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Abstract

Based on the grey theory, a GM(1,1) forecasting model and an optimal GM(1,1) forecasting model are developed and
assessed for use in active vibration control systems for earthquake response mitigation. After deriving equations for
forecasting the control state vector, design procedures for an optimal active control method are proposed. Features of the
resulting vibration control and the influence on it of time-delay based on different sampling intervals of seismic ground
motion are analysed. The numerical results show that the forecasting models based on the grey theory are reliable and
practical in structural vibration control fields. Compared with the grey forecasting model, the optimal forecasting model is
more efficient in reducing the influences of time-delay and disturbance errors.
© 2009 Elsevier Ltd. All rights reserved.

0. Introduction

Vibration control technologies including passive, active, semi-active, and hybrid control of engineering
structures have been investigated theoretically and experimentally for more than 30 years. Different control
systems have been applied in buildings, bridges, and other structures [1,2,3]. Amongst the competing systems, the
active control method has attracted increasing attention of late due to its excellent performance and wide
applicability. However, a number of problems have arisen when developing large scale practical applications. One
of these relates to the consequences of time-delay within the control system. The control process involves
measuring response data, computing control forces and transmitting control signals (CSs) to the actuators.
Application of unsynchronized control forces due to time-delay (latency) in the control system will inevitably
result in degradation of the control performance. A small time-delay may do no more than reduce the potential
benefits of the control process, whereas a large time-delay may cause failure of the control process leading to
possible magnification of the structural response and potential instability or failure of the host structure [4,5].

Two common methods for solving the time-delay problem are the time-delay compensation method and the
forecasting control method. A number of time-delay compensation methods [6,7] have been studied
numerically and experimentally, but some limitations remain. For example, the controller is often derived on
the basis of modified state feedback without simultaneous consideration of the time-delay effect, with the
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result that system stability cannot be guaranteed, especially when the time-delay becomes large. The
forecasting control method is one of the more effective methods for mitigating the effects of time-delay. There
are many forecasting theories, one of which is neural network forecasting. It is suitable for civil engineering
control, but needs a large quantity of input data and multi-step training to enable the neural network to gain
adequate forecasting precision. The associated numerical computation is intensive. In comparison, grey theory
forecasting models [8,9] are not dependent on accurate structural models and need only a few samples. The
structure is controlled by active synchronization control forces obtained by predicting the state vector of
the structure for the next step. It is possible by this means to exert satisfactory control over the behaviour of
the target structure.

One purpose of this paper is to investigate vibration control of structures based on the grey theory
forecasting model GM(1,1). To improve the forecast precision, an optimal grey forecasting GM(1,1) model is
proposed on the basis of the optimization of the background value. In the optimal grey model, after the state
vectors have been forecast, the immediate active optimal control is applied, based on the modern control
theories (LQR). Numerical results show that a higher forecasting precision is achieved by using the optimal
forecasting GM(1,1) model. The corresponding design procedures are also shown to be functional and effective.

1. Equations of motion of structural systems
1.1. Base-isolation hybrid control system

The building model and corresponding analytical model of a base-isolation hybrid control system [10] are
shown in Figs. 1 and 2, respectively. The equation of motion of the structural system is given by

[MI{Y () + [CUY (1)) + [KI{ Y (1)} = DyF(1) + B.U(1) (1)

where [M], [C], and [K] represent the (n+ 1) x (n+ 1) mass, damping, and stiffness matrices of the system,
respectively; Y(7), Y(z), and Y(r) represent the (n+ 1)-dimensional vectors of structural inter-storey
displacement, velocity, and acceleration, respectively. Earthquake disturbance force F(¢) = —[M]{L}X,, where
L is an (n+ 1)-dimensional identity matrix; U(z) represents the vector of active inter-storey control forces and
D,, and B, are the location matrices of the earthquake forces and control forces, respectively.

In state space, Eq. (1) becomes

Z(t) = AZ(t) + BU(t) + DF(t) ()

n-1

Isolation Layer

Actuator

AN

Fig. 1. Model of base-isolation hybrid control system.
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Fig. 2. Analytical model.

Fig. 3. Structure model of active fixed base control system.

where

Y(2)
Y (1)

0

Z(1) = M-1D,

>

0 I
’ T -M'K —Mm'c)|’ M™'B,

Z(t) is a state vector of order (2n+2); 4 is a (2n+2) x (2n+2) system matrix; / is an (n+1) x (n+ 1) identity
matrix; B and D are matrices of order (2n+2) x 1.

1.2. Active control system of a fixed base frame

The structural and analytical models for the active control system of a fixed base frame (no base-isolation)
are shown in Figs. 3 and 4, respectively. Provided each floor of the system has an actuator, the equation of
motion of the system can be written as

[MUY (1)} + [CHY (1)) + KN Y (0)) = DyF(1) + BU(1) )

where [M], [C], and [K] represent n x n mass, damping, and stiffness matrices of the structure, respectively;
Y(?), Y(¢), and Y(¢) are, respectively, the n-dimensional, inter-storey displacement, velocity, and acceleration
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Fig. 4. Analytical model.

vectors of the system; earthquake disturbance force F(¢) = —[M]{L}X,; where L is an n-dimensional identity
matrix; U(¢) is the vector of active, inter-storey control forces, and D,, and By are the location matrices of the
earthquake forces and control forces, respectively.

In state space, Eq. (3) becomes

Z(t) = AZ(t) + BU(t) + DF(1) 4)
where

0
M~'D,

0 I
’ T |-M'K —-Mm'c| M'B, |’

Z(1) is a 2n state vector; A is a 2n x 2n system matrix; I is an n x n identity matrix; B and D are 2n x n matrices.

2. Grey forecasting control
2.1. Principle of grey forecasting model

The working process of a grey forecasting control system is shown in the block diagram of Fig. 5. The
output vector Y is measured continuously by a sampling device, after which the values of Y at the time of the
kth step are forecast, fed back by the grey forecasting device and compared with target values in terms of
system time-delay. The CS is then ascertained, with the objective of making the future output Y close to target
value J. Finally, the actuator accepts the CS and applies the control force to the building. The whole control
system includes four subsystems: the sampling system, the forecasting system, the control system, and the
mechanical force system.

2.2. Grey theory forecasting model

When applying forecasting control, forecasting is obviously the key process within the control system. In
this paper, grey forecasting is represented by the block diagram shown in Fig. 6.
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Fig. 5. Block diagram of grey forecasting control principle.
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Fig. 6. Block diagram of grey forecasting module.

The process starts with the collection of original data by the data collecting module. After any required
equal interval treatment and the pretreatment of the data series, the input demands of the GM(1,1) model are
satisfied and the forecast values of the next step may be obtained from the forecast model.

Considering Z(r) as the state vector sample of the system at the present time, and Z(t—3), Z(t—2) and
Z(t—1) as samples at earlier times, the raw series can be written as

ZOU)y=Z(t+k—4) (k=1,2,3,4) (5)

Abbreviating the accumulating generation operation, to AGO, which implies obtaining the generating series
through successively adding raw data in series, the AGO series of Z”) may be written as

k
ZV(k) = 4GO -2 =" 7O) (k=1,2,3,4) (6)
i=1
The neighbouring mean value series w'" satisfies
wi(k) = 4z k) + 20k — 1] (k=2,3,4) (7)
From the generating series z("(k), a white differential equation may be obtained as
dzM
o T4 =B, 8)

where A4, is the developing coefficient and B,, the grey input.
The distinguishing parameter vectors @ = [4,, Bg]Tmay be obtained by the least squares method

Ay

a= B, = vy, )
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where V' is a 6n x 4n-dimensional matrix and Y, is a 6n-dimensional vector. VY, can be assembled as

(w2, 1) 1 0 (7202, 1)]
w3, 1) 1 Z9@3,1)
w4, 1) 1 Z0@4,1)
wh(2,2) 1 Z92,2)
w(3,2) 1 79(3,2)
wih(4,2) 1 Z04,2)

w(2,n) 1 ZO2, n)
w3, n) 1 Z9@3, n)
0 wihd,n) 1 74, n)

The solution of the white differential equation can be expressed as
Z0k +1)=@ZO0) - B, JA)e 4 + B, - /4, (10)

Applying an inverse accumulating generation operation (IAGO) to Z(l)(k), the forecast value of the next step
can be obtained as

7% + 1) = 1460 - 2V + 1) = 2V (k) (11)

After the forecast data has been retrieved and modified to diminish residual error, the final forecast value is
obtained as

ZO%+1) = =4y - (ZO) = By - [4y) - e £ 4, - (£Vko) — B - /4;) - e 4T (12)

where £0(k) = ZO(k) — 2 (k), the calculation methods for A,, B, are the same as for Ay, By, and ky is the
number of raw data series.

The grey forecasting algorithm is based on the metabolizing model, where the input Z° is constantly
updated by replacing old data by the newest data, thus ensuring good adaptability of the model.

2.3. Control algorithm

Using the state Eqgs. (2) and (4), and applying linear quadratic optimal control theory, the second-order
performance index function of the system is defined as [11-13]

1 o0
J=3 [Z'0Z + UTRU]dt (13)
4}
where
K 0
e=y m
and R = L

Q is the weighted structure state response matrix and R, the weighted matrix of control force vector; « and f§
are the indefinite coefficients, the values of which may be consulted in Ref. [8]. Considering the extreme
condition 8J/0U = 0, the optimal control force of system may be expressed as

U=-GZ (14)
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where G is the optimal state feedback gain matrix:
G = R'B"P(1) (15)
and P is the solution to the Riccati algebraic equations, given by

—PA—A"P+ PBR'BTP— 0 =0 (16)

3. Analysis of the control scheme

Consider now a grey forecasting model of a dynamic, closed-loop control system (Fig. 7). The working
process in the case of earthquake excitation is as follows. In general, as seismic ground motion is initiated, the
magnitude of the response is usually small, but sufficient to cause the sampling devices to start operating.
A series of structural response data values (e.g. Z(¥(k,), where Z(k,) can represent displacements, velocities
accelerations or control forces) are measured and transmitted to the grey forecasting device for determining
the forecast value Z,(k;+,.a,) (m represents the forecasting step, m = ¢'/Ar’; ', At represent the time-delay of
the system and the sampling interval, respectively, ¢ is the final time). Z,(k,1,,a,) is transmitted to the
comparator and compared with the target value. The control vector U is determined based on Eq. (12) and
the target value and then output to the actuators. Based on U, the actuators apply the control forces to the
structure. The next state vectors Z(k+ 1) for modeling will be generated, measured by the sampling device as
new data and input into the next forecasting control cycle. The cycles continue until the ground excitation or
response falls below a predetermined threshold and the control process ends.

4. Example 1

Consider a five-storey, reinforced concrete frame structure with base-isolation, subjected to an earthquake
ground motion. The structural model and analytical model are shown in Figs. 1 and 2. The lumped mass and
shear stiffness of the building are 3 x 10° kg and 2 x 10® N/m per storey. The mass and stiffness of the isolation
layer are 2.4 x 10°kg and 2 x 10® N/m, respectively. Assuming that the damping ratio of the superstructure is
¢ = 0.05, and the damping ratio of isolation layer is 0.10, the control parameters have the values « = 100 and

:_ _________________ 1 r-——— ">/ /7~ 1
I I I
U(k) Controlled Y
: Actuator Control Force > ! Building I I
I: | I I
| | | Sampling System \ 4 |
| Mechanical Force System | I | Sampling Device Ii |
e _ L N
- =" >7>7>7—7—7— Z
i : Ty l
| 2 fo Control System | I Grey Forecasting I
| I Module z| |
| g | | Forecasting ) |
@)
| | | System ¢ Z(k) |
| Secondary Performance é’ | | |
Indexes Optimization < : Residual Errors
: 7y 5 : | Z0k+) Modification  [€7 |
on
5 | I
I c | | I
I Z(k+1) Comparator ! Zp(k+1) | ' |
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Fig. 7. Flow diagram of grey forecasting control system.
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B =1x 107>, Excitation is from the El-Centro (NS, 1940) earthquake ground motion record, with a peak
acceleration of 200 gal, and a sampling interval of 0.02s. Time-delay of the system is taken as 0.02s, which
equates to one sampling interval. Based on the parameters above, the time—history response of the structure
was calculated using a Matlab programme [14]. Five cases were analysed:

@ Without any vibration-reducing technique.

@ Base-isolation only.

® Base-isolation and active control at isolation layer with a zero time-delay.

@ Control technique as in case 3 but a time-delay of 0.02s. Influence of time-delay on structural control is
analysed.

® Control technique as in case 3 but with consideration of the 0.02s time-delay. Grey forecasting control
model employed.

The resulting structural responses and control forces are shown in Tables 1-4 and Figs. 8—14.

4.1. Analysis of control effect

Table 1, Figs. 8 and 10 show that both cases 2 and 5 reduce displacement of the superstructure by about 85
percent compared with the fixed base (un-isolated) case 1. Displacement of the base-isolation layer in the
uncontrolled case 2 is about 20 times that of the superstructure. Active control of the isolation layer, reduces
this displacement to about 50 percent of its uncontrolled value as shown in Figs. 9 and 11, moving the
deformation of the isolation layer into a safer and more manageable range. Table 3 and Fig. 9 show that the
combination of base-isolation and hybrid control can effectively reduce the acceleration of the structure at all
levels, particularly that of the top floor, where acceleration is reduced to about half that of the uncontrolled
case. The variation with height of the displacement and acceleration responses for the three cases 1, 2, and 5
vary as shown in Figs. 11 and 12. The acceleration of the structure without control starts at a higher value and
increases rapidly with height. The acceleration of each floor of the structure with the actively controlled
isolation layer (case 5) exceeds that of the uncontrolled case 2 by a small amount, diminished with height.

Table 1
Maximum displacement of the model structure (cm).

Condition (0] @ ® @ ®
Floor

0 7.59 3.68 3.67 3.67
1 2.27 0.34 0.38 0.43 0.37
2 2.05 0.31 0.35 0.38 0.37
3 1.68 0.25 0.27 0.27 0.26
4 1.22 0.18 0.18 0.18 0.18
5 0.67 0.09 0.08 0.1 0.08
Table 2

Maximum velocity of the model structure (m/s).

Condition @ @ ® @ ®
Floor

0 0.295 0.14 0.14 0.145
1 0.173 0.304 0.143 0.145 0.144
2 0.321 0.307 0.171 0.176 0.173
3 0.437 0.308 0.205 0.213 0.208
4 0.514 0.308 0.233 0.240 0.236
5 0.56 0.307 0.254 0.264 0.259




698 Z. Lihua et al. | Journal of Sound and Vibration 322 (2009) 690-706

Table 3
Maximum acceleration of the model structure( m/s).

Condition @ @ ® @ ®
Floor

0 1.83 2.504 2.635 2.655
1 3.232 1.814 2.421 2.357 2.294
2 3.863 1.884 2.423 2.471 2.591
3 4.064 2.003 2.26 2.378 2.282
4 4.433 2.083 2.341 2.515 2.472
5 4.765 2.114 2.434 2.467 2.452
Table 4

Maximum control force (kN).

Condition ® @ ®
Floor

0 611 619 651

Floor 0 is isolation layer, condition 1 has no isolation layer.

4.2. Analysis of precision

Displacement/ m

Displacement/m

0.03
0.02
0.01

-0.01
-0.02
-0.03

10 15 20
Time/s

Fig. 8. Displacement response of first floor.

0.1

-0.05

-0.1

Timels

Fig. 9. Displacement response of isolation layer.

Regarding the control force and the structure responses, both the forecasting control and the time-delay
control deviate from the ideal state of immediate control. If the time-delay is very small, the deviations can be
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Fig. 10. Acceleration response of the top floor.
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Fig. 12. Maximum acceleration response of each floor under cases ®, @, and ®.
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Fig. 13. Maximum acceleration response of each floor cases ®-®.

neglected, but the error-generating principles are different. In the former control method, the deviation is
determined by the forecasting error, which makes the response diverge from the ideal state. In the latter
control method, the deviation is caused by the time-delay, which magnifies the structure response. The degree
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Fig. 14. Maximum displacement response of each floor cases @-®.

of magnification is determined by the magnitude of the time-delay. If the time-delay is very big, it will lead to
divergent response. Thus, the curve of case 5 approaches that of case 3, while the curve of case 4 trends to
deviate from that of case 3.

5. Optimal GM(1,1) grey forecasting model

The background value is one of the key factors influencing the control process. Based on the exponential
function form of the model, the background value may be determined by an integral formula, allowing the
original background value to be optimized. Hence a modified grey forecasting model based on the optimal
background value can improve the forecast precision and overcome the delay errors arising in the original grey
forecasting model.

5.1. Optimization of background value
From Eq. (12), the simulation and prediction precision of the GM(1,1) model depend on parameters 4, and
B,, which in turn rely on the raw data series and form of the background value, w(k). w(k) is one of the key

factors influencing the simulation error £9(k) = 2V (k) — 2D (k) and the applicability of the GM(1,1) model.
Thus Eq. (8) may be integrated from k to k+ 1( Fig. 15),

k+1
ZWk 4+ 1) — Z2O(k) + Ag/ ZO(dt=B, k=1,2,...,n—1 (17)
k
Assuming w'(K+ 1) is the background value of z"(¢) in the interval [k, k+ 1], there results [10]
k+1
/ Dyde=[k+1) = kwP Uk +1) = wD(k + 1) (18)
k

Eq. (18) shows that the background value is the definite integral of z(")(7) in the interval [k, k + 1]. Because the
solution of Eq. (8) is in an exponential format, z"(r) can be written as

ZD(1) = ce” (19)

with the curve passing through the points z("(k) and zV(k + 1), thus
ZD(k) = ceb* (20)
2Dk + 1) = e’V = cebk . e (21)

From (20) and (21) we have

b=1In {M} = In 2Dk + 1) — In z2O(k) (22)

20 (k)
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Fig. 15. A schematic diagram showing reasons for error from original model GM(1,1).

Z(l)(k) Z(l)(k)/c+1
c= =

= 2
ek ke + 1) =
Thus optimal background value is [15,16]
k+1 k+1 Dk + 1) — 20 (k)
(1) 1) = (1 _ bt q; — Cqabletl) _ by _ % ( 24
w(k+1) /k (¢ dt /k ce”’ dt b(e e™) 0%k + 1) —In z0() (24)
Let
va =1292,270),29@),....z2Om]" (25)
—w(l)(2) 1
—wh3) 1
B ®) (26)
—whm 1
5.2. Parameters a and u for establishing the optimal GM(1,1) model
The parameter vectors a = [Ag,Bg]T may be obtained by the least squares method
a=[B"BI"'B"y, 27)
Substituting Eq. (27) into Eq. (8), and letting xV(¢),_, = x©(1), there results
0 701y — Ba| 01 By
Z (= {Z H AJ e + 4, (28)
For AGO series X"(k), we have
2P0 +1) = {z@(l) - ﬁ] =] (29)
Ay Ay
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In Eq. (29), Z(l)(k) is determined by means of an TAGO, allowing the predicted value of Z®(k) to be
expressed as

72901) = z0q)

2% +1)= 2"+ 1) = 270 = (1 - ) [201) - 2] etk

9

(30)

6. Example 2

Consider a five-storey reinforced concrete frame structure subjected to earthquake ground motion based on
the El-Centro (NS, 1940) record with a peak acceleration of 200 gal. The parameters are as follows: the lumped
mass and shear stiffness of the building are 4.5 x 10°kg and 3 x 105N/m per storey; the damping ratio
¢ =10.05, the control parameters « = 150 and f=1x107. We consider a time-delay of 0.02s for the
earthquake wave with a sampling interval of 0.04s or a time-delay of 0.06s for the earthquake wave with a
sampling interval of 0.02s. Five cases were analysed using the time-history analysis programme implemented
in Matlab: ® no control, @ control without forecasting, ® grey forecasting control based on GM(1,1) model,
and @ grey forecasting control based on the optimal GM(1,1) model. The resulting structural responses and
control forces are shown in Table 5 and Figs. 16-21.

6.1. Analysis of grey forecasting control effect

Table 5 and Fig. 16 show that compared with case 1, the inter-storey displacements of the superstructure are
reduced in cases 2—4, where the sampling interval of the earthquake wave is 0.04 s and the time-delay is 0.02s.
The control effect on the bottom floor is especially obvious, which has a 50 percent reduction. Fig. 17 shows
the control effect on acceleration of the top floor where there are 30 percent reductions in cases 2—4. The
control technique clearly improves the safety and comfort of occupants during the earthquake. For the
earthquake wave with a sampling interval of 0.02s and time-delay of 0.06s, the results in Table 5 and Fig. 18
also show a good reduction in the inter-storey displacement in cases 2—4. Due to the influence of time-delay,
the magnitude of the reduction is decreased, especially in case 2. The maximum acceleration of the top floor
without forecasting control is reduced by about 16 percent, compared with a 35 percent reduction under
forecasting control (Fig. 19), showing that forecasting control not only overcomes the influence of time-delay,
but also reduces the disturbance error because of differences of sampling intervals.

Table 5
Maximum response and controlling force of structure as a result of earthquake action.

Item Maximum displacement (cm) Maximum acceleration (m/s%) Maximum control force (kN)
Condition  First floor  Third floor  Fifth floor  First floor  Third floor  Fifth floor  First floor  Third floor  Fifth floor

(a) sampling interval 0.04 s and time-delay 0.02 s

@ 2.27 1.69 0.68 2.122 3.464 4.522

@) 1.22 1.03 0.47 1.785 2.104 3.122 1080 867 322
® 1.22 0.97 0.45 1.84 2.091 3.006 1160 911 341
@ 1.22 0.97 0.45 1.836 2.089 3.001 1162 912 341

(b) Sampling interval 0.02 s and time-delay 0.06 s

@ 2.27 1.69 0.68 2,122 3.463 4.521

@) 1.39 1.16 0.58 2.379 2.676 3.783 1191 948 325
® 1.25 0.98 0.46 2.063 2.663 2.956 1448 1107 404
@ 1.25 0.98 0.46 2.056 2.669 2.949 1448 1106 403
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Fig. 17. Absolute acceleration of top floor as sampling period is 0.04s.

6.2. Comparison of the control precision

The prediction precision of the optimal and non-optimal GM(1,1) models are compared in terms of the
difference value which represents the difference between the forecasting control displacement and immediate
control displacement. Fig. 20 shows that for an earthquake wave with the sampling interval of 0.04s, the
prediction precision of optimal GM(1,1) model is superior to GM(1,1) model in terms of the error value of
displacement of the bottom floor. For the case with sampling interval of 0.02s and time-delay of 0.06s, the
maximum acceleration error value of optimal GM(1,1) are a little lower than that of GM(1,1) as shown in
Fig. 21. The reason is the increased time-delay and forecasting step. As regards the difference in value of the
acceleration on the top floor, the optimal GM(1,1) model shows a higher precision than the GM(1,1) model.
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Fig. 18. Relative deformation of first floor with sampling period of 0.02s.
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Fig. 19. Absolute acceleration of top floor with sampling period of 0.02s.

7. Conclusions

The grey forecasting control model can overcome the lagging control error caused by time-delay and the
original data disturbance error caused by a different sampling interval for earthquake data. There is also no
need to establish a structural model or to consider the change of structure parameters (e.g. stiffness and
damping) because the grey forecasting GM(1,1) control process obtains all the necessary information by
sampling the structure’s response. Therefore, the grey forecasting control based on the GM(1,1) model and the
optimal GM(1,1) model is simple, effective, and reliable. Numerical results also show its higher prediction
precision and better control effect compared with the GM(1,1) model. Therefore, the grey forecasting control
technique based on the optimal GM(1,1) model is more effective and practical than the original one in the
structure vibration control field.
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Fig. 20. Deformation error of first floor with sampling period of 0.04s.

0.10 -
0.08 1
0.06 - b
004] & |
002 i 1k
0.00 1
-0.02 -
-0.04 -
-0.06 -
-0.08 -
-0.10 -

-0.12 T T T T T T T T 1
0 4 8 12 16 20
Time /s

——— Optimization GM Model
-------- GM Model

Acceleration / m- s72

Fig. 21. Absolute acceleration error of top floor with sampling period of 0.02s.

Acknowledgements

The writers are grateful for the financial support from the Lanzhou Jiaotong University through its
“qinglan rencai”” Development Programme in Structural Vibration Control.

References

[11 G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, et al., Structural control of past, present and future, Journal of
Engineering Mechanics—ASCE 123 (9) (1997) 897-971.

[2] B.F. Spencer Jr., M.K. Sain, Controlling buildings: a new frontier in feedback, IEEE Control System Magazine 17 (6) (1997) 19-35.

[3] Y.F. Du, Sequential optimal control algorithm for hysteretic smart isolated structures, Chinese Journal of Computational Mechanics
24 (1) (2007) 57-62.

[4] A.K. Agrawal, J.N. Yang, Compensation of time-delay for control of civil engineering structures, Earthquake Engineering &
Structural Dynamics 29 (1) (2000) 37-41.



706 Z. Lihua et al. | Journal of Sound and Vibration 322 (2009) 690-706

[S] Z.X. Wang, C.D. Wu, The establishment and application of a improved GM(1,1) model, Mathematics in Practice and Theory 33 (9)
(2003) 20-25.
[6] B. Zhao, X.L. Lu, M.Z. Wu, et al., Sliding mode control of buildings with base-isolation hybrid protective system, Earthquake
Engineering & Structural Dynamics 29 (3) (2000) 315-323.
[7] L.L. Chung, C.C. Lin, K.H. Lu, Time-delay control of structure, Earthquake Engineering & Structural Dynamics 24 (3) (2003)
637-701.
[8] T.T. Soong, Active Structural Control Theory and Practice, Longman, New York, USA, 1990.
[9] S.F. Liu, J.L. Deng, The range suitable for GM(1,1), Systems Engineering Theory & Practice 5 (5) (2000) 121-124.
[10] C.X. Li, C.F. Han, Discussion on time-delay compensation of active control of building structures under earthquakes, Journal of
Xi'an University of Architecture & Technology 30 (2) (1998) 138-140.
[11] D. Luo, S.F. Liu, Y.G. Dang, The optimization of grey model GM(1,1), Engineering Science 8 (2003) 50-53.
[12] L.H. Zou, Study of Some Problems on Vibration-Reduction Control of Engineering Structure[D ], Southwest Jiaotong University,
2004.
[13] J.Y. Du, X.M. Wang, et al., Study and implementation of the algorithms for active environment noise control, Noise and Vibration
Control 2 (1) (2007) 93-96.
[14] S.H. Zhang, S.J. Liu, et al., Research of CBR, DM and smart algorithms based design methods for high-rise building structure form-
selection, Journal of Harbin Institute of Technology 13 (3) (2006) 325-332.
[15] W. Zeng, Y.P. Liu, et al., Simulation of active vibration control system on MATLAB/simulink, Journal of Beijing University of
Technology 32 (6) (2006) 102—-106.
[16] G.H. Bi, L.H. Zou, C. Wang, Study of optimal control for the vibration of a building structure based on the grey forecasting to
seismic wave, Journal of Lanzhou Jiaotong University (Natural Sciences) 25 (1) (2006) 14-16.



	Grey forecasting model for active vibration control systems
	Introduction
	Equations of motion of structural systems
	Base-isolation hybrid control system
	Active control system of a fixed base frame

	Grey forecasting control
	Principle of grey forecasting model
	Grey theory forecasting model
	Control algorithm

	Analysis of the control scheme
	Example 1
	Analysis of control effect
	Analysis of precision

	Optimal GM(1,1) grey forecasting model
	Optimization of background value
	Parameters a and u for establishing the optimal GM(1,1) model

	Example 2
	Analysis of grey forecasting control effect
	Comparison of the control precision

	Conclusions
	Acknowledgements
	References


