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Abstract

This study deals with evaluation of fundamental natural frequencies of double-walled carbon nanotubes under various
boundary conditions. The Bubnov—Galerkin and Petrov—Galerkin methods are applied to derive the expressions for
natural frequencies. Apparently for the first time in the literature explicit expressions are obtained for the natural
frequencies. These can be useful for the designer to estimate the fundamental frequency in each of two series.

Published by Elsevier Ltd.

1. Introduction

As Qian et al. [1] mention that “‘the discovery of multi-walled carbon nanotubes (MWCNTSs) in 1991 has
stimulated ever-broader research activities in science and engineering devoted entirely to carbon
nanostructures and their applications. This is due in large part to the combination of their expected
structural perfection, small size, low density, high stiffness, high strength (the tensile strength of the outer most
shell of MWCNT is approximately 100 time greater that that of aluminum), and excellent electronic
properties. As a result, carbon nanotubes (CNT) may find use in a wide range of application in material
reinforcement, field emission pane display, chemical sensing, drug delivery, and nanoelectronics.” The state of
the art in modeling and simulation of nanostructured materials and systems was given by Gates and Hinkley
[2] and Liu et al. [3] inter alia. Vibrations of double-walled carbon nanotubes (DWCNTs) have been
considered in several papers. Xu et al. [4,5] and Ru [6] studied the free vibrations of a DWCNT which
composed of two coaxial single-walled CNT interacting each other by the interlayer van der Waals forces.
Therefore, the inner and outer CNT are modeled as two individual elastic beams [4-6]. In these studies the
Euler-beam model has been used to derive exact solution for the natural frequencies at various boundary
conditions. The results showed that DWCNTs have frequencies in the range of terahertz (THz). Also, in the
study of vibration of CNT, Timoshenko beam model has been used for short length-to-diameter ratios which
allows for the effect of transverse shear deformation [7,8]. Likewise, the shell models have been applied
recently by He et al. [9], Ru [10] and Wang et al. [11]. Ru [6] stresses that “‘carbon MWCNTs are different from
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traditional elastic beams due to their hollow multilayer structure and the associated interlayer van der Waals
forces.” The exact solutions lead to the need of solving transcendental equations. It appears that they can be
usefully supplemented by simple solutions.

In this paper, approximate solutions are found by using Bubnov—Galerkin [12,13] and Petrov—Galerkin [14]
methods. Explicit formulas of natural frequencies are derived for the DWCNTs at different boundary
conditions. Comparison of the results with recent studies shows that the above methods constitute effective
alternative techniques to exact solution for studying the vibration properties of CNT.

2. Analysis

The governing differential equations for free vibration of the DWCNTSs read

ot &
ci(wy —wy) = EI %"‘ pAi G:Vl
ot o
—ci(wy —w1) = EDp 6M‘}‘2 + p4> alvz (1

where x is the axial coordinate, ¢ the time, w; (x, ?) the transverse displacement, /; the moment of inertia and 4;
the cross-sectional area of the jth nanotube; the indexes j = 1,2 denote the inner tube and outer tube,
respectively.

The exact solutions for various boundary conditions were considered by Xu et al. [4,5]. Their derivation
necessitates numerical evaluation of 8 x 8 determinant and attendant cumbersome numerical analysis.
Therefore, it appears imperative to obtain explicit expressions for natural frequencies by approximate
methods. Here, we utilize the Bubnov—Galerkin and Petrov—Galerkin methods.

3. Simply supported DWCNT: exact solution

For the DWCNT that is simply supported at both ends one obtains an exact solution by substitution

wy = Y sin(mné) sin(wt)

wy = Y, sin(mné) sin(wt) 2)

where ¢ = x/L is a non-dimensional axial coordinate and m = 1,2,... the number of half-waves in the
longitudinal direction as well as the sequence number of the vibrational mode and @ the sought natural
frequency. We substitute Eq. (2) into Eq. (1) and demand nontriviality of Y} and/or Y>. In order Y% + Y% to
be different from zero the following determinant must vanish

EI(mn/L)* — pA 0 + ¢ —c ;
¢l —EL(mn/L)* + pA>0* — ¢ ®)
The equation for natural frequency squared w”> reads
p*A1A,0* — (A1e1 L + A ELm*n* + EIm*n* 4, + 61A2L4p)w2/L4(E11m4n4clL4 + E* I 1mnl,
+ | L*ELm*n*) /L =0 “4)

By letting m = 1 and solving Eq. (4), we get the following solutions for w®:
oty =LA e1 + L1 Ay + A\ELn* + EL Ayn* — (L¥A7c} + 2L% A1 1Ay + 2L* Aj ¢, El 7
— L*Ayci EL Apn* + L¥ 1 A3 — 2L e\ Ar A\ ELyn* 4 2L ) ASEL 7" + ATE* 57 — 24, E* L1 Ay

+ BBE2 A3 2/ L p A, 45
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Table 1
First natural frequencies in each series for various values of L/d (simply supported DWCNTs at both ends).

L/d 10 11 12 13 14 15 16 17 18 19 20

o1 (107Hz)  0.46830 0.38707  0.32527 027716  0.23899  0.20819  0.18298  0.16209  0.14458  0.12976  0.11711
w, (107 Hz)  7.7721 7.7690 7.7670 7.7657 7.7648 7.7642 7.7638 7.7634 7.7632 7.7630 7.7629

w3, =YL 4101 + L1 Ay + A\EDLn* + EL Ayn* + (L8 A7c] + 2L341 ¢4y + 2L A ELn
— L* Ay EL Ao + L¥c} A3 — 2L% ) A2 A EDn® + 2L ) ASEL 7t + AT E?Bn® — 24, E* b1, Ay

+ BBE2 A3 2]/ L p A, 45 (5)

The indexes 1 and 2 indicate the first and second series of frequencies, respectively. For numerical analysis
hereinafter we fix the values of the Young’s modulus E at 1 TPa and the mass density p = 2.3 g/em® following
Yoon et al. [7] and Xu et al. [4]. The van der Waals interlayer interaction coefficient is fixed at ¢; = 71.11 GPa
[4]; inner radius R; equals 0.35nm, whereas the outer radius R, equals 0.7 nm. Table 1 lists the first natural
frequency in each series for various values of L/d.

The value for w; ; = 0.4683 evaluated for L/d = 10 is close to the value 0.46 THz reported by Xu et al. [4].
The first natural frequency in the second series w, | = 7.7721 is close to the value w,; = 7.71 THz reported by
Xu et al. [4]. Present value is 0.78 percent above Xu’s result. For L/d = 20, Xu et al. [4] report the values
o1 = 0.11THz and w,; = 7.76 THz, respectively. These correlate well with our values of 0.12 and 7.76 THz,
respectively.

The exact solution given in Egs. (4) and (5) will then serve as the benchmark solution, against which the
efficacy of approximate solutions will be tested.

4. Simply supported DWCNT: Bubnov—Galerkin method

In order to ascertain the accuracy of the approximate solutions we first apply the Bubnov—Galerkin [12,13]
method to the simply supported DWCNT the exact solution for which was reported in preceding section.
We approximate the displacements as follows:

wi = Do, wy = DypV (6)
where
oV =38 — 108 + 7¢ (7)

The function in Eq. (7) is so called Duncan polynomial [15]. We substitute the expressions (6) into governing
differential Eq. (1) having in mind Eq. (2); we then multiply the result of the substitution by ¢‘”(¢) and
integrate over the length of the beam. The natural frequencies derived via approximate methods are denoted
by overbar, as . We get the following two equations for D, and D,:

(—L*pA\@* + L*c; + 99EI)D) + (—L*c;D>) = 0

—L*\ Dy + (—L*pA:@° + L*c; +99EI)D; = 0 (8)

We demand the determinant
—L*p A\ + L*c; +99EI, —L* o
—L* —L*pA>@* 4 L*c; + 99EI, ©

to vanish. This leads to the frequency equation
LEp? A, Aya* + (99L* A EI, — LA ¢y — 99EI L* Ay — L¥¢1 A5)pw° + 99L* ¢ EI, + 99EI L ¢,
+9801E%111, =0 (10)
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with roots
o1y = [L*A1c1 + L*c1 Ay + 994, EI, + 99EI Ay — (LY A7ci + 2L A ¢4y + 198L* Ajc| EI
—198L* A | EI Ay + L33 A3 — 198 L% i Ay A  EI, + 198L%c; A3EI| + 980147 E* I3
— 196024, E*1,1, 45 + 9801 E*12 42)'/%1 /2L p A, 4,

w5, = [L*Aic + L1 4 + 994 EI2 +99EI Ay + (L3 A3 4 2L3 A ¢ Ay + 19814 A3\ EI,
— 198L* A | EI Ay + L3I A3 — 198L%ci Ay A  EI, + 198L%c; ASEI| + 980147 E* I3
— 196024, E* 1,1, 4, + 9801E21% H212L%p A, 4, (11)
For the data adopted in the Section 3, for L/d = 10 we obtain from Eq. (11) the following frequencies:
@)1 = 0.4721064 THz, @, = 7.7722259 THz (12)

The percentagewise difference between @, and the exact value in Table 1 w;; is 0.81 percent, whereas the
respective difference between w,; and w,; is 0.0013 percent. This demonstrates the high accuracy of the
Bubnov—Galerkin method for the DWCNTs.

Consider now another coordinate function, namely

V=t + g (13)

instead of ¢V in Eq. (7). This function is due to Duncan [15] although in completely different context. The
procedure as described above leads to frequency determinant

—31L%A,@* + 31L%, + 3024EI, —31L%,
—31L%, —31L*pA,@* + 31 L%, + 3024EI, (14)
and attendant frequency equation
961L3p% A1 Ar0* — (93 T44L* A\ EI, + 961 L8 A ¢y 4+ 93 TA4EI L* Ay 4+ 961L3¢c) Ay)pa* + 93 744 L% ¢\ EI,
+ 93 744EI L*c, + 9144 576E* 1,1, = 0 (15)
whose roots are
o1, = [B1L* A1c1 + 31L%c; A> + 30244, EI; + 3024E11 Ay — (961 L3 At + 192218 4, ¢1 A
+ 187488L*A32¢\ EI, — 187488L% A ¢ EI Ay 4+ 961 L3¢3 45 — 187 488L401A2A1EI2
+ 187488L%c| ASEI| + 9 144 576 ATE*T5 — 18289 1524, E* 11, 4>
+ 9144576 E21342)" /7] /62L p A, 4,
@3, =31 41¢1 + 31L%c Ay + 30244, EI, + 3024E1 Ay + (961 L% Afci + 1922L% 4, c1 4,
+ 187488L* A32¢| EI, — 187488L* A ¢ | EI Ay + 961151 A5 — 187 488L" ¢ A2 A, EI
+ 187488 L%ci A3EI| + 9144 576 AT E*I5 — 18289 1524, E* 1,1, 4,
+ 9144 576 E21342)"/?)/62L p A, 4, (16)

The numerical values for the data listed in Section 3, for L/D = 10 we obtain from Eq. (16) the following
natural frequencies

oy = 0.4686349 THz, @, = 7.7720800 THz 17

It is seen that the coordinate function ¢ in Eq. (13) leads to lower value of the fundamental frequency
estimate than use of the function ¢" in Eq. (7). Therefore, the expressions in Eq. (16) are preferable to those
in Eq. (11). Additionally, the percentagewise difference with the exact solution in estimation of @; ; constitutes
0.07 percent, whereas its counterpart for @, is 0.0003 percent. These small differences attest for the high
reliability of the Bubnov—Galerkin method for studying DWCNTs.
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5. Simply-supported DWCNTs: Petrov—Galerkin Method

In 1940 Petrov [14] suggested a modification to the Bubnov—Galerkin method; he proposed to employ two
systems of functions simultaneously; namely, one system of functions is used to approximate the displacement,
whereas another set of functions is used for satisfying the orthogonality condition.

We first substitute the coordinate function ¢® in Eq. (13) into governing equations as was done in Eq. (6).
The results however are not multiplied by ¢ as in Bubnov—Galerkin method, but by some ozher function. We
choose this multiplicative function to be

=& 58+ 4¢ (18)
Performing the Petrov—Galerkin procedure results in the following equations for D; and D»:

(169L%pA,@> — 169L%c; — 16 500EI)D, + 169L*c; D, = 0

169L% ¢, Dy + (169L*pA,a° — 169L*c; — 16 500EI,)D> = 0 (19)
The frequency equation reads
28 561L3p% A, A,@&* 4+ (=2 788 500L* A EI, — 28 561L8 A1) — 2788 S00EI L* A5 — 28 561 L ¢ Ay)pa?
+ 28561 L% EI, 4+ 2788 500EI L*c; + 272250 000E>1,1, = 0 (20)
with roots
@1, =[169L*A1c1 + 169L%c1 Ay + 16 50041 EI; + 16 S00EI 1 A> — (28 561L° Ajc; + 57122184114,
+ 5577000L* A ¢, EI, — 5577000L* A ¢ EI Ay + 28 561 L8145 — 5577 000L%c; A2 A, EI
+ 5577000L%c; ASEI| + 272250 00047 E* I35 — 544 500 0004, E*1,11 A>
+ 272250 000E>1343)'/1/338 L4 p A, 4,

@3, = [169L* Ac1 + 169L%c; A2 + 16 5004, EI, + 16 S00EI 1 A; — +(28 561 L8 Ajct + 5712218411 4,
+ 5577000L* A3 ¢, EI, — 5577000L* A1 c1 EI Ay 4 28 561 L8} A3 — 5577000L%c; A, A, EI,
+ 5577000L%c; A3EI, + 27225000041 E*I5 — 544 500 00041 E* 1,1, A,

+ 272250 000E2 12 43)"/%1/338 L p 4, A, 1)
Numerical evaluation of Eq. (21) yields for L/d = 10,
o) = 0.4688382THz, @, =7.7720885THz (22)

Comparison of the results in Eq. (22) with the values in Eq. (17) show that @, ; obtained by Petrov—Galerkin
method is slightly higher than that given by Bubnov—Galerkin method; however, the estimate for @, resulting
from both the Petrov—Galerkin and Bubnov—Galerkin methods are nearly coincident.

Likewise, it is remarkable that the combinations of pair of functions

oP =& —28 18 ¢ =38 -108 +7¢ (23)
or the one obtained by the reversal of the substitution and the multiplication functions
o) =38 — 108 +7¢, Y =¢"-28+¢ (24)

both yield the same results as the Bubnov—Galerkin method where the coordinate function ¢® in Eq. (13) is
used.
It must be also noted that the use of the combination

@ =sin(né), Y =& -28+¢ (25)

or

e =& 28 1 & Y =sin(né) (26)
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both yield exact expressions of the natural frequency in Eq. (5). This result must have been anticipated since in
Egs. (25) and (26), either the substitution function ¢ or the multiplicative function i coincides with the exact
mode shape.

6. Clamped—clamped DWCNT: Bubnov-Galerkin Method

For this set of boundary conditions, we use so called Filonenko—Borodich [16] trigonometric polynomial as
a coordinate function in the context of Bubnov—Galerkin method:

e® =1 — cos(2né) (27)
The usual Bubnov—Galerkin procedure yields the equations for D; and D5:

(BL*pA\@* — 3L%, — 167*EI)D; + 3L*c; D, =0

3L% Dy + BL*pA@* — 3L%, — 16n*ElL)D> = 0 (28)
We arrive in the following frequency equation:
9L p* Ay Aro* + (= BEBLYA\EL, — 918 Ay ¢y — ZIBEL L 4y — L3¢\ Ao)pw” + BIBL4¢\ ELL
+B3BEL Le) + 2429 100E],1, = 0 (29)
with roots
o1, = BL 101 + L1 Ay + BRAEL + 32E1 4y — QL A7c] + L8411 Ay + 8PL A ELL
— 821 A 101 EN Ay + L33 A3 — B2 L e\ Ay A \EL + 821\ ASET + 67 47441E 15
— 1349504, E* 1201 Ay + 67T 4TAE*1342)' 71/ L*p A, 4,

w3, = BL rcr + L% Ay + BPAEL + 52EL Ay + QL AT e} + L8411 4, + 8PL A ELL
— 813 ¢\ EL Ay + ML A3 — BRLA i Ay AV ET + B2L4 | AJEL + 6T 4TAATE* T3
— 1349504, E* 1,11 Ay 4+ 6T4T4E* 13 42)' ) /L4 p 4, A, (30)
Numerical evaluation for L/d = 10 results in
@1 = 1.0798636 THz, @, = 7.8145735 THz (31)

Xu et al. [4] reported following results of the exact evaluation of natural frequencies for clamped—clamped
DWCNT:

w1y = 1.06 THz, wy, =7.75THz (32)

The percentagewise difference in estimating w;; is 1.88 percent, whereas its counterpart for w,; is 0.83
percent.

Now we utilize yet another Duncan [15] polynomial that is appropriate for the beam that is clamped at both
ends

pO =& —28+ & (33)
The equations for D; and D, are obtained as
(L*pA\@* — L*¢; — 504EI)D; + L*c; D, =0
L*c\Dy + (L*pA,a° — L*c; — 504EI,)D, = 0 (34)
The frequency equation reads

L3p? A1 Ay@* + (—504L* A EI, — LA c) — SOAEI L* Ay — L¥c| A2)p@”* + 504L%ci EI, 4+ S04EI L*c
+254016E%11, = 0 (35)
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with roots
@1, = [L*Ac1 + L*c; A + 5044, EI, + S04EI Ay — (L3 A7c] + 2L34 ¢ 45 + 1008L* A ¢ EI
— 1008L* A ¢ EI Ay + L3¢ A5 — 1008L%c; Ay A\ EI, + 1008 L*c; ASEI| + 25401642 E* I3
— 5080324 E* 1211 Ay + 254016 E* 12 43)"/%) /2L p A, 4,

@3, = [L* 411 + L*c1 4y + 5044, EI, + S04EI Ay + (L8 A7} + 2L8 411 45 + 1008L* Af ¢ EI
— 1008L* A ¢, EI Ay + L83 A5 — 1008L%c; Ay A\ EI, 4+ 1008 L*ci AZEI| + 25401647 E>13
— 5080324, E* 1211 Ay + 254016 E* 12 43)'/)/2L4p A, 4, (36)
Numerical evaluation for L/d = 10 yields
@1, = 1.0636758 THz, @y, = 7.8130086 THz (37)

Comparison between the estimations in @y ; by using the coordinate functions ¢ as in Eq. (33) shows that
the Duncan polynomial as the coordinate functions yields the lower estimate than the Filonenko—Borodich
expression. Thus, expressions in (36) are preferable to those in Eq. (30). For w,; Xu et al.’s [4] result in
7.75 THz which is only 0.77 percent lower than the value obtained by the present analysis. The advantage of
the current analysis is that the explicit expressions in (34) are obtained herein that allow quick evaluation,
albeit approximate, of the fundamental frequency.

7. Clamped—clamped DWCNT: Petrov—Galerkin method

To contrast the results furnished by the Bubnov—Galerkin method, we compare them with the evaluation by
the Petrov—Galerkin method. We employ the substitution function ¢ = &* — 2&* + ¢ and the multiplicative
function ¥ = 1 — cos(2n¢).

The Petrov—Galekin procedure result in the equations for D; and D-:

(L*n*pA1@° + 45L p A > — 45L%¢; — 720n*El, — Lcin*)Dy + (45L%; + L*cin*)D> = 0

(45L%, + L*c;n*)D; + (L*n*pA2@* 4+ 45L% pAr@* — 45L% ¢, — 720n*El, — L*c;n*)D> = 0 (38)
The frequency equation reads
20280L3p% A, A@* 4+ (=9 987 000L* A EI, — 20280L8 A1) — 9987 000EI | L* A5 — 20280L% ¢ Ay)pa?
+9987000L*c; EI> +9987000EI L*c; + 4918900 000E%1,1, = 0 (39)
with roots
o1, = BL 101 + 3L Ay + BV A EL + 2EL 4y — QL ATc] + 3841 Ay + 2U L  AG e, ELL
— AL A 0 EL Ay + L3345 — B LA ey A, A\ EL, + 2L e\ ASET + 60 63641 E2 15
— 1212704, E* 111, Ay + 60 636 E*1342)'/*1/L*p A, 4,

5, = BL ycr + 3L Ay + BV A EL + 2EL Ay + QL ATc] + 354161 Ay + BH L  Aj e  ELL
— AU A e  EL Ay + 131 A5 — 2 L4 ey Ay A\ EL + 2L ey ASET, + 60 636 A1E> 15
— 1212704, E* 1,11 Ay 4 60 636 E*1342)"/?] /L p 4, A, (40)
Numerical evaluation for L/d = 10 yields
@)1 = 1.0514996 THz, @, = 7.8118475THz (41)

Comparison of Egs. (37) and (41) illustrates that the Petrov—Galerkin method is preferable to the
Bubnov—Galerkin method in this case, for it yields the lower estimate for the fundamental frequency.
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It is noteworthy that if we interchange the substitution and the multiplicative functions in the
Petrov—Galerkin method, i.e. if we use the set ¢® =1 —cos(2nf), ¥ = &* — 28 + &* then the same
intermediary and final expressions are obtained as above. Hence these will not be reproduced.

8. Simply supported—clamped DWCNT

For this set of boundary conditions, again in the context of Bubnov—Galerkin method, we utilize the
following coordinate function:

0© =28 —38 4 ¢ (42)
The Bubnov—Galerkin procedure yields the equations for D; and D:
(19L*pA,@* — 19L*c; — 4536EI,)D; + 19L*¢; D, = 0

19L% Dy + (19L*pA,@°> — 19L%¢; — 4536EI,)D, =0 (43)
The frequency equation reads
361L8p% A1 Ari* + (—86 186L* A\ EI, — 361 L8 A c; — 86 186EI | L* A5 — 361L8¢; Ay)p?
+ 86 186L*c| EI, + 86 186EI L*c; + 20 575296E%1,1, =0 (44)
The natural frequencies squared are
@1, =[19L%A1c1 + 19L% ¢ Ay + 45364, EI, + 453611 Ay — (361 L% Ajci + 722L% 4,1 4,
+ 172368L* Ajc EI, — 172368L* A | EI Ay + 361 L8 T A3 — 172368L%c; A, A, EI,
+ 172368 L% c; ASEI| 4 20575296 A7 E* 15 — 41150 5924, E* 111 4>
+ 20575296 E21342)1/%) /38 L4 p A, 4,

@3, =[19L*A1c1 + 19L% Ay + 4536 A\ EI, + 4536 EI Ay + (361 L Afct + T22L° A, 1 4>
+ 172368L* Ajc EI, — 172368L A | EI Ay + 361181 A3 — 172368L%c; A, A, EI,
+ 172368 L% c; ASEI| 4 20575296 4T E* 15 — 41150 5924, E* 111 4>
+ 20575296 E21342)!/%)/38L*p A, 4, (45)
For the ratio L/d = 10, the numerical evaluation yields
@1 =0.7327673THz, @, = 7.7862830 THz (46)

To the best of author’s knowledge there is no exact solution available for this case, thus, no comparison with it
can be conducted. It makes sense, therefore, to compare Eq. (45) with those obtained via use of other
coordinate function. For this purpose, we adopt the following polynomial in Bubnov—Galerkin method:

PV = =58 4 1684 — 148 4 3¢ (47)
The Bubnov—Galerkin procedure yields the equations for Dy and D;:
(L*pA@* — L*¢, — 264EI)D; + L*¢1D> =0

Lc\Dy + (L*pA,@° — L*c¢; — 264EI,)D, = 0 (48)

The frequency equation is obtained as

L8p* A1 42" + (—264L* A\ EI, — L8 A ¢; — 264ELL* A5 — L¥¢c) Ay)pa” + 264L%c1 EI, + 264EI L ¢,
+ 69 696E>* 111, =0 (49)
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The expressions for 62- are

@1y = [L*Arc1 + L*ci Ay + 2644, EI, + 264E11 Ay — (L3 A7c] + 2L3A 14, + 5281 A, EI
— S28L* A c1 EIN Ay + L3¢ A5 — 528L%c1 Ay A\ EI, + 528L*c) ASEI| + 69 696 A3 EI3
— 1393924, E*1,1, Ay + 69 696 E*1342)"/?] /2L p A, A,

@5, =[L*41c1 + L*ci Ay + 2644, EI, + 264E1 1 Ay + (L3 A + 2L3A 1 A> + 528L* A EI
— 528L* A1\ EI Ay + L¥ci A5 — 528 L) Ay A\ EI, + 528 L% ci ASEI} + 69 696 AT E* 13
— 1393924, E* 1,1, Ay + 69 696 E*1343)" /2] /2L p A, A,

Numerical values of @;; for L/d = 10 are, respectively

@y, =0.7704939 THz, @, = 7.7888259 THz

Note that the respective values reported in Eqgs. (46) and (51) are extremely close.

(50)

(51)

We also utilize the Petrov—Galerkin method. It is should be emphasized that in two cases, associated with

substitution function ¢© or ¢Pand multiplicative function
00 =28 =38+ & =5 +168" - 148 + 3¢
or
o7 = =58 +16¢* — 1487 43¢, =28 —38 +¢
we get the same expressions for the natural frequencies. The equations for D; and D, are

(47L%p A @* — 47L%; — 11088EI)D, +47L* D, =0

47L%\ Dy + (47L*pA,@> — 47L*c; — 11 088EI>)D, = 0
The frequency equation reads
2209L3p% A, Aya* + (=521 136L* A EI> — 2209L8 A4, ¢; — 521 136EI L* A5, — 2209L% ¢, A))par”
+ 521 136L%c1 EI, 4+ 521 136 EI L*c) + 122943 744E°111, = 0

with roots

@1, = [4TL*Ayc1 + 47L%c; Ay + 110884, EI, + 11 088E1 Ay — (2209L° A7} + 4418L° 4,14,
4+ 1042272L A3 ¢, EI, — 104227204 A ¢ EI Ay 4 220918 1 A3 — 1042272L% ¢ A2 A, EIL,
+ 1042272L%c; ASEI + 122943 744 47 E* 15 — 245887 4884, E* 151, A5
+ 122943 744 E* 13 43)/?1/94L%p 4, 4,

w3, = [4TL* Ay + 47L%c; A2 + 110884, EI, + 11 088EI 1 Ay + (2209L3A7c] + 441818 A 1 4>
+ 10422721 A3 ¢, EIy — 104227214 A ¢, EI Ay + 2209L3¢3 A3 — 104227214 c; A2 A, EI
+ 1042272L%c; ASEI + 122943 T44 AT E*T5 — 2458874884, E* 1111 4>
+ 122943 T44E2 12 A3)'/71/94 L4 p A, A,
Numerical evaluation for L/d = 10 yields

6],1 = (.72843 THZ, 62,1 = 7.7850 THz

(52)

(53)

(54)

(55)

(56)

(57)

Eq. (57) gives the best estimate value for w;; since it is lower than that reported in either Eq. (46) or Eq. (51).
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9. Clamped—free DWCNT
In the context Bubnov—Galerkin method we utilize the following Duncan polynomial
o = & — et 4 1080
The Bubnov—Galerkin procedure yields the equations for Dy and D,

(163L*pA,@> — 163L%c; — 2970EI,)D, + 163L*c; D, = 0

163L%c, Dy + (163L*pA@w°> — 163L*c; — 2970EI,)D, = 0

The frequency equation reads

26569Lp> A, Ayt + (—484 110L* A\ EI; — 26 569L3 A4 ¢c; — 484 110EI L* A5 — 26 569L8¢| A») po*

+ 484 110L%c EI, + 484 110EI L*c; + 8 820900E*111, = 0
with roots
@1, =[163L*Ac1 + 163L%c; Ay + 29704, EI; + 2970EI1 Ay — (26 529L° Ajci + 53 138L° A1 c1 4,
4968 220L% A3 ci EI, — 968 220L* A 1 EI 1 Ay + 26 529182 A3 — 968 220L4c1A2A1E12
+ 968220 L% c; AZEI| 4 882090042 E*I5 — 176418004, E*I,1, 4,
+ 8820900E21342)1/%1/326L*p A, 4,

@3, =[163L*Ac; + 163L%1 Ay + 29704, El; 4+ 2970EI Ay + (26 529L° A7cy + 53138L° A ¢{ A,
+968220L" A7c| EI, — 968220L* A1 c1 EI Ay + 26 529L% ¢} A5 — 968 22OL4C1A2A1E12
+ 968220 L% c; A3EI| + 882090047 E*I5 — 176418004, E*I>1, 4>
+ 8820900 E21242)1/71/326L*p A, 4,
Numerical evaluation yields

@11 = 020260 THz, @, = 7.76411 THz

661

(58)

(59)

(60)

(61)

(62)

Within the Bubnov—Galerkin method we also employ the different expression for the coordinate function,

namely,
o0 =& —48 162
The Bubnov—Galerkin procedure yields the following equations for D; and D;:
(13L*pA@* — 13L%; — 162EI)D, 4+ 13L%; D> =0

13L%1 Dy + (13L*pA@* — 13L%, — 162EI,)D> =0
The frequency equation reads
169L8p* A1 A2@* + (—2106L* A EI, — 169134 ¢y — 2106EI L* 45 — 169L% ¢ A,)par”
+2106L%c, EI, + 2106EI L*c; 4 26 244E°I11, = 0
The roots are
=[13L*4yc; + 13L%1 Ay + 1624, EI, + 162EI Ay — (169L8 A3 ¢} + 338184, c} A,
+ 4212L* Ajc ET, — 4212L Ay EI Ay + 169L8¢1 A3 — 4212L% ) A, A, EL
+4212L% | ASEI| + 26244 AT E*T5 — 524884, E* 1,11 4,
+ 26244217 42)'/1/26 L% p A, 4,

(63)

(64)

(65)
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@5y = [13L*Ayc1 + 13L%c1 Ay + 1624, EI, + 162E11 Ay + (169L° A7c7 + 338L° 4,1 A>
+ 42121 Ajc1 EI, — 42121 Ay EI1 Ay + 169L3¢i A3 — 4212L%c; A, A\ E
+4212L%c; A3EI| 4 26244 A2 E* 13 — 524884, E* 1,1, 4,
+26244E21743)' /26 L*p A, 4,
From Eq. (66) for L/d = 10 we obtain
@11 =0.1676 THz, @y, = 7.76353 THz

(66)

(67)

As is seen, @y, here is lower than that in Eq. (62). Thus, Eq. (66) is preferable to Eq. (61). Also, comparison
with values, reported for this case by Xu et al. [3] shows that the present value for @) differs from his exact
solution w;; = 0.17 THz by 1.41 percent. For @, Xu et al. [4] reports w, ; = 7.7 THz the difference with our

solution being 0.83 percent.
It ought be emphasized that in the Petrov—Galerkin method, use of either sets

10, 10
eV =& —48 1627, Yy=8 -3 é4+—3 &
or

10 10

yields the same expressions. The equations for D, and D, are

(163L%pA,@* — 163L%c; — 1890 — EI)D; + 163L%¢, D> =0

163L% Dy + (163L%pA,@> — 163L%c; — 1890EI,)D;> = 0

The frequency equation reads

26569L8p> A4, Ari* 4+ (=308 070L* A, EI, — 26 569L3 A, ¢ — 308 070EI L* A5 — 26 569 L3 ¢ A>) p*

+308070L%¢1 EI, + 308 070EI L*¢; + 3572 100E%1,1, = 0
with roots

o1, =[163L*Ayc; + 163L*1 Ay + 18904, EI; 4+ 1890EI Ay — (26 569L° A7c] + 53 138L° A c{ 4>
+ 616 140L* A7c EI, — 616 140L* A ¢ EI1 Ay + 26 569L%¢; 45 — 616 140L4c1A2A1E12
+ 616 140L*c; ASEI| + 3572 1004 E*I5 — 71442004, E* 1,1, 4,
+ 357210044 E2 12 43)'/1/326 L% p A4, A,

@3, = [163L*Ay¢; + 163L*c1 A> + 18904, EI, 4+ 1890EI Ay + (26 S69L¥ ATct + 53138L° A, ¢{ 4>
+ 616 140L* 3¢  EI, — 616 140L* A 1 EI 1 Ay + 26 S69LE 2 43 — 616 140L%c; A, A, EI
+ 616 140L%c; ASEI| + 3572 10041 E213 — 71442004, E*1>1, 4,
+ 357210044212 43)'/1/326 L% p A4, A3

Numerical evaluation yields

w1, = 0.16162THz, @, = 7.76344THz

(68)

(69)

(70)

(71)

(72)

(73)

Eq. (73) gives the best estimate values for @; ;. Xu et al. [4] report the natural frequency values for the
cantilever DWCNTSs as w;; = 0.17THz and w,; = 7.7THz. Thus, in this case Petrov—Galerkin method

ought to be preferred to the Bubnov—Galerkin method.
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10. Comparison with results of Natsuki et al. [17]
Most recently, Natsuki et al. [17] analyzed free vibration characteristics of DWCNT. Also, in the private

communications [18] to the presents authors, he informed on results of calculation of natural frequencies.
Specifically, Natsuki et al. [17,18] adopt the following formula for the van der Waals interaction coefficient c;:

o = nslezaé [10010’6 o 11204° v 74
o 3 9
where
n/2
H" = (R + Rz)f’”/ /(1 - K cos® 0)'"/2 do, (m=17,13) (75)
0
and
K =4R Ry /(R| + Ry)’ (76)

where ¢ and ¢ are the van der Waals radius and the well depth of the Lennard—Jones potential, respectively,
o = 0.142 nm is the carbon—carbon bond length, R; and R, are the inner and outer radius, respectively. Our
calculations for ¢ =0.34nm, &=2967meV, inner diameter =d;, =4.8nm and outer diame-
ter = dyy = 5.5nm yield ¢ = 1.474825922044788 x 10'" whereas Natsuki [18] informs that his value is
1.50 x 10'!, showing an excellent comparison.

According to Natsuki [18] the first natural frequency for L = 10 nm equals 4.04 THz which correlates well
with our exact and approximate solutions for simply supported DWCNT. Substituting Natsuki et al.’s [17]
values in Eq. (5), we get an exact value for the first natural frequency w, ; = 4.032855669025 THz which differs
from Natsuki’s [18] value by only 0.17 percent. The Bubnov—Galerkin method, Eq. (16), gives an approximate
value w; ; = 4.03570745028916 THz which, remarkably, is also very close to Natsuki’s value with only 0.099
percent percentagewise difference and 0.07 percent from our exact value.

11. Conclusion

In this study we utilize two approximate methods, namely, those of Bubnov—Galerkin, and Petrov—Galerkin
to derive explicit expressions for the double-walled carbon nanotubes under various boundary conditions. The
attractiveness of the derived results lies in their simplicity. The expressions are not more complicated that the
exact analytical formulas for the double-walled carbon nanotubes, that are simply supported at both end. In
the cases where the exact solutions are available our solutions differ by less than two percent, the minimum
percentagewise being 0.003 percent. Moreover, to the best of authors’ knowledge there are no prior
approximate solutions reported in the literature before this study. Thus, availability of present approximate
solutions provides a possibility of a quick and effective evaluation of the natural frequency estimates.

Acknowledgment

L.LE. appreciates partial financial support by the J.M. Rubin Foundation at the Florida Atlantic University.
D.P. appreciates the partial financial support of Mr. Angelos Langadas Scholarship at the FAU. We
appreciate helpful correspondences with Professor C.Q. Ru of University of Alberta, Canada, with Professor
K.Y. Xu of Shanghai University, People’s Republic of China, and with Professor T. Natsuki of Shinshu
University, Japan. This study was conducted as a part of the grant proposal to the NSF.

References

[1] D. Qian, G.J. Wagner, W.K. Liu, Mechanics of carbon nanotubes, Applied Mechanics Reviews 55 (2002) 495-533.
[2] T.S. Gates, J.A. Hinkley, Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems, NASA
Langley Research Center, NASA/TM-2003-212163.



664 L Elishakoff, D. Pentaras | Journal of Sound and Vibration 322 (2009) 652-664

[3] W.K. Liu, E.G. Karpov, H.S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, John Wiley & Sons
Ltd., West Sussex, England, 2006.

[4] K.Y. Xu, X.N. Guo, C.Q. Ru, Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces,
Journal of Applied Physics 99 (2006) 0643303.

[5] K.Y. Xu, E.C. Aifantis, Y.H. Yan, Vibration of double-walled carbon nanotube with different boundary conditions between inner
and outer tubes, ASME Journal of Applied Mechanics 75 (2008) 021013.

[6] C.Q. Ru, Elastic models for carbon nanotubes, in: H.S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, vol. 2,
American Scientific, Stevenson Ranch, CA, 2004, pp. 731-744.

[7]1 J. Yoon, C.Q. Ru, A. Mioduchowski, Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams, ASME Journal
of Applied Mechanics 72 (2005) 10-17.

[8] C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of
Sound and Vibration 294 (2006) 1060—-1072.

[9] X.Q. He, M. Eisenberger, K.M. Liew, The effect of van der Waals interaction modeling on the vibration characteristics of multiwalled
carbon nanotubes, Journal of Applied Physics 100 (2006) 124317.

[10] C.Q. Ru, Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, Journal of the Mechanics
and Physics of Solids 49 (2001) 1265-1279.

[11] C.Y. Wang, C.Q. Ru, A. Mioduchowski, Axially compressed buckling of pressured multiwall carbon nanotubes, International Journal
of Solids and Structures 40 (2002) 3893-3911.

[12] 1.G. Bubnov, Reviews of Professors Kirpichev, Belzetskii, Bubnov and Kolosoff on works of Professor Timoshenko, awarded the
D.I. Zhuravskii Prize Sbornik, C.-Petersburgskogo Instituta Inzhenerov Putei Soobshschenia (Collection of St. Petersburg Institute of
Transportation Engineering), 81 (1913) 1-40 (see also Bubnov I G 1956 Selected Works Sudpromgiz Publishers Leningrad 136—139, in
Russian).

[13] B.F. Galerkin, Rods and plates. Series in some problems of elastic equilibrium of columns and plates, Vestnik Inzhenerov
( Engineering Transactions) 1 (1915) 897-908 (in Russian).

[14] G.I. Petrov, Applications of the Galerkin method to the problem on stability of viscous liquid flow, Prikladnaya Mathematika i
Mekhanika (PMM-Applied Mathematics and Mechanics) 4 (1940) 3-11 (in Russian).

[15] WJ. Duncan, Galerkin’s method in mechanics and differential equations, Aeronautical Research Committee Reports and
Memoranda No. 1978, 1937.

[16] M.M. Filonenko-Borodich, About a system of functions and its applications to the theory of elasticity, PMM-Applied Mathematics
and Mechanics 10 (1946) 193-208 (in Russian).

[17] T. Natsuki, Q.-Q. Ni, M. Endo, Analysis of the vibration characteristics of double-walled carbon nanotubes, Carbon 46 (2008)
1570-1573.

[18] T. Natsuki, Private Communications, November 13, 16, 18, 20, 2008.



	Fundamental natural frequencies of double-walled carbon nanotubes
	Introduction
	Analysis
	Simply supported DWCNT: exact solution
	Simply supported DWCNT: Bubnov-Galerkin method
	Simply-supported DWCNTs: Petrov-Galerkin Method
	Clamped-clamped DWCNT: Bubnov-Galerkin Method
	Clamped-clamped DWCNT: Petrov-Galerkin method
	Simply supported-clamped DWCNT
	Clamped-free DWCNT
	Comparison with results of Natsuki et al. [17]
	Conclusion
	Acknowledgment
	References


