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Abstract

When a vibrating structure is rotated with respect to inertial space, the vibrating pattern rotates at a rate proportional to

the inertial rate of rotation. Bryan first observed this effect in 1890. The effect, called Bryan’s effect in the sequel, has

numerous navigational applications and could be useful in understanding the dynamics of pulsating stars and earthquake

series in astrophysics and seismology. Bryan’s factor (the coefficient of proportionality between the inertial and vibrating

pattern rotation rates) depends on the geometry of the structure and the vibration mode number. The ‘‘gyroscopic effects’’

of a hollow isotropic solid sphere filled with an inviscid acoustic medium are considered here, but the theory is readily

adapted to a hollow isotropic solid cylinder filled with an inviscid acoustic medium. A linear theory is developed assuming,

among other mild conditions, that the rotation rate is constant and much smaller than the lowest eigenfrequency of the

vibrating system. Thus centrifugal forces are considered to be negligible. Before calculating solutions for the displacement

of a particle in the isotropic, spherical, distributed body, Bryan’s factor is interpreted using a complex function. Here it is

demonstrated that neither Bryan’s effect nor Bryan’s factor is influenced by including light, isotropic, viscous damping in

the mathematical model. Hence damping is neglected in the sequel. Two scenarios are then identified. Firstly, we may

assume that the acoustic medium is completely involved in the rotation (the spheroidal mode). Secondly, we may assume

that the acoustic medium remains static with respect to the inertial reference frame (the torsional mode). We investigate the

spheroidal mode using a numerical experiment that compares the rotational angular rate of a sphere (filled with an inviscid

acoustic medium) with those of its vibrating patterns at both high and low vibration frequency.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When a vibrating structure is subjected to a rotation, the vibrating pattern rotates at a rate proportional to
the inertial angular rate. This effect, known as ‘‘Bryan’s effect’’ in the sequel, was first observed by Bryan in
1890 [1]. For the constant of proportionality, Bryan made the following calculation for a body consisting of a
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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ring or cylinder:

BF ¼
Angular velocity of the vibrating pattern

Inertial angular velocity of the vibrating body
(1)

for various modes of vibration. This constant of proportionality BF has come to be known as ‘‘Bryan’s
factor’’. In 1988, Zhuravlev and Klimov [2] investigated Bryan’s factor for an elastic, isotropic, spherically
symmetric body, rotating in three-dimensional space. Among other results, Zhuravlev and Klimov
demonstrated that Bryan’s factor depends on the vibration mode. Zhuravlev and Klimov’s concise
formulation is given in general terms without computational detail or assumptions on the magnitude of
rotation or illustrative examples. We assume ‘‘slow rotation’’ (explained below) of spherical bodies consisting
of concentric layers of elastic and/or acoustic media, we supply some detail of computations and we present an
illustrative example. We do not assume a ‘‘thin shell theory’’, as Loveday and Rogers [3] do, where they
considered Bryan’s effect in a thin cylindrical shell for both high and low rotational rates. The effect has
numerous navigational applications, and Loveday and Rogers list some papers dealing with this. Apart from
navigational applications, the theory presented below could be useful in understanding the dynamics of
pulsating stars and earthquake series in astrophysics and seismology. What we discuss below is also applicable
to an isotropic solid sphere with distributed parameters in the form of concentric isotropic solid spherical
layers. The theory is readily adapted to an isotropic solid cylinder consisting of concentric layers or a hollow
isotropic solid cylinder containing an inviscid acoustic medium. Situations where damping can be neglected
exist (see for instance the patent of Loper and Lynch [4]). If damping is present in the media we expect to
encounter, it will be light in the sense that the ‘‘damping factor’’ will be substantially smaller than the lowest
eigenvalue of the system. Using Rayleigh’s dissipation function [5], we demonstrate that light, isotropic,
viscous damping does not influence Bryan’s effect or Bryan’s factor (1). Hence, in the sequel, we assume that
the body is subjected to non-decaying vibrations in one of its natural modes. The introduction of prestress and
mass-stiffness imperfections (anisotropic damping effects) into the calculations is important for real-life
situations (as opposed to ideal situations) and has been earmarked by us for further study.

Consider a coordinate system Oxyz and a composite spherical body, with its centre at the origin O,
consisting of concentric solid and or acoustic layers. Let N be the number of concentric spherical media in the
system and ai�1 and ai the inner and outer radii of the ith body, respectively, i ¼ 1; . . . ;N. We convert to
spherical coordinates Oryf as depicted in Fig. 1, where we have adopted the notation of Spiegel [6].

Consider the position of rest Pðr; y;fÞ of a vibrating particle in the ith body, ai�1prpai. Let r̂ be the unit
vector in the direction of increasing r. Hence the position vector of the point Pðr; y;fÞ is r ¼ rr̂. Consider the
usual unit vectors /̂ ¼ ðqr=qfÞ=jqr=qfj (in the direction of increasing fÞ and ĥ ¼ ðqr=qyÞ=jqr=qyj (in the
direction of increasing yÞ. Let wi þ ui þ vi (where wi ¼ wi r̂; ui ¼ uiĥ and vi ¼ vi/̂) represent the displacement
from the position of rest of the vibrating particle in the ith body (see Fig. 1). For the sake of simplicity we
Fig. 1. Coordinate system for the spherical body.



ARTICLE IN PRESS
M.Y. Shatalov et al. / Journal of Sound and Vibration 322 (2009) 1038–10471040
suppress subscripts i when no confusion is expected. The position vector of the vibrating particle is thus

R ¼ ðrþ wÞr̂þ uĥþ v/̂. (2)

Now consider an inertial coordinate system OXYZ with origin O where initially the X ;Y ;Z-axes correspond
to the x; y; z-axes, respectively. Let the spherical body (the Oryf � Oxyz system) rotate about the z-axis with a
small constant angular rate O with respect to inertial space OXYZ. If k̂ is the unit vector in the direction of
increasing z, then the angular velocity X of the body is

X ¼ Ok̂ ¼ Oðr̂ cos y� ĥ sin yÞ. (3)

By ‘‘smallness’’ of the angular rate of rotation O we mean that this rate is substantially smaller than the lowest
eigenvalue of the system. Consequently, we will neglect centrifugal effects and all other terms of OðO2Þ:

2. Gyroscopic effects in distributed bodies

The mathematical formulation given below (in spherical coordinates) is presented within the framework of
the linearized, three-dimensional theory of elasticity and is similar to that presented by Berliner and Solecki [7]
for cylindrical coordinates. With Lagrange’s equations (see Ref. [6]) in mind, we formulate expressions for the
(approximate) kinetic and potential energies of the system of concentric spherical bodies. The absolute linear
velocity of the vibrating particle is

V ¼
dR

dt
þX� R ¼ ð _w� Ov sin yÞr̂þ ð _u� Ov cos yÞĥþ ð_vþ Oðu cos yþ ðrþ wÞ sin yÞÞ/̂. (4)

The approximate kinetic energy of the system of concentric spherical bodies is given by

K ¼
1

2

XN

i¼1

ri

Z 2p

0

Z p

0

Z ai

ai�1

fð _u2
i þ _v

2
i þ _w2

i Þ þ 2O½ðui _vi � _uiviÞ cos yþ ð_viðrþ wiÞ � vi _wiÞ sin y�gr2 sin ydrdydf. (5)

The potential energy of the system of concentric spheres is

P ¼
1

2

XN

i¼1

Z 2p

0

Z p

0

Z ai

ai�1

fsi;rr�i;rr þ si;yy�i;yy þ si;ff�i;ff þ si;ry�i;ry þ si;yf�i;yf þ si;rf�i;rfgr
2 sin ydrdydf, (6)

where we use ‘‘r’’ for mass density, ‘‘s’’ for stress and ‘‘�’’ for strain. We indicate Lamé’s constants (from the
theory of elasticity) by li and mi for the ith body. In a spherical coordinate system, with the subscript i

suppressed, a standard reference such as Redwood [8] yields stresses

srr ¼ lð�rr þ �yy þ �ffÞ þ 2m�rr; syy ¼ lð�rr þ �yy þ �ffÞ þ 2m�yy,

sff ¼ lð�rr þ �yy þ �ffÞ þ 2m�ff,

sry ¼ m�ry; syf ¼ m�yf; srf ¼ m�rf (7)

and strains

�rr ¼
qw

qr
; �yy ¼

1

r

qu

qy
þ w

� �
; �ff ¼

1

r
u cot yþ

1

sin y
qv

qf
þ w

� �
,

�ry ¼
qu

qr
þ

1

r

qw

qy
� u

� �
; �yf ¼

1

r

1

sin y
qu

qf
þ

qv

qy
� v cot y

� �
,

�rf ¼
qv

qr
þ

1

r

1

sin y
qw

qf
� v

� �
. (8)

Assume that we can express the magnitude of the displacements ui; vi and wi of the vibrating particle P in the
ith body as follows:

uiðr; y;f; tÞ ¼ Uiðr; yÞ½CðtÞ cosmfþ SðtÞ sinmf�, (9a)
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viðr; y;f; tÞ ¼ V iðr; yÞ½CðtÞ sinmf� SðtÞ cosmf�, (9b)

wiðr; y;f; tÞ ¼W iðr; yÞ½CðtÞ cosmfþ SðtÞ sinmf�, (9c)

where the nature of the functions CðtÞ and SðtÞ is still to be determined, Uiðr; yÞ; V iðr; yÞ and W iðr; yÞ are
eigenfunctions of the system and m is the circumferential wavenumber.

Substituting Eq. (9) into Eqs. (8), (7), (6) and (5) involves a long algebraic calculation. A computer algebra
system is handy for checking the calculation that yields

K ¼ p½I0ð _C
2
þ _S

2
Þ þ 2OI1ð _CS � C _SÞÞ� (10)

and

P ¼ pI2ðC
2 þ S2Þ. (11)

Here

I0 ¼
1

2

XN

i¼1

ri

Z p

0

Z ai

ai�1

ðU2
i þ V2

i þW 2
i Þr

2 sin ydrdy (12)

and

I1 ¼
XN

i¼1

ri

Z p

0

Z ai

ai�1

ðUi cos yþW i sin yÞV ir
2 sin ydrdy. (13)

The detail of the technically complex, positive integral I2 is unnecessary for what follows. However, I2 can be
computed readily with the aid of a computer algebra system. Because K ¼ KðC;S; _C; _SÞ and P ¼ PðC;SÞ, the
Lagrangian

LðC;S; _C; _SÞ ¼ K � P (14)

yields two equations of motion from Lagrange’s equations (see Ref. [5]):

d

dt

qL

q _C
�

qL

qC
¼ �

qF

q _C
, (15a)

d

dt

qL

q _S
�

qL

qS
¼ �

qF

q _S
, (15b)

where

F ¼ 1
2
ðc _C

2
þ s _S

2
Þ (16)

is Rayleigh’s dissipation function, c and s are viscous damping constants. Anisotropic damping effects caused
by imperfections in the media are beyond the scope of this paper and are left for future study. We assume
isotropic damping, that is, c ¼ s ¼ pD, say. We further assume that for the media we will encounter, the
‘‘damping factor’’

d ¼
D

2I0
(17)

is substantially smaller than the lowest eigenvalue of the vibrating system. Computation of Eqs. (15) yields a
coupled system of second-order, linear, ordinary differential equations (ODE):

€C þ 2ZO _S þ o2C þ 2d _C ¼ 0, (18a)

€S � 2ZO _C þ o2S þ 2d _S ¼ 0, (18b)

where

�1pZ ¼
I1

I0
p1 (19)
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and

o2 ¼
I2

I0
. (20)

We now show that Z in Eq. (19) is Bryan’s factor as given by Eq. (1) and that o in Eq. (20) is an eigenvalue for
the vibrating system.

In order to interpret what the system of ODE (18) represents, combine the two equations by considering the
complex function Z ¼ C þ iS to obtain the single equation

€Z þ 2ðd� iZOÞ _Z þ o2Z ¼ 0. (21)

Writing Z in polar form

ZðtÞ ¼ Y ðtÞeibðtÞ (22)

and assuming that bðtÞ has the linear form

bðtÞ ¼ at, (23)

while Y ðtÞ decays according to

Y ðtÞ ¼ X ðtÞe�bt, (24)

then

Z ¼ X ðtÞeðia�bÞt (25)

and substituting into Eq. (21), we obtain the ODE

€X þ 2½ðia� bÞ þ ðd� iZOÞ� _X þ ½2ðd� iZOÞðia� bÞ þ ðia� bÞ2 þ o2�X ¼ 0. (26)

If we choose a ¼ ZO and b ¼ d, then the coefficient of _X vanishes in Eq. (26) and we obtain the ODE

€X þ l2X ¼ 0, (27)

where

l2 ¼ o2 � ðd� iZOÞ2

¼ o2 þ Z2O2 � d2 þ 2iZOd. (28)

Neglecting OðO2Þ, OðOdÞ and Oðd2Þ we obtain

l � o. (29)

Consequently Eq. (27) approximates the equation of motion of an harmonic oscillator. Eqs. (18) can now be
viewed in the form

ZðtÞ ¼ ½e�dtX ðtÞ�eiZOt. (30)

These equations represent a ‘‘vector’’ in the complex plane with its size varying like a damped harmonic
oscillator and its position varying at a rate ZO (in the rotating reference frame Oxyz). Thus, according to
Eq. (1), Z is Bryan’s factor for the system. Consequently, neither Bryan’s effect nor the value of Bryan’s factor
Z depend on the inclusion of light, isotropic, viscous damping in the model and so we will neglect damping in
the sequel. The rotation of the vibrating pattern is in the direction of rotation of the system if Z40 and in the
opposite direction if Zo0. Eqs. (27) and (28) show that o is an eigenvalue of the vibrating system.

3. Equations of motion and their solutions

Using Redwood [8] and our notation for stresses, the equations of motion of an isotropic solid body in
spherical coordinates are

r
q2u

qt2
¼

qsrr

qr
þ

1

r

qsry

qy
þ

1

r sin y
qsrf

qf
þ

2srr � syy � sff þ cot y sry

r
, (31a)
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r
q2v

qt2
¼

qsry

qr
þ

1

r

qsyy
qy
þ

1

r sin y
qsyf
qf
þ

3sry þ cot yðsyy � sffÞ
r

, (31b)

r
q2w
qt2
¼

qsrf

qr
þ

1

r

qsyf
qy
þ

1

r sin y
qsff
qf
þ

3srf þ 2 cot ysyf
r

. (31c)

The stresses are given by Eq. (7).
Eqs. (31) are coupled second-order partial differential equations (PDE) of the three displacement

components u, v and w. They can be uncoupled directly, but this leads to a sixth-order PDE. Hence, in a
manner similar to that explained in Eringen and Suhubi [9] (and Ref. [7] for cylindrical coordinates), we
express the displacement components in terms of derivatives of potentials F ¼ Fðr; y;fÞ, w ¼ wðr; y;fÞ and
C ¼ Cðr; y;fÞ as follows:

u ¼
1

r

q
qy

Fþ
qðrwÞ
qr

� �
þ

1

‘ sin y
qC
qf

� �
eiot, (32a)

v ¼
1

r sin y
q
qf

Fþ
qðrwÞ
qr

� �
�

1

‘

qC
qy

� �
eiot, (32b)

w ¼
qF
qr
þ

q2ðrwÞ
qr2
þ r

ro2

m
w

� �� �
eiot, (32c)

where o is the eigenvalue mentioned in Eq. (20) and ‘ is a non-zero constant with the dimension of length.
When Eqs. (32) are substituted into Eqs. (31) and the resulting equations of motion are uncoupled, it is found
that each potential F, w and C satisfies the Helmholtz equations

r2Fþ k2
1ðoÞF ¼ 0; r2wþ k2

2ðoÞw ¼ 0; r2Cþ k2
2ðoÞC ¼ 0 (33)

with k2
1ðoÞ ¼ ro2=ðlþ 2mÞ, k2

2ðoÞ ¼ ro2=m and r2 the Laplace operator in spherical coordinates.
The solutions to Eqs. (33) are

Fm;nðr; y;f;oÞ ¼ ½B1jnðk1ðoÞrÞ þ B2ynðk1ðoÞrÞ�Pm
n ðcos yÞ cosðmfÞ, (34a)

wm;nðr; y;f;oÞ ¼ ½B3jnðk2ðoÞrÞ þ B4ynðk2ðoÞrÞ�Pm
n ðcos yÞ cosðmfÞ, (34b)

Cm;nðr; y;f;oÞ ¼ ½B5jnðk2ðoÞrÞ þ B6ynðk2ðoÞrÞ�Pm
n ðcos yÞ sinðmfÞ, (34c)

where, as usual, jnðkrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=ð2krÞÞ

p
Jnþ1=2ðkrÞ and ynðkrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=ð2krÞÞ

p
Y nþ1=2ðkrÞ, where Jnþ1=2 and Y nþ1=2

represent Bessel and Neumann functions, respectively, while Pm
n is the associated Legendre polynomial. The

symbols B1;B2; . . . ;B6 are arbitrary constants (if the body contains the centre O, then the constants
B2 ¼ B4 ¼ B6 ¼ 0).

The motion of a compressible inviscid acoustic medium is represented by the following wave equation:

r2pþ k2
3ðoÞp ¼ 0 (35)

with k2
3ðoÞ ¼ Eðf Þ=rðf Þ, where Eðf Þ is the bulk modulus and rðf Þ the mass density of the acoustic medium. The

solution to this equation is

pm;nðr; y;f; tÞ ¼ f½B7jnðk3ðoÞrÞ þ B8ynðk3ðoÞrÞ�Pm
n ðcos yÞ cosðmfÞgeiot (36)

with p ¼ pm;nðr; y;f; tÞ the pressure in the acoustic medium. Particle displacement of the acoustic medium in
the radial direction is

wðf Þ ¼
1

rðf Þo2

� �
qp

qr
. (37)
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4. Boundary conditions and eigenfunctions

Observing Eqs. (32), it is possible to distinguish between spheroidal and torsional modes. For instance, if the
potentials F � w � 0, then radial displacement w ¼ 0 and only tangential vibration occurs. This is called the
torsional mode. For the spheroidal mode we assume that C � 0 and radial vibration also occurs. For the
spheroidal mode the stress components of the solid are

srr ¼ m
q2F
qr2
� lk2

1ðoÞF
� �

þ 2m
q
qr

q2ðrwÞ
qr2
þ rk2

2ðoÞw
� �

, (38a)

sry ¼
2m
r

q
qy

qF
qr
�

F
r

� �
þ r

q2w
qr2
þ

qw
qr
þ

rk2
2ðoÞ
2
�

1

r

� �
w

� �� �
, (38b)

srf ¼
2m

r sin y
q
qf

qF
qr
�

F
r

� �
þ r

q2w
qr2
þ

qw
qr
þ

rk2
2ðoÞ
2
�

1

r

� �
w

� �� �
. (38c)

For the torsional mode the corresponding stress components are

sry ¼
m

a sin y
q
qf

qC
qr
�

C
r

� �
, (39a)

srf ¼ �
m
a

q
qy

qC
qr
�

C
r

� �
. (39b)

Because, in the ideal case, we consider the acoustic medium to be inviscid, there will be no interaction between
the medium and the solid on the boundary (there are no shear forces). Hence we do not discuss the torsional
mode further in this paper.

Let us model a hollow sphere consisting of an outer layer of solid phase substance for a ¼ a1prpa2 ¼ b

that is filled with an inviscid acoustic medium for 0 ¼ a0prpa1. Considering the spheroidal mode, the
following solutions are obtained:

pm;nðr; y;f; tÞ ¼ ½A1jnðk3ðoÞrÞ�Pm
n ðcos yÞ cosðmfÞeiot, (40)

Fm;nðr; y;f;oÞ ¼ ½A2jnðk1ðoÞrÞ þ A3ynðk1ðoÞrÞ�Pm
n ðcos yÞ cosðmfÞ, (41a)

wm;nðr; y;f;oÞ ¼ ½A4jnðk2ðoÞrÞ þ A5ynðk2ðoÞrÞ�Pm
n ðcos yÞ cosðmfÞ. (41b)

Boundary conditions of the system define the eigenvalues o. The boundary conditions below express the
balance between the radial components of stress and the pressure between the solid and acoustic medium and
the equality of their radial displacements at r ¼ a. They also describe the absence of stresses at the outer
surface of the solid spherical layer at r ¼ b:

m
q2F
qr2
� lk2

1ðoÞF
� �

þ 2m
q
qr

q2ðrwÞ
qr2
þ rk2

2ðoÞw
� �� �				

r¼a

¼ �p
		
r¼a

, (42a)

qF
qr
þ

q2ðrwÞ
qr2
þ rk2

2ðoÞw
� �� �				

r¼a

¼
1

rðf Þo2

qp

qr

� �				
r¼a

, (42b)

qF
qr
�

F
r

� �
þ r

q2w
qr2
þ

qw
qr
þ

rk2
2ðoÞ
2
�

1

r

� �
w

� �� �				
r¼a

¼ 0 (42c)

and

m
q2F
qr2
� lk2

1ðoÞF
� �

þ 2m
q
qr

q2ðrwÞ
qr2
þ rk2

2ðoÞw
� �� �				

r¼b

¼ 0, (43a)
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qF
qr
�

F
r

� �
þ r

q2w
qr2
þ

qw
qr
þ

rk2
2ðoÞ
2
�

1

r

� �
w

� �� �				
r¼b

¼ 0. (43b)

By substituting C � 0 and Eqs. (41) into Eqs. (32) and simplifying, we obtain the following eigenfunctions
(where superscript (f ) indicates the quantities for the acoustic medium):

Uðr; yÞ ¼
1

r
fA2jnðk1rÞ þ A3ynðk1rÞ þ A4½ðnþ 1Þjnðk2rÞ � k2rjnþ1ðk2rÞ�

þ A5½ðnþ 1Þynðk2rÞ � k2rynþ1ðk2rÞ�g

� �ðnþ 1Þ cot y Pm
n ðcos yÞ þ

n�mþ 1

sin y
Pm

nþ1ðcos yÞ
� �

, (44)

V ðr; yÞ ¼ �
m

r sin y
fA2jnðk1rÞ þ A3ynðk1rÞ þ A4½ðnþ 1Þjnðk2rÞ � k2rjnþ1ðk2rÞ�

þ A5½ðnþ 1Þynðk2rÞ � k2rynþ1ðk2rÞ�gP
m
n ðcos yÞ, (45)

W ðr; yÞ ¼ A2
n

r
jnðk1rÞ � k1jnþ1ðk1rÞ

h i
þ A3

n

r
ynðk1rÞ � k1ynþ1ðk1rÞ

h i�

þ A4
nðnþ 1Þ

r
jnðk2rÞ

� �
þ A5

nðnþ 1Þ

r
ynðk2rÞ

� ��
Pm

n ðcos yÞ, (46)

U ðf Þðr; yÞ ¼
1

r
A1jnðk3rÞ �ðnþ 1Þ cot yPm

n ðcos yÞ þ
n�mþ 1

sin y
Pm

nþ1ðcos yÞ
� �

, (47)

V ðf Þðr; yÞ ¼ �
m

r sin y
A1jnðk3rÞPm

n ðcos yÞ, (48)

W ðf Þðr; yÞ ¼ A1
n

r
jnðk3rÞ � k3jnþ1ðk3rÞ

h in o
Pm

n ðcos yÞ. (49)
4.1. Example

Let us consider the spheroidal vibrations of a spherical layer (with inner radius a ¼ 0:4m, outer radius
b ¼ 0:5m), made from brass (E ¼ 100MPa, r ¼ 8500 kgm�3, and Poisson’s ratio n ¼ 0:34) and filled with
water (Eðf Þ ¼ 2:2MPa, rðf Þ ¼ 1000 kgm�3) that is rotating at a constant rate.

Suppressing the mode number subscripts m; n; from Eq. (19), Bryan’s factor for this structure is given by

Z ¼
2
R p
0

R a

0 r
ðf ÞðU ðf Þ cos yþW ðf Þ sin yÞV ðf Þr2 drþ

R b

a
rðU cos yþW sin yÞV r2 dr

h i
sin ydy

n o
R p
0

R a

0
rðf ÞðU ðf Þ2 þ V ðf Þ2 þW ðf Þ2Þr2 drþ

R b

a
rðU2 þ V 2 þW 2Þr2 dr

h i
sin y dy

. (50)

Calculations of eigenvalues and the corresponding Bryan’s factors are given in Table 1.

5. Conclusions and discussions

Gyroscopic effects in rotating symmetrically distributed spherical bodies were considered and the
dependence of the rate of rotation of the vibrating pattern on the inertial angular rate of the system
determined. This dependence is described by the so-called ‘‘Bryan’s factor’’ which is calculated in spherical
coordinates without using ‘‘thin shell theory’’. It is pointed out that the theory is readily adaptable to
symmetrically distributed cylindrical bodies. It was demonstrated that neither Bryan’s effect nor Bryan’s
factor depend on light, isotropic, viscous damping and consequently damping was neglected in the
mathematical models. The introduction of prestress and mass-stiffness imperfections (anisotropic damping
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Table 1

Eigenvalues and corresponding Bryan’s factor.

n m o1 (Hz) o2 (Hz) o3 (Hz) o4 (Hz) o5 (Hz)

Z1 Z2 Z3 Z4 Z5

2 2 1791 1972 2094 2989 4302

0.9107 �0.7738 �0.7952 0.4319 �0.0848

3 2 2664 2916 3605 4101 5066

�0.4775 �0.547 �0.5559 0.2860 �0.0648

3 3 2664 2916 3605 4101 5066

�0.7162 �0.8204 �0.8339 0.4290 �0.0973

4 2 3332 3981 5071 5194 5807

�0.3366 �0.4397 0.1735 0.1635 �0.0521

4 3 3332 3981 5071 5194 5807

�0.5048 �0.6596 0.2602 0.2453 �0.0781

4 4 3332 3981 5071 5194 5807

�0.6731 �0.8795 0.3470 0.3270 �0.1041
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effects) into the calculations is important for real-life situations (as opposed to ideal situations) and has been
earmarked by us for further study.

Solutions to the dynamic equations of elastic solid and inviscid acoustic bodies composed of concentric
spherical layers were obtained and boundary conditions formulated for calculating eigenvalues and
eigenfunctions for the system.

The results of the general theory were applied to an example of a rotating elastic, spherical layer (brass)
filled with an acoustic medium (water, assumed to be inviscid). Eigenvalues and Bryan’s factors were
calculated and tabulated for various vibration modes. It was observed that negative Bryan’s factors
predominate in the table. However, no discernible pattern for the sign of Bryan’s factor is obvious from the
table. Furthermore, for low eigenvalues and circumferential wavenumbers, the difference between the
rotational angular rates of the hollow sphere filled with an acoustic medium and those of its vibrating patterns
is small (jZj � 1). However, this difference is large for higher modes and eigenvalues of the system (jZj � 0).

It is pointed out that earthquakes and pulsating stars might be better understood by introducing Bryan’s
effect into appropriate models.

We believe that we now know more about the operation of a hemispherical resonator gyroscope [4].
Roughly speaking, suppose that a vibrating hemisphere is fixed to a vehicle moving through three-dimensional
space and that an electronic sensor is set to observe the position of a node of the fundamental vibration of the
hemisphere (such vibration can be observed in the excellent holographic interferograms of a vibrating
wineglass given in Ref. [10]). Suppose the vehicle undergoes a slow rate of rotation O with respect to inertial
space and that this rotation rate is too small for the human vestibular system to observe. The electronic sensor
will register that the node rotates away from its inertial position. The rotation rate of the node, say a; can then
be calculated and, using Bryan’s factor Z for the hemisphere for the fundamental mode of vibration, the rate of
rotation of the vehicle O ¼ a=Z with respect to inertial space can be calculated.

The introduction of prestress and mass-stiffness imperfections into the calculations is important for real-life
situations (as opposed to ideal situations) and has been earmarked by us for further study.
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