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Abstract

The walls of ducts containing flow are often acoustically lined in order to reduce sound. Many simple models of acoustic

linings assume the lining to be linear and locally reacting; examples considered here include the three-parameter,

mass–spring–damper, Helmholtz resonator and enhanced Helmholtz resonator models. All of these models have been

found to have stability issues with uniform mean grazing flow, and there has been some confusion over the existence of

hydrodynamic instability surface waves over such linings. Mathematically, the standard proven Briggs–Bers stability

analysis is not applicable. Computationally, the hydrodynamic modes are routinely ignored (in the frequency domain) and

instabilities filtered out (in the time domain). This confusion also causes significant problems for mode-matching, Green

functions, and scattering analyses. In this paper, it is shown that any situation not capable of being analysed using the

Briggs–Bers criterion is illposed, and that this is the root cause of the confusion over hydrodynamic instabilities. A large

class of lining models, including all those mentioned above, are shown to be illposed with uniform mean flow. An

explanation is given of the effects of this illposedness in practice, and it is argued that illposed models should not be used.

An alternative stability criterion to Briggs–Bers has been occasionally used in the literature. This alternative criterion,

involving analytic continuation to purely imaginary frequencies, was recently christened the ‘‘Crighton–Leppington’’

stability criterion. However, this stability criterion is incorrect, and several counter-examples are given here.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic linings are used in many practical applications to line the surfaces of ducts carrying mean flow, in
order to reduce sound emissions. Examples include the exhaust pipes of automobiles and the intakes and
bypass ducts of turbofan aircraft engines. As a model of such a situation, consider flow along a duct with
velocity Uþ =f expfiotg, where UðxÞ is the mean flow and fðxÞ is a small acoustic perturbation. The duct wall
is impermeable to the mean flow, so that U � n ¼ 0 there, where n is the normal to the duct wall, oriented out of
the fluid. If the duct wall were perfectly rigid and impermeable, the acoustic perturbation would also satisfy
n � =f ¼ 0 on the duct wall. For a lined duct wall, rather than modelling the physics of the lining, a simplified
mathematical model is usually assumed which modifies this boundary condition [1–4]. Typically, the lining is
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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assumed to be linear and locally reacting. The response of the lining is then characterized by its impedance,
ZðoÞ ¼ p=v, where a time-harmonic pressure forcing p expfiotg produces a time-harmonic fluid velocity
v expfiotg normal to the lining. With no slipping mean flow (U ¼ 0 at the boundary), the boundary condition
at the duct wall is therefore n � =f ¼ p=ZðoÞ. With slipping mean flow, the limit of an infinitely thin boundary
layer is taken. This was shown to be equivalent to the model of an infinitely thin vortex sheet separating the
moving fluid on one side and the fluid on the lining surface on the other [5–7]. The jump conditions across the
vortex sheet lead to the boundary condition (quoted in the form due to Myers [8])

ion � =f ¼ ioþU � =� ðn � =UÞ � nð Þp=Z. (1)

Some common models for the dependence of Z on o will be considered here. The simplest is the
mass–spring–damper model [2,9], or equivalently the three-parameter model of Tam and Auriault [4], all of
which will be referred to here as the MSD model. If the vortex-sheet displacement in the normal direction is
given by wðx; tÞ, then this model is

d
q2w

qt2
þ R

qw

qt
þ bw ¼ p; ) ZðoÞ ¼ Rþ ido� ib=o. (2)

The justification of this model is that it captures three physical quantities, the inertia or mass d, the springiness
b, and the damping R. These parameters may be set to give the correct behaviour for ZðoÞ locally about some
target frequency o0 and target impedance Z0.

Another model is the enhanced Helmholtz resonator (EHR) model proposed by Rienstra [10] (similar in
form to some of the models listed in [3]), which is an extension of a model of a typical acoustic lining consisting
of an array of Helmholtz resonators (HR) behind a perforated facing sheet. For this model

ZðoÞ ¼ Rþ ido� in cotðoL� ie=2Þ, (3)

where L is the depth of the HR, n is a parameter scaling the cavity reactance, e is a damping within the fluid in
the cavity, and the speed of sound has been normalized to unity. Setting n ¼ 1 and e ¼ 0 yields the original HR
model.

Experiments with acoustic linings and grazing flow show that these models, and particularly the EHR
model, are a reasonably good approximation to reality [11–13]. When the above lining models are used in
numerical time-domain simulations of the acoustics of lined ducts with uniform flow, the simulations are
found to be unstable. Some experiments [11,13] also show an instability being excited in certain, but not all,
situations. However, the numerical instability is of a different nature and occurs on the lengthscale of the
computational mesh; using a finer mesh results in instability on a finer lengthscale which grows more rapidly.
To enable convergence, such numerical simulations always include an artificial damping term to filter out the
instability [4,14–19]. For frequency domain numerical simulations, the problem of instability is replaced by the
problem of choosing the direction of propagation of modes. For example, Özyörük et al. [20] used a pseudo-
time method which converges to a solution, but it is unclear which of the many potential solutions is
converged to, and whether this is the causal one.

There has been much theoretical discussion about the stability of such lining models when used with
uniform (slipping) mean flow. Tester [2] suggested that ‘‘strange’’ modes existed in a rectangular lined duct
with uniform flow which might be convective instabilities, based on a Briggs–Bers [21,22] stability analysis.
However, Tester gave the warning that this conclusions ‘‘must be regarded as provisional because the analysis
is not fully rigorous’’; in particular, it was assumed that the maximum temporal growth rate was finite, which
is shown in Section 3 not to be the case. The ‘‘strange’’ modes found by Tester for a rectangular duct were
analysed and classified by Rienstra [9], this time for a cylindrical duct, and were termed surface modes since
they are localized close to the duct boundary (this analysis was subsequently extended in [23]).

Nilsson and Brander [24] identified a mode in a cylindrical duct with uniform flow as a potential instability,
and selectively included or excluded it depending on the solution desired. They concluded that the Briggs–Bers
method could not be applied for this problem owing to the unbounded maximum temporal growth rate, and
instead used an interpretation of the stability criterion of Jones and Morgan [25]. However, their discussion of
the Briggs–Bers criterion is confused, and their alternative procedure of analytically continuing the solution
for argðoÞ from 0 to �p=2 is unjustified. This unjustified procedure was later used by Koch and Möhring [26]
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and by Rienstra [27,28], who, in the latter paper, named this procedure the ‘‘Crighton–Leppington’’ criterion,
apparently after [29]. Unfortunately, we demonstrate in Section 2 that this stability criterion is flawed.

The stability criterion proposed by Jones and Morgan [25] is also not universally valid. They state that ‘‘a
necessary and sufficient condition for cðoÞ to be causal is that it is a regular function of o in the lower half-
plane and that there are finite real numbers b and d40 such that as joj ! 1, cðoÞ expfðbþ idÞog ¼ OðjojsÞ
for some finite s and Imop� eo0’’ (where the notation has been changed to that used here). However,
taking c̃ðtÞ ¼ HðtÞet gives c̃ðtÞ � 0 for to0, so is causal, but

cðoÞ ¼
Z 1
�1

c̃ðtÞ e�iot dt ¼
�i

oþ i
,

so that cðoÞ has a pole at o ¼ �i and so is not regular in the lower-half o-plane. This is because, in
Briggs–Bers terms, c̃ðtÞ is an absolute instability, which Jones and Morgan do not consider.

The unbounded maximum temporal growth rate that prevents the Briggs–Bers criterion being applied is
connected with illposedness (as defined in the functional analysis sense, e.g., [30]). In Section 3, it is shown that
the Briggs–Bers criterion is inapplicable if and only if the problem is illposed, and it is demonstrated what this
means from a practical (computational and analytic) perspective. Moreover, we show that locally reacting
linear impedance models of a certain type, which include all models considered here, are illposed when used
with uniform (slipping) flow.
2. Stability criteria

Consider the linear partial differential equation

D i
q
qx
;�i

q
qt

� �
Gðx; tÞ ¼ 0, (4)

where Dð�; �Þ is the differential operator. Assuming a wave solution of the form Gðx; tÞ ¼ G0 expfiot� ikxg

gives the dispersion relation Dðk;oÞ ¼ 0. If o is real and k is complex, we would like to know whether k

corresponds to a left- or right-propagating mode, and therefore whether it is exponentially growing or
decaying. This is very closely linked with causality.
2.1. The Briggs– Bers criterion

In order to analyse the stability of a mode at a frequency of , the Briggs–Bers method [21,22] (henceforth
referred to as BB) considers the response of the system to a forcing dðxÞHðtÞ expfiof tg; that is, a harmonic
point forcing at frequency of at position x ¼ 0 turned on at time t ¼ 0. The response of the system is analysed
using a Fourier–Laplace transform, and causality is invoked to imply that the solution be identically zero for
to0. This gives the full exact solution in integral form. The long-time (large-t) limit of this solution is then
investigated. If the long-time limit is time-harmonic with frequency of , then we conclude that modes occurring
to the left of the forcing in xo0 are left-propagating and modes occurring in x40 are right-propagating.
However, it is not necessarily the case that the long-time limit is time harmonic with frequency of ; for
example, it is not the case if absolute instabilities are present. Note that the description of BB given by
Rienstra [28] is overly simplified, and does not consider absolute instability. The full rigorous details of BB are
given in Appendix A.

For BB to be valid, we required that the temporal inversion contour Co be chosen below all values of o for
which Dðk;oÞ ¼ 0 for any real k. However, in some problems, such as for the Kelvin–Helmholtz instability of
a vortex sheet, there exist solutions of Dðk;oÞ ¼ 0 for real k and arbitrarily negative ImðoÞ, and so it is not
possible to choose such an inversion contour. Such problems are illposed, as we will investigate in Section 3. It
is for these problems that the ‘‘Crighton–Leppington’’ criterion was proposed.
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2.2. The ‘‘Crighton– Leppington’’ criterion

We use here the description of the ‘‘Crighton–Leppington’’ criterion (henceforth referred to as CL) given by
Rienstra [28], which is as it was used in [24,26,27]. For this criterion, the motion of poles is traced in the
k-plane as o varies with joj fixed and argðoÞ running from �p=2 to 0. If the frequency is negative, the
deformation is for argðoÞ running from �p=2 to �p. Modes are predicted to be right-running if they originate
in the lower-half k-plane for o purely imaginary, and left-running if they originate in the upper-half k-plane.
In contrast to BB, the full exact solution is never considered.

Rienstra [28] included the proviso that joj must be large enough for this procedure to be applicable,
although how large joj must be was not discussed. This proviso was omitted in [24,26,27]. It is easy to show
that taking joj larger than �ImðoÞ for any zero of Dðo; kÞ for k 2 R (in other words, so that �ijoj is below the
initial BB Co contour) means that this criterion reduces to BB as long as absolute instabilities are not present.
However, CL was introduced for use when there is no bound to �ImðoÞ for real k, so how large joj must be in
such cases remains unspecified.

2.3. Model stability example

We now look at the stability of an example system, chosen to allow a simple mathematical analysis while
still including some relevant physics. The example is of a convected wave-like equation with diffusive and self-
exciting terms,

q2G
qx2
�

q
qt
þU

q
qx

� �2

G þ l2G þ m
q
qt
þU

q
qx

� �
q2G

qx2
¼ 0, (5)

giving

Dðk;oÞ ¼ ðo�UkÞ2 � k2
þ l2 � imðo�UkÞk2.

The constants U, l, and m represent the convection, self-excitation and damping, respectively, with the wave
speed normalized to unity. Since this is quadratic in o and cubic in k, there are three modes (zeros of D) for a
given frequency o, whereas for a given wavenumber k there are two. Solving Dðk;oÞ ¼ 0 for o in terms of k

gives the two modes

o�ðkÞ ¼ Uk þ
i

2
mk2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� l2 �

1

4
m2k4

r
.

Note that o�ðkÞ ¼ Uk þ imk2
ð1� 1Þ=2� i=mþOðk�2Þ as jkj ! 1. Using this, and by inspection,

Imðo�ðkÞÞ4� l for all k 2 R, so that BB is valid for this example. A graph of o�ðkÞ for k 2 R is given by
the close-dashed line in the o-plane in Figs. 1 and 2.
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Fig. 1. Plots of Eq. (5) in (a) the o-plane and (b) the k-plane for U ¼ 2, l ¼ 1, m ¼ 0:8. The close dashed lines are solutions of Dðo; kÞ ¼ 0

for real k. Crosses denote values of o from Eq. (6) giving a double root of kðoÞ. The long dashed line shows the initial Co contour and kðoÞ
on this contour. The solid line shows the final Co contour and kðoÞ on this contour. The dashed arrowed lines show the motion between

the two. The dash-dot line is the final Ck contour.
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Fig. 2. As for Fig. 1 but with U ¼ 1:2.
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In order to analyse the stability of Eq. (5) using BB (as described in detail in Appendix A), we must first
locate the double-roots in the k-plane that may lead to pinches of the Ck contour hence to absolute instability.
These double roots are found by solving D ¼ qD=qk ¼ 0 simultaneously. Eliminating k gives the quintic
equation for o

2UoA2 þ 2ðb2 þ iomÞAB� 3iUmB2 ¼ 0, (6)

A ¼ 2b2 þ 4iomð1þ 2U2Þ � 2o2m2; B ¼ 7iUmo2 þ 9iUml2 � 2Uob2,

where b2 ¼ 1�U2. The numerical solutions of Eq. (6) are shown as crosses in Figs. 1 and 2.
We now apply BB to this example for U ¼ 2, l ¼ 1, and m ¼ 0:8, as shown in Fig. 1. Initially, we take the Ck

contour along the real-k-axis and the Co contour to be ImðoÞ ¼ �2. We then deform the Co contour upwards
onto the real axis, as shown by the dashed arrowed lines. In so doing, the poles in the k-plane move, and we
must deform the Ck contour upwards in order to avoid poles crossing the contour. No double roots hinder us
in this process, so that no absolute instabilities exist for these parameters. For jReðoÞjo2 poles in the lower-
half k-plane have moved into the upper-half, and since these are below the Ck contour, they represent right-
propagating waves which are therefore exponentially growing downstream. The system is therefore
convectively unstable for real frequencies jojo2, and stable for jojX2. For joj ¼ 2 the system supports
neutrally stable (i.e. propagating) modes.

The situation is significantly different for U ¼ 1:2, as shown in Fig. 2. There is now a double-root in the
lower-half o-plane that involves two poles in the k-plane from opposite sides of the Ck contour which
converge and pinch the contour. The Co contour must therefore be deformed around this pinch frequency as
shown. The dominant large-t contribution comes from this frequency, rather than any imposed forcing
frequency of , showing that in this case the system is absolutely unstable with dominant frequency
op � �0:592i.

What if we had instead applied CL? Considering as an example CL applied for o ¼ 0:5, as shown by the
solid lines in Fig. 3, our conclusions would have been different. In both cases considered, Fig. 3 shows no
modes crossing from one half of the k-plane to the other, predicting no instabilities to be present for either
U ¼ 2 or 1.2 at a frequency o ¼ 0:5, and so in both cases we would have predicted the system to have two
stable upstream-propagating modes and one stable downstream-propagating mode. However, as shown by the
trajectories in Fig. 3a with ReðoÞ fixed, in the first case there is an unstable mode, and in fact there are two
downstream- and one upstream-propagating mode. In the second case, the system is absolutely unstable, and
it does not make sense to consider a time-harmonic solution with frequency o ¼ 0:5. Since BB is provably
correct and valid in for these cases (see Appendix A), we are therefore forced to conclude that CL is erroneous
for this example.

The above analysis has assumed ma0. If we eliminate the damping term by setting m ¼ 0 in Eq. (5), we lose
one of the solutions for k in terms of o, and BB may be applied entirely analytically. In the subsonic case
0oUo1 this system is absolutely unstable, with a double root when o ¼ �ilb and k� ¼ iUl=b. In the
supersonic case U41 the initial Ck contour lies above all poles in the k-plane, and therefore there is no
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Fig. 3. In the k-plane, values of k solving Dðo; kÞ ¼ 0 for l ¼ 1, m ¼ 0:8, and (a) U ¼ 2:0 and (b) U ¼ 1:2. Solid lines (CL trajectories) are

joj ¼ 0:5 with �p=2o argðoÞo0, dashed lines are ReðoÞ ¼ 0:5 and �2oImðoÞo0, and crosses are for o ¼ 0:5.
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absolute instability, since there are no poles above the contour to pinch it: all modes are downstream-
propagating. One of the two modes is a convective instability for jojol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 1
p

. For l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 � 1
p

pjojplU

both modes are neutrally stable (i.e. propagating), although one mode is anomalous in that it has an upstream-
pointing group velocity. For joj4lU the system supports two neutrally stable (i.e. propagating) modes, with
the group velocities of both pointing downstream. CL incorrectly predicts the direction of propagation of one
of the modes (and hence its stability) for jojol, and of course also incorrectly predicts the subsonic case, as
CL does not consider absolute instability.
3. Illposedness

BB is only applicable when the system being analysed has a maximum exponential growth rate, Z say,
meaning that it is guaranteed that Dðk;oÞa0 whenever k 2 R and ImðoÞo� Z. However, for sound in a
cylindrical duct with uniform mean flow and a MSD lining, we show in the next section that no such Z exists.
This was the argument for using CL, which we have just seen is inadequate. In fact, any system for which BB is
inapplicable is illposed. We now investigate this further.

What do we mean by illposedness? The definition used here, chosen since it leads to a helpful
characterization of growth rates, is that the linear partial differential equation (4) is wellposed if

sup
x2R

jGðx; tþ sÞ � Gðx; tÞj ! 0 as s! 0

for all t and s40. As shown by Yosida (Ref. [30, pp. 232–233]), any wellposed differential equation necessarily
has a finite maximum exponential growth rate Z. Another result of Yosida (Ref. [30, pp. 240–241]) can be used
to show that the Fourier transform Gðx;oÞ exists and is well defined for ImðoÞo� Z, implying that Dðk;oÞa0
for all ImðoÞo� Z and k 2 R. Therefore, if we have a system for which Dðk;oÞ ¼ 0 for arbitrarily negative
ImðoÞ and k 2 R, the problem must be illposed, and so the condition above must not always be true. This is, in
effect, because arbitrarily quickly growing instabilities exist that can grow arbitrarily large between time t ¼ 0
and time 0þ, and the solution can ‘‘blow up instantly’’.

One practical implication of illposedness is that numerical simulations do not converge, however, small a
timestep is used. For example, for sound in a cylindrical duct with a MSD lining and uniform mean flow, we
show in the next section that there are surface modes for which ImðoÞ ! 1 as k!�1, so that the
arbitrarily quick exponential growth occurs at arbitrarily short wavelengths. When numerically simulating
such a system on a fine mesh, it is found that the numerics are unstable at the grid scale, with even finer meshes
becoming unstable even more rapidly. These instabilities are therefore routinely filtered out [4,14–19].
However, this instability can now be seen as the numerics attempting to accurately simulate the underlying
mathematical differential equation, which has no regular mathematical solution. Having filtered out the
unwanted part of the numerical solution, there is no justification that what is left is of any relevance to the
physical problem being modelled. We have seen above that the illposedness causes problems with stability
analysis, and in addition it causes problems for mode-matching [31–33], Green’s function derivations [34,35]
and scattering analyses [26,28,36].
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3.1. The illposedness of a large class of impedance lining models

Consider a uniform cylindrical duct with centreline in the x-direction and cross-section described by polar
coordinates r; y. We nondimensionalize lengths by the duct radius, speeds by the mean-flow speed of sound,
and densities by the mean-flow density. The velocity of the fluid is given by u ¼ Uex þ =f, where f is the
acoustic perturbation and U is the steady mean flow Mach number. This gives the wave equation for f,

q
qt
þU

q
qx

� �2

�r2f ¼ 0 with p ¼ r ¼ �
q
qt
þU

q
qx

� �
f,

with solution

f ¼ JmðarÞ expfiot� ikx� imyg; a2 ¼ ðo�UkÞ2 � k2,

where Jm is the mth Bessel function of the first kind (for details, see, e.g., [23]). The boundary condition (1)
becomes

aJ 0mðaÞ
JmðaÞ

�
ðo�UkÞ2

ioZðoÞ
¼ 0,

where ZðoÞ is the lining impedance. We restrict attention here to subsonic mean flows, so that 0oUo1.
When considering the boundedness of ImðoÞ for zeros of Dðk;oÞ ¼ 0 with k 2 R, it is the surface modes that

cause the potentially unbounded behaviour, with the other acoustic modes being well behaved. The surface
modes are predicted using the asymptotic dispersion relation of [23] (Eq. (7), a modification of the original
approximation of [9]), which, when rearranged, gives

ðk2
þm2 � ðo�UkÞ2ÞðioZÞ2 � ðo�UkÞ4 ¼ 0 with Re

ðo�UkÞ2

ioZ

� �
40. (7)

We now consider the behaviour of o as k!�1 with k real. Assuming ioZ ¼ Aom to leading order, we have
three cases depending on whether m41, m ¼ 1, or mo1,

m41; o ¼ Nk1=m; Nm ¼ �U2=ðAbÞ,

m ¼ 1; o ¼ Nk; ðb2 þ 2UN �N2ÞA2N2 � ðN �UÞ4 ¼ 0,

mo1; o ¼ Uk þNkðmþ1Þ=2; N2 ¼ �AUm, (8)

where, as before, b2 ¼ 1�U2. The m ¼ 1 case involves solving a quartic equation for N, which simplifies
significantly if either jAj51 or jAjb1. If jAj51, then the solutions are

N ¼ U þ
ffiffiffiffiffiffiffiffi
AU
p

einp=2 þOðAÞ,

where the condition in Eq. (7) implies that n ¼ 0; 2 if k!1 and n ¼ 1; 3 if k!�1. If jAjb1 then the
solutions are

N ¼ �
U2

bA
þOðA�2Þ and N ¼ U � 1þOðA�2Þ,

where the condition in Eq. (7) implies that N ¼ U2=bA as k!1, with the opposite sign as k!�1. The
solutions N ¼ U � 1 represent acoustic modes, rather than surface modes, and have Reð

ffiffiffiffiffiffi
� � �
p
Þ ¼ 0.

For the MSD lining, Eq. (2) implies that

ioZ ¼ �do2 þ ioRþOð1Þ.

If d40 then we are in the case m ¼ 2 and A ¼ �d, so that there exists a surface mode with
ImðoÞ� � ðjkjU2=dbÞ1=2, and hence ImðoÞ ! �1 as jkj ! 1. This is exactly the scaling mentioned by
Rienstra and Peake [37]. The problem of sound in a duct with uniform flow and a MSD lining is therefore
illposed if da0. If d ¼ 0 then we are in the different regime m ¼ 1 and A ¼ iR, so that as k!�1, there exists
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Fig. 4. Plot of �ImðNÞ against R, defined by Eq. (8) with A ¼ iR, for four mean flow velocities U ¼ 0:1; 0:3; 0:5; 0:8. Also plotted are the

asymptotics given in Eq. (9).
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a surface mode for which

ImðoÞ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RU=2

p
jkj if R51,

ImðoÞ� �
U2jkj

bR
if Rb1, (9)

so that the problem is still illposed in these regimes. If R ¼ Oð1Þ we must proceed by solving the full quartic
equation. Fig. 4 plots�ImðNÞ against R for a variety of subsonic Mach numbers U, and demonstrates that in all
cases there exists a solution N with ImðNÞo0, while also showing the accuracy of the asymptotics from Eq. (9) in
their respective regimes. This demonstrates that the MSD model is illposed for all values of R even when d ¼ 0.

We next consider the EHR model in Eq. (3). We are interested in ImðoÞ being large and negative, and since
cotðxþ iyÞ ! i as y!�1, we have

ioZ ¼ �do2 þ ioðRþ nÞ þOðo expf2 ImðoÞgÞ.

This is the same as for the MSD impedance with R replaced by Rþ n. We therefore have the same behaviour,
namely ImðoÞ ! �1 as jkj ! 1, so that the EHR model is also illposed.

We have therefore demonstrated that the MSD and EHR models are illposed for uniform mean flow
0oUo1, for any dX0. Moreover, exactly the same argument shows that this illposedness holds true for any

locally reacting linear lining such that, as ImðoÞ ! �1, either ioZ�Aom for m41 or ioZ�Ao for ImðAÞ40.
This covers a very general class of lining models.

4. Conclusion

The debate about the possible existence of an instability of uniform slipping mean flow over a linearly
reacting acoustic lining has been explained by the discovery that the problem is illposed, at least for the lining
models considered here. This explains the tentativeness of previous stability analyses [2,9,24], the confusion
over the direction of propagation of ‘‘strange’’, or surface, modes [20,26,28,31–35,37], and the apparent
numerical instability of time-domain simulations of flow over acoustic linings [4,14–19]. While the term
illposed has been used with varying meaning in the acoustics literature (e.g. [4]), here it is used in its formal
functional-analysis sense [30].

The stability criterion of [24,26,27], as described by Rienstra [28] as the ‘‘Crighton–Leppington’’ criterion,
has no rigorous mathematical derivation, and has been shown to incorrectly predict the stability of the wave-
like differential equation example 1. Its use should therefore be strongly discouraged. This criterion differs
from the one described by Crighton and Leppington [29], which is a similar, although less general, version of
the Briggs–Bers criterion; moreover, Crighton and Leppington never relied on their time-harmonic analysis,
but instead gave explicit causal solutions in terms of ultradistributions (which would be impossible to simulate
numerically).

The problem of acoustics in lined ducts with uniform mean flow has been shown to be illposed for a large
class of lining models, including the mass–spring–damper and enhanced Helmholtz resonator models. Being
illposed implies that there is no regular mathematical solution to the problem, essentially because the equation
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permits exponential growth expfZtg for arbitrarily large Z, and so the solution at time t in the limit t! 0 does
not necessarily coincide with the initial conditions. Not having a regular mathematical solution makes it
impossible to analyse stability. Since there is no regular mathematical solution to expand in terms of duct
modes of single frequencies, single-frequency analyses are at best contradictory, and at worst invalid, causing
problems with frequency-domain simulations, mode-matching, and scattering. Being illposed with ImðoÞ !
�1 as jkj ! 1 also means that numerical simulations in the time domain become unstable at the grid scale
for all sufficiently fine grids, since the problem possesses arbitrarily quick growth at arbitrarily short
wavelengths. Simply filtering out the instability is not satisfactory, since there is no reason the filtered
numerical solution should be connected to the underlying physical system being modelled. We would therefore
strongly discourage the use of illposed models.

The illposed problem of perturbations to a vortex sheet was regularized by Jones [38] by considering a
boundary layer of finite thickness h, with the previous illposed behaviour [29,39] recovered in the limit h! 0.
This is comparable to the regularization of the mass–spring–damper lining model by considering the boundary
as a thin shell [36], where the problem is wellposed for thin shell thicknesses h40, and the
mass–spring–damper model is recovered in the limit h! 0. Of course, the thin-shell regularization is not a
correct model for the actual physics of an acoustic lining; a wellposed model of the actual physics would
obviously be preferable. It has been suggested [6,17,40–42] that modelling the shear layer over the lining is
important, rather than the assumption of a vortex sheet [5,6], particularly for upstream-propagating sound,
and this would seem to agree with Jones’ regularization of the Kelvin–Helmholtz instability. However, a shear
layer model brings with it its own problems, such as the hydrodynamic continuous spectrum and thereby the
lack of solutions expressible as a sum of duct modes.

Appendix A

A.1. A detailed description of the Briggs– Bers stability criterion

The Briggs–Bers criterion [21,22] is effectively a Fourier–Laplace transform method. Consider the linear
partial differential equation

D i
q
qx
;�i

q
qt

� �
Gðx; tÞ ¼ 0, (A.1)

where D is the differential operator. We wish to analyse the stability of this system at a frequency of 2 R. As
described by Briggs, we introduce a harmonic point-forcing term dðxÞHðtÞ expfiof tg to the right-hand side of
Eq. (A.1), and then require that G � 0 for to0 in order to satisfy causality. To solve this, we consider the
transformation

G̃ðk;oÞ ¼
Z 1
0

Z 1
�1

Gðx; tÞ expfikx� iotgdxdt.

Note that this is a Fourier transform x! k and a Laplace transform t! io, the usual Laplace transform
variable being s ¼ io. These transformations are only valid provided the integrals converge.1 Transforming
the differential equation with the added forcing term then gives

Dðk;oÞG̃ðk;oÞ ¼
�i

o� of

,

where Dðk;oÞ is just a polynomial in k and o. Inverting this transform gives the exact analytic solution

Gðx; tÞ ¼
1

4p2

Z
Co

Z
Ck

�i expfiot� ikxg

ðo� of ÞDðk;oÞ
dk do, (A.2)
1For the t-integral, convergence requires that ImðoÞ be sufficiently negative (so that ReðsÞ is sufficiently large) that the integrand tends to

zero as t!1. For the x-integral, we require that jGðx; tÞj ! 0 sufficiently fast as jxj ! 1, where sufficiently fast means fast enough that

we may differentiate under the integral the number of times required by the differential equation (exponential decay is sufficient, but not

necessary). These conditions will be seen to be satisfied in what follows.
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where Co and Ck are the inversion contours. Since the k-integral is a Fourier inversion, the Ck contour is along
the real-k-axis. For xo0 the contour may be closed in the upper-half k-plane and Jordan’s Lemma applied,
showing that for xo0 the solution is given as a sum of residues of poles (i.e. modes) in the upper-half k-plane,
and similarly for x40 and modes in the lower-half k-plane. The Co contour will be chosen to ensure that there
are no poles for real k, which ensures that Gðx; tÞ has suitable behaviour as jxj ! 1, as required for the
convergence of the integrals above, since all modes will then decay exponentially quickly as jxj ! 1. For the
o-integral, which is a Laplace inversion contour, the inversion contour for s ¼ iomust be taken to the right of
all poles of the integrand, so that Co must be taken below all poles of the integrand for any real k. This
requirement ensures that there are no poles for real k, and also that the solution is causal, since for to0 the
inversion contour may be closed in the lower-half o-plane and Jordan’s Lemma applied to give G � 0 for to0.
It is also equivalent to the requirement of taking ImðoÞ sufficiently negative that the forward-transform
integral converges.

Now that we have the full analytic solution (in integral form), we may assess the stability of the original
differential equation by looking at the long-time (large-t) limit. The large-t limit is found by deforming the Co

contour upwards in the o-plane, maintaining analyticity by deforming the contour around any poles of the
integrand. The exponentially dominating large-t contribution is then from the lowest pole in the o-plane, with
all other contributions from the remainder of the contour being exponentially small in comparison.

During this process, the Ck contour may need to be deformed in order that no poles cross this contour in the
k-plane, thereby maintaining the correct analytic continuation. In certain cases, two modes occurring on either
side of the Ck contour may coincide as the Co contour is deformed and pinch the Ck contour. Overall, there
are three possibilities:
(a)
 The Co contour may be deformed into the upper-half o-plane, with the only deformation necessary being
around the pole at of on the real axis, and no deformation of the Ck contour being necessary. The
dominant large-t contribution therefore comes from the pole at of . The solution for xo0 is hence a sum of
modes of the form expfiof t� ikxg, where k satisfies the dispersion relation Dðk;of Þ ¼ 0 and k lies in the
upper-half k-plane. Similarly, the solution for x40 is the sum of poles occurring in the lower-half k-plane.
Since all of these modes decay exponentially as jxj ! 1, the system is stable.
If there are poles on the real-k-axis for of , say Dðk0;of Þ ¼ 0 with k0 2 R, care must be taken to assign
these to the correct side of the point forcing. For o ¼ of � ie, we have k ¼ k0 � ie=ðdo=dkÞ þOðe2Þ, so
that if the group velocity do=dk has a positive real part the mode will have originated from below the Ck

contour and will therefore be present for x40, whereas if the group velocity has a negative real part the
mode will be present for xo0. In both of these cases the system is referred to as being neutrally stable, and
modes with k 2 R are called propagating. If the group velocity is purely imaginary, either higher order
terms must be consulted or the trajectory of the mode plotted to determine if it is left- or right-
propagating.
(b)
 If the Co contour deformation into the upper-half k-plane (and around the pole at of ) is possible, but the
Ck contour needed to be deformed to do so because of poles in the k-plane crossing the real-k-axis, the
large-t solution is still a sum of modes of the form expfiof t� ikxg, as in (a), with k being solutions of
Dðk;of Þ and modes below the Ck contour occurring for x40 and modes above for xo0. However, it is
now possible that a mode that started in one half of the k-plane finishes in the other, and therefore grows
exponentially in space as jxj ! 1; in this case, the system is referred to as being convectively unstable. The
sign of the group velocity is also no longer conclusive in determining the direction of propagation of the
propagating modes, and the trajectories of these modes must now be plotted.
(c)
 Finally, if two modes in the k-plane from opposite sides of the Ck contour coincide and pinch the Ck

contour, say when o ¼ op and k ¼ kp, the Co contour cannot be deformed further through this point
while maintaining analytic continuity. In fact, locally about this point, Dðkp þ dk;op þ doÞ ¼
adoþ bdk2

þOðdo2; dk3
Þ, so that the k-poles locally about o ¼ op þ do are given by k ¼ kp�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ado=b
p

, and a branch cut in the o-plane is necessary. Taking this branch cut to be along o ¼
op þ iy for y40, the Co contour must be deformed around the singularity at o ¼ op and along the branch
cut. The large-t contribution from this part of the integral can be shown to be of the form expfiopt�

ikpxg=
ffiffi
t
p

for both xo0 and x40, and since ImðopÞo0, it is this that dominates the large-t solution, rather
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than the pole at of . The system therefore chooses its own frequency at which to be unstable, and the
solution grows exponentially in t for any position x; this is referred to as absolute instability.
This forms the Briggs–Bers stability criterion. First, we look for any values of o with ImðoÞo0 which leads
to a double root in the k-plane, and investigate whether any such o involve the collision of modes from

opposite sides of Ck. If so, the system is absolutely unstable, irrespective of the frequency we attempt to force
it at. Otherwise, the system may be stable or convectively unstable, with the long-time solution being time-
harmonic at the forcing frequency of . The direction of propagation of modes may be found by tracking their
location as o is varied as o ¼ of þ iy, with y starting suitably negative (we require yoImðoÞ for any solution
for o of Dðk;oÞ ¼ 0 for k 2 R, as this means we start below the original Co contour). The direction of
propagation of a mode kðof Þ is given by which side of the real-k-axis it starts on, so that modes that start on
one-side and end on the other as y goes from suitably negative to zero correspond to convective instabilities.
We look at some examples of how this criterion is applied in Section 2.3.

For the Briggs–Bers method to be valid, we required that the initial Co contour be chosen below all values
of o for which Dðk;oÞ ¼ 0 for any value of k 2 R, or looked at another way, we require the Laplace transform
to be defined for at least some values of s. However, in some problems, such as for the Kelvin–Helmholtz
instability of a vortex sheet, ImðoÞ is not bounded below, and so it is not possible to choose such an inversion
contour; such problems are illposed, as described in Section 3.
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