion (he)—toward nonregular
response, whose existence region ends up with a jump down onto the one-mode solution.

An overall experimental behaviour chart is depicted in Fig. 3 in the frequency-amplitude excitation plane.
The motion class labels reported in the various zones refer to Table 1, with the bottom horizontal lines
corresponding to the two considered values of excitation amplitude.

For amplitudes higher than 700mV, the two-mode (P1M2) solution established through the pf loses
stability toward a quasiperiodic response QP1M2 (eventually undergoing a torus-doubling), and finally ends
up with a non-regular response. The post-critical behaviour is very rich even in the regular regime, where
other-though less robust—dynamic phenomena are observed, including phase locking, high periodicity
response and two-mode solution period-doublings PmM?2 (m = 5,10,...).

For even higher excitation amplitudes (above 4V), in a wide frequency range the response is affected by
cable loosening, which makes characterization of the overall dynamics quite difficult (as reflected by less
specific labels in Fig. 4) and non-systematic. Yet, qualitative observation suggest that for amplitudes higher
than about 6 V and growing frequency, the PIM1 directly forced response loses stability due to a Hopf (H)
bifurcation instead of a pf one, and is then followed by transition to nonregular dynamics.

Accordingly, the following conjecture can be made based on investigation of the reference system: at
amplitude and frequency values close to 6 V and 6.4 Hz, respectively, two Hopf and pf bifurcation loci coalesce
in a codimension 2 bifurcation point which is able to organise the overall dynamics and transition to chaos.

However, in the experimental investigation, the possibility of getting reliable and systematic observations at
high excitation amplitudes is strongly limited by the too high values of amplitudes involved in the response,
which also entail cable loosening. A further main problem occurs in the overall investigation. Given the long
transients sometimes needed by the very flexible system to attain steady responses, robust characterization of
its dynamics is sometimes very time demanding and fairly questionable, also in connection with the ambient
temperature changes occurring during experimental observations. As a matter of fact, such changes are likely
to meaningfully affect the cable material properties, thus having important effects on the possibility of reliably
characterising the bifurcation paths we are interested in.

3. The thermally conditioned experimental system

To tackle the issues mentioned above, improvements are accomplished in both the experimental setup and
the system response investigation.

A modified apparatus is obtained by embedding the mechanical system in a thermostatic chamber designed
to finely set the temperature at a constant value. A feedback control system sets the current flow in a Peltier
cell array and keeps the temperature constant inside the insulated chamber wherein the cable and four optical
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Fig. 4. Experimental behaviour chart (in the frequency (Hz) vs amplitude (V) plane of support motion).

cameras targeting sub-miniature LEDs glued to the masses are contained. Overall, thermally conditioning the
system stabilizes its response, thus making the previously time consuming systematic analysis feasible and
reliable.

In addition, the thermally controllable setup allows us to improve the mechanical accessibility to the range
of higher excitation amplitudes which turn out to be of major interest for a systematic characterization of the
transition scenario possibly ensuing from the conjectured d-H bifurcation event. The underlying idea is to
indirectly modify the linear and nonlinear dissipation of the system by changing the chamber temperature. As
a matter of fact, considering the temperature as a further independently controllable parameter, besides the
excitation amplitude and frequency, may allow us to get a richer unfolding of the experimental dynamics, by
also possibly affecting some secondary bifurcations which, based on the reference system results, are likely to
be responsible for the homoclinic-like chaotic response observed in the post-critical frequency region. This
further enlarges the target of a systematic investigation to be conducted under different, thermally controlled,
conditions. In particular, from a physical viewpoint it may be expected that globally lowering system linear
dissipation within the controlled apparatus is substantially equivalent to increasing the excitation nominal
amplitude towards the range of higher values where the conjectured d-H bifurcation may be robustly accessed
and reliably identified. Such an expectation is theoretically confirmed by a companion on-going analysis
[28,29]. Within this perspective, the linear dissipation of the experimental system can be globally lowered by
indirectly affecting the cable material damping via changing the chamber temperature. The loss factor of
viscoelastic materials is strongly temperature (and frequency) dependent and the relevant laws change with the
material; so, a characterization of the system linear damping vs temperature is first performed showing how, in
the considered temperature range, damping decreases with decreasing temperature.

Fig. 5 reports the values of some main modal parameters (frequency v (Hz) (a) and damping u (percent) (c)),
as well as some relevant ratios (b, d), as obtained for different values of chamber temperature 7' (°C), with the
identification being performed after stabilization of the parameters. It is worth noticing how the ratios
between couples of frequencies involved in the 2:2:1 resonance condition do not change with temperature
(Fig. 5b), the mean ratio between anti-symmetric in-plane or out-of-plane frequency and symmetric out-of-
plane frequency being 1.96 or 1.98, respectively, with a very small standard deviation (<0.4 percent). In
contrast, the effect of temperature is evident both on single modal dampings (Fig. 5¢), where it entails changes
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Fig. 5. The effect of temperature: (a) on modal frequencies, (b) on the ratio between modal frequencies, (c) on modal dampings, and (d) on
their ratios.

up to 52 percent (uy») with respect to a reference temperature (7= 0.5 °C), and, to a lower extent, on the ratio
between modal dampings (Fig. 5d), which changes up to 18 percent (up»/tm1)-

In the following, a quite systematic analysis of the experimental response as obtained at various chamber
temperatures, ranging from the reference one (ambient temperature 7= 19-21 °C) considered in Section 2 up
to rather low values (T'~0°C), will be reported, by summarizing the meaningfully different behaviours
observed in various sub-ranges. The same experimental and numerical techniques as those mentioned in
Section 2 are used for detecting time and space dimensionality of the system response, along with the same
terminology and labelling for the identification of the various observed classes of motion in terms of dynamic
(periodic, quasiperiodic, chaotic), topological (manifolds where they develop), and mechanical (main
contributing spatial shapes) features.

4. Regular regimes and transition to chaos scenario at medium temperature values
4.1. Chamber temperature 12°C

Results are summarized in the behaviour chart and the companion table of Fig. 6, with the (a)-(d) labels in
the latter referring to alternative bifurcation paths followed when sweeping the excitation frequency up (—) or
down («). The excitation frequency in the chart is also adimensionalized with respect to the natural frequency
of the first in-plane antisymmetric mode, whereas the amplitude of the support motion is measured by the
peak-peak voltage. Bifurcation diagrams and spectra of singular values of the covariance matrix of
measurement results for various values of excitation amplitude and growing frequency are also reported
(Figs. 7, 8, 10, and 11).

The former show the response amplitude @ in the one dimensional projection of the Poincaré section of the
configuration space, whereas the latter, along with the companion experimental eigenvectors, gives
information about the response dimensionality obtained by linearly decomposing the covariance matrix of
the spatial flow, each singular value measuring the percentage p of signal power associated with the respective
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8.2

experimental eigenvectors in the flow decomposition [27]. It is worth noticing that these singular values spectra
can be regarded as response curves reporting separately the power percentage of each experimental

eigenfunction.

Overall, the structure of the behaviour chart confirms the organizing role played by the codimension 2
bifurcation event suggested by the analysis of the reference system. However, the description of the many
occurring, and often competing (depending on initial conditions), classes of motion is herein much more
detailed for being the relevant outcomes definitely more robust in time. Rich and complex responses do occur
within the wide range wherein the directly forced one-mode solution P1M1 is unstable. Bifurcation paths and
stability diagrams are discussed in the sequel by distinguishing among four ranges of increasing excitation

amplitude.
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(1) Excitation amplitude f<f\: For amplitudes lower than f; (see Figs. 6 and 7), the PIM1 solution bifurcates
to a two-mode periodic response (PIM2) with increasing frequency. A symmetric couple PIM2®9 of
competing two-mode ballooning responses occurs owing to system symmetry. In the following, reference will
be arbitrarily made to either one of the two elements of the couple, unless being necessary to distinguish
between them. The experimental eigenvector (POM) involved in the PIM1 response (labelled 1 in Fig. 7b)
clearly resembles the first antisymmetric in-plane mode of the cable-mass suspension, whereas the POM
labelled 2 closely resembles the first antisymmetric out-of-plane mode (i.e., the two modes observed in the
reference system, see Fig. 2), the singular value of the latter bifurcating from zero at the pf producing the two-
mode PIM25 response (Fig. 7b). A jump brings the response back to PIM1 for growing frequency.

(i1) Excitation amplitude fy <f<f>: In this range, the scenario becomes more involved (Fig. 8). At the end of
the stability region (B label in Fig. 6) of PIM259, the dynamics alternatively settle onto two competing
subcases: (a) QP1M3 quasiperiodic response evolving, with increasing frequency, toward nonregular CHM3; (b)
QP2M3 quasiperiodic response, stable in a thin range and ending in periodic P2M3. The M3 label highlights a
meaningful involvement in the response of a third recognizable component (labelled 3 in Fig. 8b and d):

() QPIM3 — CHM3 — PIMI
(b) QP2M3 — P2M3 — PIMI

Subcases (a) and (b) are alternatively accessed for the same parameters after an abrupt bifurcation marked
anyway by the intervention of a POM resembling the first symmetric out-of-plane mode (M2 — M3). In subcase
(a), which is the most robust at higher excitation amplitudes: (i) the involvement of a symmetric shape in
quasiperiodic motion does not produce torus doubling, QP1M3 being needed for the evolution towards the
otherwise unreachable nonregular response CHM3, and (ii) motion classes QP1M3 and CHM3 established upon

PIM1 — PIM2®© {
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Fig. 9. Time delay reconstruction. Projection of Poincaré section on x(¢,), x(¢,+4) plane: (a) QP1M3 and (b) CHM3.

an unclear bifurcation mechanism mainly involve the out-of-plane symmetric shape and evolve on nearby
manifolds (Fig. 9). In subcase (b), which is relatively more robust for lower amplitudes: (i) QP2M3 is a torus
doubled quasiperiodic response involving the symmetric out-of-plane component in % subharmonic regime (due
to the existing 2:1 internal resonance) and (ii) the same three shapes do decompose the flows associated with both
QP2M3 and P2M3, though with different relative importance.

(i) Excitation amplitude f><f<f3: In the higher fo—f3 range (Fig. 10), the transition from PIM2 to chaos
reveals the occurrence of a Hopf bifurcation preceding the involvement of the third component in QP1M3
motion. The overall path (see also the table in Fig. 6) is as follows:

(a) QPIM3 — CHM3 — PIM1
(b)  QP2M3 — P2M3 — PIMI
(©) P2M3 — PIMI

(d) PIMI

PIMI — P1M26© — QPIM26©
p

In particular:

e PIM2G9 bifurcates through Hopf toward a quasiperiodic (clockwise/anti-clockwise) symmetric couple
QPIM2%59 on the same two-dimensional sub-manifold already embedding the periodic response; the two
associated spatial shapes (labels 1 and 2 in Fig. 10b, d and f) still resemble quite closely the first in-plane and
out-of-plane antisymmetric modes of the cable-mass suspension, respectively.

e QPIM2B9 bifurcates alternatively for the same control parameter towards four competing subcases: (a)
and (b) as in the lower amplitude range, plus (c¢) and (d); all ensuing responses, except PIM1, involve the
first symmetric out-of-plane mode.

e For sweeping down frequency, QP1M25© directly bounds the PIM1 region.

In all (a)~(d) subcases the transition mechanism from QPIM2%% is unclear and produces a very long
transient with M3 ending to quite different solutions, far away from the imposed continuity initial condition.
This long transient response is likely to mark a global bifurcation involving also a third dimension (label 3,
corresponding to H1 mode, in Fig. 10) with non-negligible signal power. The clearer situation occurs in
subcase (d), whose QPIM2®® - PIM1 bifurcation causing simultaneous disappearance of two two-
dimensional symmetric invariants of the flow is conjectured to be a global structurally unstable saddle
connection. Yet, the same kind of global bifurcation is possibly responsible also for the QP1M25 instability
giving rise to the other competing responses. A more apparent characterization of the bifurcations bounding
the QP1M25“ response will be obtained at lower temperatures.
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Fig. 10. Subcases b (a,b), ¢ (c,d), and d (e.f).

It is worth noticing that, unlike the f;—f> amplitude range, bifurcations towards QP2M3 and then P2M3
responses (subcase (b)) are rare and confined to lower forcing in the f>—f3 range.

(iv) Excitation amplitude > f5: As expected based on qualitative hints from a companion analytical model
[28,29], lowering the temperature allows us to reach a critical excitation amplitude corresponding to the d-H
bifurcation which was conjectured to exist on the resonant branch of the PIM1 solution. In fact, for excitation
amplitudes higher than the critical value f3, the Hopf bifurcation precedes the divergence.
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Fig. 11. Subcase a. In (c,d), horizontal and vertical projections of Poincaré sections, respectively, with two realizations of QP1M25©
occurring at 7.52 and 7.56 Hz.

In Fig. 11 results relevant to an amplitude above the critical point are reported (f= 1.05V). The one-mode
solution PIM1 bifurcates to QP1M1 due to Hopf. In turn, this evolves towards a QP1M2® (with ® standing for
symmetric, see also the table in Fig. 6) two-mode quasiperiodic response (label 2) as the frequency exceeds a critical
value marked by the abrupt growth of percentage participation of shape 2 to the flow decomposition (Fig. 11b).

For growing frequency, QP1M2® bifurcates alternatively towards QP1M3 or P1M1:

(a) QPIM3 — CHM3 — PIM1
PIMI —> QPIMI —f>QP1M2(S) —
p

(d PIM1

However, it is important to notice that, herein, the most robust symmetric QPIMZ(S) competes on M2 with
the already observed QPIM2®® symmetric couple: enlargements of Poincaré section projections in
bifurcation diagrams show two sections relevant to QP1M259), intertwined with the most robust QP1M2®
(the former being distinguishable from the latter only if projecting the flow onto a proper plane).

As frequency increases, QP1M3 motion (involving also a third dimension, label 3) and finally CHM3
nonregular response are evidenced. It is worth noticing that the transition to nonregular dynamics involves
QPIM3 on the whole investigated amplitude range.

If the frequency is swept down, a wide superposition range between the lower (nonresonant) branch of the
one-mode response PIM1 (see Fig. 2) and various post-critical responses is observed on the right part of the
behaviour chart, with the stability range of the former bounding the QP1M?2 range.
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Further lowering the temperature will allow to focus on the characterization of the dynamics in the
neighbourhood of codimension 2 bifurcation point.

4.2. Chamber temperature 6 °C

Overall, lowering the temperature entails: (i) lowering the critical forcing amplitude corresponding to
codimension 2 bifurcation and (ii) shifting the range of involvement of out-of-plane symmetric mode towards
lower frequencies, thereby producing, in general, higher dimensional responses at lower frequencies in regular
dynamics while at the same time allowing to highlight, for higher frequencies, an interesting path to nonregular
dynamics on a low-dimension manifold (M2). This results in a clearer scenario both in the regular regime—where
no period doubled classes of motion P2M3, QP2M3 exist—and in the transition to the CHM3 nonregular one,
which directly settles upon the global bifurcation bounding the stability range of QP1M2 with no interposition
of other motion classes. In between, transient (or structurally unstable) chaos on M2 (CHM?2) develops.

Even if lowering the temperature entails changing the dimension of the linear manifolds embedding regular
motion classes, with respect to 7'= 12 °C, both the topological dimension of the solutions and the bifurcation
scenarios unfolding the overall dynamics remain unchanged, showing the existence of an underlying
organizing framework not affected by qualitative changes in this temperature range. Being the d-H
codimension-2 bifurcation point and the two anti-symmetric eigenfunctions (POMs 1| and 2) identified in the
experiments sufficient to unfold a companion theoretical stability diagram (see Sections 5 and 7), motion
classes embedded in M2 (or in its sub-manifold M1), as picked up for 7= 12°C, are assumed to be the
experimental basic realizations of the scenario. Accordingly, in the following, classes possessing a further
dimension (besides that of the POM minimum number, M2 or M1) are denoted by appending an integer prime
(+n) to the relevant labels.

The behavior chart (Fig. 12) and the stability diagrams are discussed by distinguishing between amplitude
ranges below (Fig. 13) and above (Figs. 14 and 15) the critical value (f. = 0.28 V, v, = 7.8 Hz) singling out the
d-H point.

(1) Excitation amplitude lower than codimension 2 critical value: For amplitudes lower than the codimension 2
bifurcation critical value and growing frequency (Fig. 13), the basic response classes are the same as those

(a) (b)
L I\ pf Zone Attractor Dimension Modes
|\ Dc DT  POMs
C |
1 A PIMI 1 1 1 V2
. \ C QPIM]1D 2 1(+1) V2(H1)
» ‘, B PIM289 1 ® 2 V:2H2
h | D, QPIM2® 2 2 2 V2H:2
C . | DD D; QPIM2"7 2 2 2 ViH:
K sey E CHM2® 2 VaHz
S A A F CHM3 2.7 3 VaH2H1
3 A PIMI 1 1 1 V2
2 AL ™
3 unstable
S
2 A
rE
2F
] Ml
0 m2
0.0 O M3
7.5(0.96) 8.2(1.05)

Jorcing frequency

Fig. 12. T'=6°C: (a) qualitative behaviour chart and (b) characterization of motion classes.
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Fig. 13. Subcases fy, f1, f> in (a,b), (c,d), (e,f), respectively. Motion classes: PIM1 (I), PIM2 (1I), QPIM2S© (111).

previously described. The solution bifurcates (via pf) from the directly forced PIM1 (label I in Fig. 13a, ¢
and e) to one of the two coexisting symmetric two-mode solutions P1M25 (label II), the latter losing

stability through Hopf toward the two quasiperiodic QP1M25©

solutions (label III), which in turn

bifurcate back to either PIM25© through saddle cycle (scy, subcases f; and f, in the former case also
exhibiting a saddle node) or directly to PIM1 (subcase f5). Indeed, in the latter case, the formerly unstable
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Fig. 14. Subcases f3, f4 in (a,b), (c,d), respectively. In (a) PIM1 (I), QPIM1¢* D (11), QPIM2® and QP1M25© (I11), CHM2 (IV), PIM1
(V). The arrows in (b) mark the flow decomposition relevant to class IV of (a). In the bifurcation diagram (c) at a higher forcing amplitude
(f4 = 0.48), the structurally unstable nonregular response on M2 is symmetrically arranged with respect to the cable plane; (d) a two-
dimensional projection of a small part of the Poincaré section relevant to class IV of (c) shows a nearly symmetric response in the
configuration plane.

fixed point PIM1 is now a stable focus, and the two fixed points corresponding to P1IM25© originated at
divergence, as well as the limit cycles corresponding to QP1M259), disappear. Fig. 13 shows even clearer
bifurcation paths than those reported for higher temperature values.

(i1) Excitation amplitude higher than codimension 2 critical value: For amplitudes higher than f, (Figs. 14 and
15), the Hopf bifurcation precedes the pf. With growing frequency, PIM1 (label I) bifurcates towards a
quasiperiodic response (label II) denoted QPIM 1"V, with the integer prime staying for the augmented
dimension (due to the increasing involvement of POM 3, symmetric out-of-plane, as the amplitude
increases away from d-H bifurcation) with respect to the minimum one of the reference QPIM1
(T = 12°C). Indeed, QPIM1‘* Y decomposes mainly on the anti-symmetric shape (POM 1) for lower
amplitudes (f3), whereas for high amplitudes (f5) (compare Figs. 14b and 15b) the symmetric out-of-plane
shape (POM 3) dominates the quasiperiodic response (actually also doubling the attractor periodicity),
which also involves the symmetric in-plane shape (POM 4).

The dimensionality analysis in Fig. 14b shows the largely prevailing involvement of anti-symmetric shapes,
POM 1 in QPIM1‘* D, POMs 1 and 2 in QPIM2%9). Indeed, with growing frequency, the parameter range is
reached where the symmetric couple QP1M25 (label III) is stable, although coexisting with QP1M2®. Note
that the contribution of POM 3 is meaningful in QP1M 1 whereas it is much lower in QP1M25-59); accordingly
the ("1 superscript is used in the first case while it is skipped in the latter one for the sake of simplicity.
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Fig. 15. Subcase f5 (a much higher amplitude): (a) PIM1(I), QPIMI1(II), QP1M2®, QP1M25(III), structurally unstable nonregular
response on M2 (IV), stable CHM3 (V) in a narrow strip on the right boundary and (b) the major contribution of POM 3 in C
(QPIM1* D) and F (CHM3) zones is apparent.

To explain the transition to QPIM2® from QPIM1¢" Y, a pf bifurcation (affecting one already unstable
fixed point) toward QP1M2® followed by a global bifurcation (a saddle connection) toward QP1M25 has
to be conjectured, consistent with canonical scenarios occurring in the neighbourhood of d-H point (see
Section 5). Such a global bifurcation on M2 is supposed to be produced by a tangle between the stable and
unstable invariant manifold of the flow responsible for QP1M2®. Characterization at lower temperature will
support this conjecture and will highlight the occurrence of a structurally stable nonregular dynamics of
homoclinic type due to an evolution in parameter space of the aforesaid global bifurcation.

Different from the results for 7= 12 °C (see Section 3.1, subcases (iii) and (iv)), herein the nonregular
response directly follows the global bifurcation threshold bounding the stability range of QP1M259, with no
motion classes involving other experimental eigenfunctions in-between, and it first develops on the M2
manifold (CHM2, label IV in Fig. 14a and c), though being structurally unstable. CHM2 exists in a symmetric
couple just like QP1M2 from which it bifurcates (Fig. 14a and b), yet also a symmetric response gluing the two
coexisting versions does exist (Fig. 14c and d).

For subcases f3, f4 the overall path is as follows:

PIMI —> QPIM1tD - QPIM2®) e QPIM269 — (CHM2B59) e — PIMI1
even if the existence ranges of QPIM2® and QP1IM2® do overlap partially.

Increasing the frequency, the structurally unstable nonregular response CHM2 ends in either regular P1M1
(Fig. 14) or stable nonregular CHM3 (Fig. 15) for lower and higher excitation amplitudes, respectively. While
CHM2 decomposes on two-dimensional manifold, CHM3 also involves POM 3 (symmetric out-of-plane),
though with a low relative percent with respect to the higher temperature where it was dominant.

Summarizing: (i) With respect to lower amplitudes, no main differences occur in the bifurcation path
relevant to regular dynamics (however involving a higher number of POMs) and (ii) nonregular response with
M2 is transient or structurally unstable: it will become steady (or structurally stable) when further lowering the
temperature, which will allow a better unfolding of the motion classes including CHM2 and CHM3 at high
excitation amplitudes.

5. Schematic unfolding of regular dynamics around divergence-Hopf bifurcation

Previous bifurcation diagrams have been produced by changing the frequency control parameter while
keeping fixed the initial condition at the value attained by the response at previous frequency step. Thus, the
obtained behaviour charts do not represent, even in principle, every solution possibly occurring in the
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considered parameter range. Other solutions are supposed to be stable and compete with the detected ones,
but they would be experimentally accessed only by means of an adequate procedure furnishing the right initial
condition at each control parameter step. Nevertheless, the obtained results are sufficient to draw a robust
unfolding of regular dynamics for the tested cable suspension system; results based on further investigations,
reported in Section 6, are instead needed to characterize transition to nonregular dynamics (see Section 7).

The obtained information seem to be sufficient to also refer the overall experimental bifurcation scenario to
a canonical one in dynamical systems theory. The following main results are of interest in this respect.

(1) The bifurcation scenario is consistent with the unfolding of the dynamics in the proximity of a
codimension 2 bifurcation point of divergence-Hopf type. Of course, the theoretical transition scenario
ensuing from the unfolding of d-H normal form may have an experimental counterpart provided that in
the latter the topological dimension of the observed periodically forced motion classes is reduced by one,
i.e. by looking at the experimental Poincaré section (see Section 5.1 in the following).

(i1) Due to the external (anti-phase primary resonance of first anti-symmetric in-plane mode) and internal
(1:1 resonance between anti-symmetric in-plane and out-of-plane modes) resonance features, the system
dynamics in both the regular and nonregular regime is essentially traceable to participation of two spatial
shapes closely resembling the first two anti-symmetric linear modes.

As a matter of fact, a substantial similarity exists between the observed experimental dynamics and the
dynamics exhibited in the neighbourhood of a d-H point by theoretical systems. Of course, this can be suitably
exploited in the formulation also of a theoretical model of the cable aimed at reproducing the experimental
results, and this is the subject of parallel ongoing analyses [28,29]. Herein, we limit ourselves to summarizing
the attained information and reorganizing them in the framework of the recognized scenario.

Before doing it, it is worth reminding oneself that two main mechanical parameters, namely the excitation
frequency and amplitude, have been considered, respectively, as the primary and secondary control
parameters in the experimental investigation; yet, they have been shown to be not the sole ones affecting the
system response. In fact, driven by a conjecture about the possibility to unfold the otherwise unreachable
dynamics by ‘“‘externally” varying another secondary parameter, the strong role played also by the
temperature in unfolding the experimental dynamics has been highlighted, with many important response
features depending on temperature sub-ranges.

In this framework: (i) the obtained results give information to unfold bifurcation scenarios also with respect
to temperature; qualitative changes produced by temperature in the bifurcation paths as well as persistent
behaviour ranges are recognized, (ii) within the stability range of each persistent path, temperature changes
produce quantitative changes in the critical values of the main control parameters (i.e. in the solution’s
stability margins). This allows one, at some temperature values, to get a better visibility of transition
phenomena otherwise obscured by the finite resolution of experimental analysis or by response features
inessential to understand the organizing bifurcation mechanism.

Yet, a substantially invariant bifurcation scheme is seen to persist over the whole range of temperature
variation, thus allowing us to make a comparison between the reorganized and summarized experimental
results and the stability diagrams known to bifurcation theory [15,16]. Indeed, though being the dynamics of
the continuous system potentially infinite-dimensional, its unfolding in the neighbourhood of the
experimentally highlighted d-H point can be referred to the theoretical unfolding provided by the low-
dimensional bifurcation system represented by the d-H normal form [29]. Direct comparison is reasonable
provided the manifold embedding the solutions remain the same and bifurcations well resemble bifurcation
diagrams of normal form. However, it must be noticed that bifurcation paths of the high-dimensional
experimental system may be considerably richer than those of the reference normal forms, for including
bifurcations that also involve eigenvalues normal to the invariant planes [30].

5.1. Experimental bifurcation paths (regular dynamics) versus theoretical stability diagram

Experimental bifurcation paths produced in a regular regime for growing frequency with temperature
T=6°C are shortly summarized. Two most robust paths occur in the neighbourhood of d-H point, for forcing
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levels respectively higher and lower than the critical value:

(i) PIMI — QPIMI — QPIM2® — oPIM269 — PIM1
H pf global

(i) PIMI— PIM25© — QPIM259 — PIMI
p

In this temperature range, direct comparison of experimental regular results with a normal form stability
diagram is possible provided the experimental path is restricted to parameter regions where none of the (ny)
eigenvalues with negative real part at d-H bifurcation goes beyond the imaginary axis thus producing a
bifurcation ending up with the involvement of a new dimension in the response, i.e., in mechanical terms,
involving the symmetric out-of-plane mode.

For the sake of comparing the unfolding of experimental results in the neighborhood of d-H point with
theoretical scenarios, stability and bifurcation diagrams are sketched in Fig. 16. In this respect it is worth
stressing how the stability diagram of the theoretical d-H unfolding consists of a set of autonomous
nonlinear equations, possibly in normal form, to be obtained by applying a reduction procedure to an
evolution system at the bifurcation boundary and describing the dynamics of the system on a reduced
dimension manifold. Instead, in the experimental counterpart, the evolution system is nonautonomous due to
the periodic motion of the supports but its Poincaré mapping is autonomous, so that the dynamics of the
mapping can be qualitatively compared to the dynamics of the autonomous bifurcation set, provided
the physical variables actively involved in the bifurcation are evidenced and distinguished from the non-
active variables. Thus, in the comparison, the fixed points of the normal form correspond to those in the
Poincaré sections of the experimental results (which represent periodic motion classes of the physical
system), with the physical variables involved in the divergence and Hopf being respectively the second
and first POM well resembling the first out-of-plane and in-plane antisymmetric linear modes of the cable
suspension.

Looking at Fig. 16, experimental solutions and bifurcations can be described as follows, by starting from
the region (a) where only the anti-symmetric in-plane POM takes part in the response (focus fixed point
P1M1), the solution thus lying on the M1 sub-manifold.

(b)

@
Qp1m29 rsg__) © ;O

© e2®  TopiMm
(a) ﬁMiSCrH N (a)

£ H PIMI

=X 2d

anti-clockwise -> <- clockwise

Fig. 16. Schematic (a) stability diagram and (b) experimental bifurcation paths.
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Following an anti-clockwise path (corresponding to the former path (ii)) in Fig. 16a:

(1) From (a) to (e), the stable fixed point PIM1 loses stability due to pf to a couple of coexisting symmetric
foci PIM259 on a resonant two-torus. At pf, the anti-symmetric out-of-plane experimental eigenfunction
(POM 2) enters the response. It is just the involvement of eigenfunction 2 to allow exploiting physical
system symmetry to produce symmetric couples; however, due to reflection symmetry, the system has
solutions either self-symmetric (prime ®) or being related in symmetric pairs (prime ).

(ii) From (e) to (d), the couple of symmetric foci PIM2® bifurcates through Hopf to the couple of limit
cycles QP1M259).

Following a clockwise path (corresponding to the former path (i)) in Fig. 16a:

(iii) From (a) to (b), PIM1 fixed point stability is lost through Hopf and a limit cycle (QP1M1) settles, the
reference manifold still being M1; in the schematic diagram of Fig. 16b, the unstable fixed point and a
stable limit cycle are shown.

(iv) From (b) to (c), a pf bifurcation is trespassed and two new unstable fixed points add to phase space. The
pf drives the out-of-plane anti-symmetric eigenfunction (POM 2) into the response, by doubling the
manifold dimension (M2). Phase space is characterized by three unstable fixed points and a cross-well
limit cycle (QP1M2®).

(v) From (c) to (d), an homoclinic saddle connection is trespassed corresponding to phase space transition on
two-torus from stable cross-well QPIMZ(S)6 motion to two stable in-well QP1M2(SC) motions.

The represented schematic stability diagram based on experimental bifurcation paths is in full agreement
with literature theoretical results [15,16].

However, note that, in both the anticlockwise and the clockwise path, the theoretical unfolding of the phase
space transition from QPIM2®© stable limit cycles to PIMI focus fixed point, which occurs in the
experimental chart farther away from the d-H point, needs further understanding. Accordingly, this transition
is not shown in the two bifurcation paths of Fig. 16b.

6. Regular and nonregular dynamics at low temperature values

While substantially confirming the robust bifurcation framework evidenced in the regular regime at higher
temperatures, results relevant to temperatures lower than 6 °C: (i) enrich the patterns of post-critical evolution
of response with varying forcing frequency and (ii) disclose clearer, though competing, portraits of transition
to nonregular dynamics, which depend on the attained values of low temperature and of forcing amplitude
above the d-H point.

6.1. Chamber temperatures 4 and 3 °C

Results relevant to 7'= 4 °C are summarized in the behaviour chart of Fig. 17. The main outcomes are: (i)
the two coexisting QPIM25 responses (region D) end in nonregular steady responses CHM2 on the M2
manifold (region E) also at lower excitation amplitudes and (ii) evidences of homoclinic chaos are found in the
CHM2 region. About the effect of lowering the temperature on nonregular response regions it can be stated
that: (i) the CHM2 motion, already present as transient or structurally unstable chaos at higher temperature,
considerably increases its robustness and the extent of its stability range and (ii) the response CHM3 on three-
dimensional manifold, formerly dominating the nonregular regime right of the global bifurcation, is shifted to
higher excitation frequencies.

The key role played in the transition to nonregular dynamics with M2 by the global bifurcation delimiting
the stability range of symmetric solutions QP1M25% becomes clearer (Fig. 18).

The chaotic response region is actually partitioned into two sub-regions: the left one (region E) involves the
same contributing POMs already characterizing the quasiperiodic response, i.e. the first in-plane and out-of-
plane antisymmetric; the right one (F), accessed from previous sub-region with growing frequency whereas
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Fig. 17. T =4°C: (a) qualitative behaviour chart and (b) characterization of motion classes.

inaccessible (Fig. 19) with decreasing frequency, involves also a predominant first symmetric out-of-plane
POM (label 3).

In Fig. 19 two bifurcation diagrams (and corresponding singular values spectra) obtained at the same
forcing amplitude for increasing and decreasing frequency are reported, respectively. They show the
occurrence of small regions of coexistent solutions: e.g., for this excitation amplitude (f=1.0V), the
quasiperiodic solution labelled II coexists with periodic solution PIM1 (label I) in the range 7.16-7.24 Hz,
whereas the nonregular response CHM3 (labelled V) coexists with periodic solution PIM1 in the range
7.88-7.94Hz. Contrary to CHM3, CHM2 (label 1V) only occurs in a parameter range where PIM1 is
unstable.

The paths for growing and decreasing frequency are, respectively:

PIMI — QPIM1*? — (QPIM2®59) —» CHM2 — CHM3 — PIM1

PIMI < QPIMI™? « (QPIM2559) « CHM2 « PIM1

In the latter case, PIM1 is bounded by CHM2, while it was bounded by QPIM2 at higher temperatures
where stable CHM2 was not found.

Lowering the temperature (7 = 3 °C), nonregular response on M2 becomes more robust to the detriment of
CHM3; bifurcation diagrams in Fig. 20 show the occurrence of an enlarged stability range of CHM2 (label IV)
at even lower excitation amplitudes.

For higher forcing amplitudes (Fig. 21), quasiperiodic responses (QP5M2, label V, G region in Fig. 17) are
identified in between CHM2 (E) and CHM3 (F) regions:

PIMI —> QPIM1+? — QPIM2559 _, CHM2 — QP5M2 — CHM3 — PIMI1
p

Although in regular dynamics some differences occur between bifurcation diagrams obtained for different
temperature values, it is still possible to inscribe them in the framework of d-H normal form stability
diagrams, under certain conditions.

a) Participation of other modes produces motion classes with augmented dimension without entailin
Participat f oth des prod t 1 th aug ted d thout entailing
qualitative changes with respect to canonical bifurcation diagrams, i.e. topologically equivalent motion
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Fig. 18. (a), (b) Forcing amplitude higher than codimension 2 critical value but lower than f: the response remains in regular regions; (c),
(d) forcing amplitude in between f; and f»: a frequency range of nonregular response (IV) with M2 is reported, bounding QP1M25 on the
left (see also QPIM2® (111*)) and PIM1 on the right, for growing frequency: (e), (f) higher forcing: a wider range of nonregular response
is noticed.

classes bifurcate following the canonical path even if they are embedded in higher order manifolds. From
this viewpoint, the bifurcation frame underlying the unfolding of regular dynamics fully complies with the
canonical d-H scenario, since it describes dynamics on an invariant manifold whose dimension is reduced
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Fig. 19. Motion classes: (a), (b) for growing frequency: PIM1 (I), QPIM1¢*? (II), QPIM25<S (111), CHM2 (IV), CHM3 (V); (c), (d) for
decreasing frequency: P1M1 (I), QPIM1¢"2 (11), QPIM26SS (111), CHM2 (IV).

to the minimum (equal to the number of eigenvalues with zero real part at d-H bifurcation), independent
of the number of mechanical d.o.f. involved in the response.

(b) Qualitative changes with respect to canonical stability diagrams possibly occur in experimental diagrams,
but the d-H normal form singling out only some of the bifurcations actually organizes the overall scenario.

Characterization of CH?2 response: Experimental results highlight two main ranges of nonregular response.
The first one (CHM2, region E) develops on the same manifold already embedding the quasiperiodic response
QPIM2® or QPIM259)_ In fact, the flow decomposition does not reveal the bifurcation from quasiperiodicity
to chaos neither qualitatively (no new spatial shapes are involved besides those resembling the first two
in-plane and out-of-plane anti-symmetric) nor quantitatively (the singular values remain unchanged). In
contrast, the second nonregular response (CHM3, region F) is characterized by the involvement of a third
shape resembling the first out-of-plane symmetric mode (Figs. 19a and b and 21).

Results of a delay embedding reconstruction [25] of phase space from a time series singled out from
CHM2 motion are reported in Fig. 22. Three-dimensional projections of the second order Poincaré section of
the reconstructed attractor show a typical homoclinic evolution: the dynamics is organized by an unstable
fixed point on the map characterized by a two-dimensional focus-stable manifold W* and a one-dimensional
saddle-unstable manifold W, and an invariant of the flow responsible for re-injection toward the fixed
point. The fixed point on the second order Poincaré section corresponds to an unstable two-dimensional
invariant of the flow resembling the formerly stable QP1M2®%). In Fig. 23, besides the time series (a), two of
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Fig. 21. Even higher forcing amplitude: CHM?2 (IV), QP5M2 (V), CHM3 (VI).

the recorded homoclinic orbits are reported (b and ¢), showing the ejection along the two opposite directions
of the unstable manifold (w direction), and the re-injection onto the stable manifold (the uv plane),
respectively.
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(a) (b)

u

Fig. 22. Second order Poincaré map of reconstructed attractor: (a) time delay 3D reconstruction and (b) 2D projection.
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Fig. 23. Time delay reconstruction: (a) time series, (b) and (c) homoclinic orbits due to homoclinic tangency.

6.2. Chamber temperatures 2 and 0.5°C

Results confirm the robustness of transition scenario to CHM2 (low excitation region E)) already evidenced
for higher temperatures at higher forcing amplitudes (Fig. 24).

However, the transition to CHM?2 also follows an alternative path for forcing levels (f>) sufficiently high
(Fig. 25¢ and d), where the global bifurcation responsible of CHM?2 (label V) directly affects the PSM2® (IV)
due to phase locking (pl) of response QPIM2® (label III), without passing through the intermediate
QP1IM259) as it commonly occurs for lower forcing amplitudes (Fig. 25a and b) or for higher temperatures.
This bifurcation path to chaos is still traceable to the unfolding of the dynamics in the canonical d-H scenario
(see Section 7), though being somehow richer.

Even new motion classes—already noticed at higher temperature for very high excitation amplitudes—enter
the scenario: a phase locking phenomenon produces a periodic PSM2559) response characterized by an
attractor laying on the torus already spanned by QP1M2559)_ Besides the P5M2® motion eventually evolving
toward a QP5M2® response, a new nonregular region (E; in the behaviour chart) appears. In contrast,
CHM3 region does not exist any more.
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Fig. 24. T =2°C: (a) qualitative behaviour chart and (b) characterization of motion classes.

The following overall transition scheme occurs with increasing frequency:

PIM! — QPIMI — QPIM2® — P5M2® — CHM2® — QPIM2® —
P5M2® — QP5M2® — CHM2©® — PIM1

which shows alternation of bands of quasiperiodic, phase locked regular, and nonregular responses on a
manifold dominated by the two anti-symmetric shapes (POMs 1 and 2). Moreover, the ranges wherein the
solutions coexist and compete with each other are wide.

Lowering the temperature to 0.5 °C provides increasing evidence of the band-like alternating structure of
quasiperiodic and high-periodicity phase-locked responses. In contrast, no more chaotic response is seen to
occur within the scanned parameter range, with the chosen resolution.

7. Schematic unfolding of nonregular dynamics upon divergence-Hopf bifurcation

Nonregular dynamics with M2 more directly traceable to the evolution from the d-H scenario develops
relatively far from the codimension 2 bifurcation point but fits well with the regular dynamics unfolding. Main
results obtained with decreasing low temperature above the d-H critical value can be summarized as follows:

o At medium temperature (7' = 6 °C), transient (or structurally unstable) chaos CHM?2 occurs.

® At lower temperature (7' = 3-4 °C), depending on forcing amplitudes, two paths to steady (structurally
stable) chaos CHM?2 via homoclinic explosion (he) may occur:
(i) from the symmetric couple QP1M2© region:
PIM! — QPIMI1 — QPIM2® — QP1M268Y9 — CHM2559 . CHM3
global global

which occurs for forcing frequencies where PIM1 is unstable and further solutions with POM 3 are no
more accessible (indeed, bringing the system at lower temperatures entails confining the contribution of
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Fig. 25. Motion classes: (a, b) forcing level f;: QPIMI (II), QP1M25(I1I), PSM25 (1V) due to phase locking of QP1M259, CHM2#
(VII); (c, d) forcing level f>: besides the classes in (a, b): QP1M2® (III), new bands of chaotic CHM2'™ (V) and CHM2® (VII), periodic
P5M2® (1V) and quasiperiodic QP5M2® (VI) responses are evidenced.

POM 3 to lower frequencies, thus allowing to highlight nonregular response on M2), as well as for
lower forcing amplitudes;
(i1) directly from symmetric response region:
P5M2®

PIM1 PIM1 P1IM2® — —> CHM26S0
- Q - Q {phase locked QP1M2®)} g]obdl

which occurs at the highest forcing amplitudes for higher temperatures, but with clear evidence also at
lower forcing amplitudes for lower temperatures.

(iii) At even lower temperatures (7'<2°C), further competing scenarios, dominated by phase locking
phenomena, enter the response.

In any case, bifurcation diagrams for sweeping down frequency show that the stability range of PIM1
overlaps the CHM3, consistent with the hardening character of fixed point PIM1, but not the CHM2 region.

7.1. Experimental bifurcation paths (nonregular dynamics) versus theoretical stability diagram

Based on previous results, the transition to nonregular dynamics can be summarized as follows. Two
homoclinic bifurcations responsible for the onset of nonregular dynamics from either symmetric (QP1M2®)
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or symmetric couple (QPIM259) quasiperiodic response may occur. Homoclinic explosions originate a
strange invariant set that becomes an attractor in a range of control parameters (within the instability range of
P1IM1), and then suddenly disappears.

It is conjectured (see the schematic stability diagram and bifurcation paths in Fig. 26) that, far away from
d-H point in the stability diagram (Fig. 26a), the saddle connection locus reaches a new codimension 2
bifurcation point (G) where it splits into an homoclinic explosion/implosion pair, with an interval of stable
nonregular dynamics in between. To make the experimental bifurcation scenario consistent with an
interpretative theoretical scheme [31], other bifurcation branches have to emanate from G. In such a case
(compare with also the bifurcation paths in Fig. 26b):

Moving anticlockwise around G-

(1) a period doubling (pd) bifurcation on (SC)-cycle (which becomes unstable) produces an unstable (S)-cycle
branch reaching an homoclinic explosion where a strange invariant set is produced [32], another he (herein
playing an implosion role) then destroying all unstable orbits;

(i1) the new born unstable (S)-cycle gains stability due to a sn bifurcation and emerges on the opposite side of
the chaotic region.

(2)

($)-npe (5,5)
- PMIT)QPMl p_f)QPm gloT)CH

bifurcation,
(he)

3 (5)-0 N (SC)-n; 3 5.5€)
. PMl_H>QRﬂ of QPMZ & saddle QRE i global Cl—l(
connection bifurcation,
(he)

QP

. (SC)-type (5,5C)
PM ITPMZ T)Q PM2 W)C H

bifurcation,

(he)
pf]
(b)
(SC) _ehe
(SC) pd,—-’:’-—f“sn (S)
Sy -~~~
Hod~"
= N
2 &
pf pf H
anti-clockwise -> <-clockwise

Fig. 26. Schematic (a) stability diagram and (b) experimental bifurcation paths.
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Moving clockwise around G:

(i) a sn bifurcation on (S)-cycle (which becomes unstable) produces an unstable (SC)-cycle branch reaching an
homoclinic explosion where a strange invariant set is produced, another he then destroying all unstable orbits;

(i1) the new born unstable (SC)-cycle gains stability due to a pd bifurcation and emerges on the opposite side
of the chaotic region.

Overall, the system nonregular dynamics is consistent with the theoretical unfolding scenario ensuing from
the normal form divergence-Hopf bifurcation. Yet, above the d-H point the experimental scenario is further
enriched by phase-locking phenomena.

8. Conclusions and ongoing developments

Systematic experimental investigation of finite amplitude response of a multiple internally resonant
suspended cable-mass, subjected to anti-phase support motion at primary resonance, has been accomplished
in a parameter region wherein isolated results showed the possible occurrence of homoclinic chaos. Upon
getting hints from a reference setup about the multiple bifurcation event possibly governing transition to
complex dynamics, an improved experimental apparatus has been used to make the conjectured divergence-
Hopf bifurcation technically accessible, while at the same time stabilizing the system and getting robust
experimental outcomes. Results obtained by varying three control parameters, namely the frequency and
amplitude of excitation as well as the temperature of a thermostatic chamber embedding the experimental
system, have allowed us: (i) to characterize in-depth the various classes of motion in terms of time and spatial
complexity, (ii) to describe peculiar and/or persistent features of transition to nonregular dynamics, and (iii) to
trace them back to a canonical scenario from bifurcation theory.

As a matter of fact, improvement of the experimental analysis has been obtained also against the
background of general dynamical systems knowledge, as specifically ensuing from a parallel theoretical
analysis [28,29]. Availability of a third control parameter, the temperature, has shown to be fundamental for:
(1) indirectly setting cable material properties to values for which, consistent with theoretical expectations, the
conjectured codimension 2 bifurcation scenario to chaos has become apparent and (ii) unfolding the system
dynamics not only in the strict neighbourhood of the organizing d-H bifurcation but also in the ensuing
postcritical regions where the dependence of material damping on temperature affects secondary bifurcations
to homoclinic chaos.

In general terms, varying the temperature of the thermally conditioned system has allowed the authors:

e to distinguish between otherwise undistinguishable critical thresholds (surfaces in 3D control space) and
recognize an underlying common invariant bifurcation structure, otherwise hidden by the inherent
complexity of the infinite-dimensional system dynamics;

e to refer qualitatively the experimental unfolding of regular and nonregular cable dynamics in the considered
frequency range to the theoretical unfolding of the divergence-Hopf bifurcation normal form;

® to characterize the occurrence and robustness of response transition to low-dimensional (two POMs, i.e.,
mechanical variables) homoclinic chaos;

e to show the variable involvement, in either quasiperiodic or chaotic responses, of a further POM with respect
to the reference normal form scenario.

Specifically, temperature variations have been seen to affect: (i) the locus of codimension 2 bifurcation point
in the frequency-amplitude behaviour chart, whose critical forcing value decreases with decreasing
temperature, still guaranteeing cable tension; (ii) the system dimensionality in the neighbourhood of the
critical point, wherein a further POM resembling the first symmetric out-of-plane mode is driven in the
response besides the dominating in-plane and out-of-plane antisymmetric POMs; (iii) the variable details of
the post-critical evolution with varying forcing frequency, within the dominant scenario; and (iv) the
robustness of the latter, which is replaced by other scenarios at the lowest temperatures.
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Parallel ongoing theoretical studies [29] are concerned with developing a consistent phenomenologically
based two-d.o.f. model of the suspended cable. Availability of such a reduced order model and its analytical-
numerical solution will allow us to check: (i) the pursued theoretical interpretation of the dominant
experimental scenario along with the possibility to (partially) reproduce it and (ii) the likely need to account
for also the resonant contribution of a third d.o.f. for actually reproducing the richness of experimental results
in the post-critical range.
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