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Abstract

In this article the force transmissibility of a quasi-zero-stiffness (QZS) isolator is considered. The isolator comprises a

vertical spring and two oblique springs that are either linear, linear with pre-stress or softening nonlinear with pre-stress.

The force transmissibility of such a system is derived and compared with that of a linear system. Assuming light damping,

simple approximate expressions for the maximum transmissibility and jump-down frequencies are derived. It is shown that

there are advantages in having nonlinear and pre-stressed oblique springs compared to the other configurations, and that

all the QZS systems can outperform the linear system provided that the system parameters are chosen appropriately.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The use of passive isolators is ubiquitous in engineering systems [1,2]. In the simplest case when the isolator
is linear, a low natural frequency, which is desirable, can only be achieved by having a large static deflection,
which is undesirable. This disadvantage can be overcome by adding oblique springs in order to obtain a high
static stiffness, small static displacement, small dynamic stiffness, and hence low natural frequency [2,3]. By
choosing appropriate stiffness and geometry for the oblique springs zero dynamic stiffness can be achieved, i.e.
a so-called quasi-zero stiffness (QZS) isolator can be realised. Sometimes this type of system is called an ultra-
low frequency vibration isolator [4]. A static analysis of a simple model of a QZS isolator has been presented
by Carrella et al. [5]. Kovacic et al. [6] have extended the study considering linear and nonlinear pre-stressed
oblique springs.

In this article, a dynamic analysis of these QZS systems is performed and an expression for the force
transmissibility derived using the harmonic balance (HB) method in a similar way to Ravindra and Mallik [7],
who also investigated the performance of nonlinear isolators. Approximate expressions for the maximum
transmissibility and jump-down frequency of the QZS isolator are derived and the performance of the isolator
is compared with that of a linear vibration isolator.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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2. Static analysis

The QZS isolator considered is shown schematically in Fig. 1. The system consists of a vertical spring
connected at point O with two oblique springs. The vertical spring is of stiffness k2. Three different
configurations regarding the characteristics of the oblique springs are considered. First, the case when they are
linear with stiffness k1. Second, the case when the two oblique springs are linear with the same stiffness but
pre-stressed, i.e. compressed by length d. The third configuration corresponds to the case when the oblique
springs have a softening characteristic (i.e. are nonlinear) with the restoring force expressed by the cubic
polynomial k1x� k3x3 and are also pre-stressed. In the study presented herein, these configurations and the
corresponding parameters are labelled I, II and III, respectively, as shown in Fig. 1. The geometry of the
system is defined by the parameters a and h, while the coordinate x defines the displacement from the initial
unloaded position. A comprehensive static analysis of the different QZS isolator configurations system is given
in [5,6], and so only an overview of the analysis is given here. In the most general case, which relates to the
geometrically and physically nonlinear system, Configuration III, the relationship between the vertical applied
force f and displacement x is derived in Appendix A and is given by

f ¼ k2xþ 2k1ðh� xÞ
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which can be written in non-dimensional form as
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where f̂ ¼ f =ðk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
Þ, a ¼ ðk1=k2Þ, â ¼ a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
, x̂ ¼ x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
, d̂ ¼ d=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
and

b ¼ ðk3ða
2 þ h2

ÞÞ=k2.
Fig. 1. A three-spring model of a QZS mechanism. The oblique springs are either I linear, II linear with pre-stress, or III nonlinear with

cubic softening nonlinearity and with pre-stress. The vertical spring is linear.
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Differentiating Eq. (2) with respect to x̂ gives the non-dimensional stiffness of the system (normalised
by k2) as

K̂ ¼ 1þ 2a 1� â2 d̂þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p

� x̂Þ2 þ â2
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p
� x̂Þ2

d̂þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2
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(3)

The stiffnesses and geometry are chosen such that when the supported mass is placed on the isolator the
vertical spring compresses and the oblique springs become horizontal as shown in Fig. 2. The static

equilibrium position is x̂ ¼ x̂e, where x̂e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� â2

p
. The stiffness of the system at the static equilibrium

position is zero provided that

b ¼
a

½1� âþ d̂�2
�

â

2½1� âþ d̂�3
. (4)

As discussed in [5,6], in addition to the isolator having a QZS characteristic it is desirable for it to have a wide-
range of non-dimensional displacements from the static equilibrium position for which the non-dimensional
stiffness is less than a prescribed low value K̂p. The non-dimensional stiffness is thus K̂p at a displacement of
x̂e � d̂. Substituting for x̂K̂¼K̂p

¼ x̂e � d̂ into Eq. (3) gives

6bẑ5 � 12ðd̂þ 1Þbẑ4 þ ½K̂p � 1� 2aþ 6ðd̂þ 1Þ2b� 4â2b�ẑ3 þ 6g2ðd̂þ 1Þbẑ2 þ 2aâ2
ðd̂þ 1Þ � 2g2ðd̂þ 1Þ3b ¼ 0,

(5)

where ẑ2 ¼ d̂
2
þ â2. Carrying out numerical optimisation, Eq. (5) can be solved to give, for the case when the

oblique springs are pre-stressed and nonlinear, â ¼ 0:5, a ¼ 0.51, and d̂ ¼ 0:89 (for which b ¼ 0.1709) [6]. The
optimisation criteria includes the achievement of the largest displacement from the static equilibrium position
at which the prescribed stiffness is equal to that of the vertical spring alone, i.e. K̂p ¼ 1, the condition that the
stiffness should never be negative, and the requirement that the stiffness only changes slightly in the
neighbourhood of the equilibrium position (the tolerance of DK̂ ¼ 0:0025 for Dŷ ¼ 0:01 was introduced,
where ŷ ¼ x̂� x̂e).

When the oblique springs are linear and unstressed then b ¼ 0, d̂ ¼ 0 and Eq. (4) becomes

aI ¼
â

2ð1� âÞ
. (6)

In the case when the oblique springs are linear but pre-stressed then b ¼ 0 and Eq. (4) becomes

aII ¼
â

2ð1þ d̂� âÞ
. (7)
Fig. 2. A QZS isolator loaded with a mass so that it is in the static equilibrium position.
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Imposing the condition that the desired stiffness never exceeds that of the vertical spring within the range
ŷ ¼ �x̂e, i.e. K̂p ¼ 1, Eq. (5) gives

âII ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ d̂

p . (8)

For the case when all three springs are linear, then â ¼ ð2
3
Þ
3=2 [5], and a is calculated using Eq. (6). When the

oblique springs are linear but pre-stressed the pre-stress is arbitrarily chosen so that d̂ ¼ 0:5 [6]. In this case,
Eqs. (7) and (8) can be used to calculate a and â, respectively. The optimum parameters for all three
combinations are presented in Table 1 for convenience. The stiffness of the system for the three conditions
described above is plotted with respect to the coordinate system ŷ in Fig. 3. The circles in Fig. 3 denote the
stiffness given by Eq. (3) calculated at ŷ ¼ �x̂e. Note that because the unloaded position is different in cases I,
II and III, then x̂e is also different in all three cases. However, in the static equilibrium position shown in
Fig. 2, the springs that were initially oblique, are always horizontal.

It can be seen from Fig. 3 that for all three cases, although they have zero stiffness at the static equilibrium
position, the characteristics of the oblique springs govern the stiffness of the isolator away from this position.
When the oblique springs are linear (case I), the stiffness of the system increases rapidly as the displacement
increases from the static equilibrium position. The stiffness for large excursions from this position is greater
than that of the vertical spring alone (in the limit it tends to the sum of the vertical and the oblique springs). Of
course this is undesirable, as it results in a hardening system, which (as shown later) can increase the minimum
frequency at which vibration isolation can occur. By including some pre-stress into the oblique springs (case II),
there is less of a hardening effect, which is desirable as it will have a beneficial effect on vibration isolation, and
finally by making the oblique springs nonlinear with a softening characteristic (case III), the hardening effect is
reduced even further. Thus, theoretically at least, the three cases considered could be ranked as III, II then I in
descending order of merit. It may prove difficult, however, to fabricate the oblique springs with precise
nonlinear characteristics. Such issues are not discussed here, as they are outside the scope of the paper.
3. Dynamic response of the QZS system

To include the influence of damping in the isolator, a linear viscous damper, with damping coefficient c2, is
added in parallel with the vertical spring. The equivalent system of the isolator and the supported mass, in
which the optimised isolator stiffness is denoted by KQZS, is shown in Fig. 4. Provided that the displacement
about the static equilibrium position is small, the restoring force, given by Eq. (2), can be expanded using the
Maclaurin series up to third order. If it is also assumed that the system is optimised such that the system has
Table 1

Expressions for the optimum values of the parameters used in the simulations, and the optimum values of the nonlinear parameter, g.

Configuration Spring types Optimum

parameters

Optimum nonlinear parameter, g

I Linear oblique springs âI ¼
2
3

� �3=2
gI ¼

1

2â2ð1� âÞ
¼ 3:7033

II Linear oblique springs with pre-stress âII ¼
2
3

� �1=2
gII ¼

1

2â2ð1� â3Þ
¼ 1:6459

d̂II ¼ 0:5

III Softening nonlinear oblique springs with pre-

stress

âIII ¼ 0:5
gIII ¼ �2bþ 3b

1þ d̂
â
þ a

1þ d̂

â3
� b
ð1þ d̂Þ3

â3
¼ 0:0783

aIII ¼ 0:51

b ¼ 0:1709

d̂III ¼ 0:89
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Fig. 4. Equivalent sdof system of the isolator supporting a mass m.
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zero stiffness at the static equilibrium position, (Eq. (4) applies), the equation of motion of the system about
the static equilibrium position can be approximated by Duffing’s equation with no linear term. For harmonic
excitation, the non-dimensional equation of motion is given by [6]

€̂yþ 2z _̂yþ gŷ3
¼ f̂ e, (9)

where

o2
0 ¼

k2

m
; t ¼ o0t; z ¼

c2o0

2k2
; O ¼

o
o0
; f̂ e ¼ F̂ cos Ot; F̂ ¼

F

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p ,

and the nonlinear coefficient g depends on the type of configuration. For Configuration III g is given by

gIII ¼ �2bþ 3b
1þ d̂

â
þ a

1þ d̂

â3
� b
ð1þ d̂Þ3

â3
. (10)



ARTICLE IN PRESS
A. Carrella et al. / Journal of Sound and Vibration 322 (2009) 707–717712
In the case when the oblique springs are linear but pre-stressed the nonlinear coefficient g is determined by
setting b ¼ 0 and using Eqs. (7) and (8) to give

gII ¼
1

2â2
ð1� â3

Þ
. (11)

In the case when all the springs are linear, then the nonlinear coefficient g is determined by setting b ¼ 0 and
d ¼ 0, and using Eq. (6) to give

gI ¼
1

2â2
ð1� âÞ

. (12)

Expressions for the optimum values of the non-dimensional cubic coefficient of the restoring force for the
different configurations are also given in Table 1. To investigate the dynamic behaviour of the QZS system the
HB method is used to determine its approximate response at the excitation frequency. The reasons for this
choice are its simplicity and applicability to strongly nonlinear systems [8–10]. In this study, attention is
restricted to the system parameters for which the response has predominantly the same frequency as the
harmonic excitation, so that all other Fourier components can be neglected. The solution to Eq. (9) is thus
assumed to be ŷ ¼ Ŷ cosðOtþ jÞ which yields

Ŷ
2
O4 þ ð4z2Ŷ

2
� 3

2
gŶ

4
ÞO2 þ 9

16
g2Ŷ

6
� F̂

2
¼ 0. (13)

This is a quadratic equation in O2 which can be solved to give

O1;2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3gŶ

2
� 8z2 �

4

Ŷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z4Ŷ

2
� 3gŶ

4
z2 þ F̂

2
;

qs
(14)

which are the resonant and non-resonant branches in the frequency response function. For small values of

damping when z51, the jump-down frequency occurs approximately when Ŷ is a maximum. This maximum

can be determined by noting that it occurs when O1,2 are equal, which is when 4z4Ŷ
2
� 3gŶ

4
z2 þ F̂

2
¼ 0 in

Eq. (14). Thus, the maximum value of Ŷ is found to be

Ŷmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z6 þ 3gF̂

2
q
3zg

:

vuut
(15a)

If ð4=3Þðz6=gF̂
2
Þ51 Eq. (15a) approximates to

Ŷmax �

ffiffiffiffiffiffiffiffiffi
F̂

2

3z2g

4

vuut
. (15b)

Substituting Eq. (15a) into Eq. (14) gives the jump-down frequency

Od ¼
1ffiffiffiffiffi
2z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z6 þ

3

4
gF̂

2

r
� 3z3:

s
(16a)

If 4ðz6=gF̂
2
Þ51 Eq. (16a) approximates to

Od �

ffiffiffiffiffiffiffiffiffiffi
3gF̂

2

16z2
4

s
. (16b)

To validate the approximate expressions for the maximum value of Ŷ given by Eq. (15b) and the jump-down
frequency given in Eq. (16b), a comparison with the values calculated numerically is conducted. The numerical
values are obtained by solving the differential equation of motion in Eq. (9) using direct numerical integration.

The comparison made for z ¼ 0:01 and different values of F̂ is given in Table 2. Reasonably good agreement
between the numerical and analytical results can be seen.
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Table 2

Comparison of the analytical results for the maximum value of Ŷ Eq. (15b) and the jump down frequency Eq. (16b) with the numerically

obtained results for z ¼ 0.01 and different values of F̂ , and an absolute error of the analytical results with respect to the numerical ones.

Configuration Ŷmax Od

Analytical value Numerical value Absolute error (%) Analytical value Numerical value Absolute error (%)

F̂ ¼ 0:001
I 0.1732 0.1714 1.05 0.2887 0.2782 3.77

II 0.2121 0.2060 2.96 0.2357 0.2298 2.57

III 0.4542 0.4554 0.26 0.1101 0.1105 0.36

F̂ ¼ 0:004
I 0.3464 0.3433 0.9 0.5773 0.5750 0.4

II 0.4243 0.4256 0.31 0.4714 0.4752 0.8

III 0.9085 0.9079 0.07 0.2282 0.2249 1.47

F̂ ¼ 0:006
I 0.4243 0.4231 0.28 0.7071 0.7023 0.68

II 0.5196 0.5116 1.56 0.5773 0.5605 3

III 1.1126 1.1140 0.13 0.2696 0.2702 0.22

F̂ ¼ 0:01
I 0.5477 0.5426 0.94 0.9128 0.9149 0.23

II 0.6708 0.6637 1.07 0.7453 0.7458 0.07

III 1.4364 1.4328 0.25 0.3481 0.3487 0.17
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Of interest in this paper is the amplitude of the force transmissibility, which is defined as the ratio of
the magnitude of the force transmitted to the rigid foundation, to the magnitude of the excitation force. It is
given by

jT j ¼
F̂ t

F̂
. (17)

The non-dimensional force transmitted through the nonlinear spring and the dashpot that comprises the
isolator, which is shown in Fig. 4, is given by

f̂ t ¼ 2z _̂yþ gŷ3. (18)

Using the HB method the component of the non-dimensional transmitted force at the excitation frequency has
the form f̂ t ¼ F̂ t cosðOtþ jtÞ, where the magnitude of the force is given by

F̂ t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3
4
gŶ

3
Þ
2
þ ð2zOŶ Þ2

q
. (19)

Thus the magnitude of the transmissibility can be determined by using the two solutions for O1,2 given in Eq.
(14) to give

jT j1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
16
g2Ŷ

6
þ 4z2O2

1Ŷ
2

F̂
2

vuut
, (20a)

and

jT j2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
16
g2Ŷ

6
þ 4z2O2

2Ŷ
2

F̂
2

vuut
, (20b)
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To determine an approximate expression for the peak transmissibility either |T|1 or |T|2 can be used. Provided
that damping is small, and the frequency is close to that when the transmissibility is maximum, then the first

term in Eq. (20a) will be much larger than the second term, i.e. ð16z3=
ffiffiffiffiffiffiffi
3g3

p
ÞF̂51, so that jT j1 � 3gŶ

3
=4F̂ .

Substituting for the maximum value of the response given by Eq. (15b) gives an approximate expression for
the maximum transmissibility

jT jmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g
p

F̂

16z3

s
, (21)

which occurs at the jump-down frequency given by Eq. (16b). In the derivation of Eq. (21), three conditions
were imposed: the first condition leading to Eq. (15b), which can be written as z653

4
gF2, the second condition

leading to Eq. (16b), which can be expressed as z651
4
gF 2 and finally the condition imposed just prior to

Eq (21), which can be written as z65ð 3
256

g2ÞgF2. Given the values of g used in this paper, the third condition is
the strictest condition and should be used when determining the validity of the approximate expression for
|T|max given by Eq. (21).

At frequencies when Ob1, and if it is assumed that the jump-down has occurred, the displacement response
of the system can be calculated using Eq. (13). Well above the frequency where the jump-down occurs,
damping has little influence on the response, so it can be set to zero. Also it can be assumed that Ŷ51 so that

Ŷ �
F̂

O2
2

. (22)

If it is assumed that the second term in the expression for the transmissibility well above the jump-down
frequency given by Eq. (20b) is much larger than the first term, then the first term can be neglected so that
jT j2 � 2zO2Ŷ=F̂ . Substituting for Ŷ from Eq. (22) and letting O ¼ O2 because ObOd then

jT j2 �
2z
O
. (23)

4. Comparison between the linear and QZS systems

In a linear system, the lowest frequency at which vibration isolation occurs is
ffiffiffi
2
p
� natural frequency.

However, in a hardening nonlinear system isolation occurs after the jump-down frequency. Also of
importance, however, is the peak force transmissibility and this is compared for the linear and nonlinear
system in this section.

The transmissibility of the linear system is given by [1]

jT jlin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4z2O2

ð1� O2Þ
2
þ 4z2O2

s
, (24a)

and the maximum amplitude of the lightly damped linear system is given approximately by

jT jlinðmaxÞ ¼
1

2z
. (24b)

Setting Od ¼ 1 in Eq. (16b), and rearranging for F̂
2
gives F̂

2
¼ 16z2=3g, which can be substituted into Eq. (21)

to give an identical expression to that in Eq. (24b). This shows that when the parameters of the nonlinear
system are adjusted so that the jump-down frequency occurs at the undamped natural frequency of the linear
system, the maximum amplitude of the transmissibility is the same as that for the linear system. This is
illustrated in Fig. 5, where the transmissibility of the nonlinear system is plotted using Eqs. (20a,b). If the
excitation force is increased and the system parameters kept the same, then the peak in the transmissibility is
greater and occurs at a higher frequency.

The transmissibility of the QZS system for three values of the nonlinear parameter g corresponding to those
given in Table 1 is plotted in Fig. 6 where the parameters are z ¼ 0.01 and F̂ ¼ 0:01. The transmissibility of a
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Fig. 6. Transmissibility of the optimised QZS system: Configuration I (dashed-dotted line); Configuration II (dotted line); Configuration

III (dashed line); Transmissibility of a linear system (solid line). The circles are the approximate maximum values of the transmissibility

given by Eq. (21) at the approximate jump-down frequency given by Eq. (16b). The damping ratio, z ¼ 0.01 and the non-dimensional

excitation force, F̂ ¼ 0:01.
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linear system given by Eq. (24a) is also plotted; it is formed by simply removing the oblique springs from the
original three-spring system. It can be seen that, for the values of the parameters used, all the QZS systems
outperform the linear system in that the jump-down frequencies are lower than the natural frequency of the
linear system. Moreover, the maximum amplitudes of the transmissibility for all the QZS systems are less than
that of the linear system. It can also be seen that there are clear advantages in making the oblique springs both
nonlinear with softening characteristic and pre-stressed. At high frequencies, much greater than either the
natural frequency of the linear system or the jump-down frequency of the QZS system, the transmissibilities of
both systems are given by Eq. (23), which shows that they reduce at 20 dB per decade. This can also be seen in
Fig. 6.
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By comparing the approximate maximum amplitude of the transmissibility of the linear system with that of
the QZS system given by Eq. (21), the following inequality for the amplitude of the excitation force can be
determined such that the maximum amplitude is less than that of the linear system

F̂o
4zffiffiffiffiffi
3g
p . (25)

If this inequality holds, then the QZS system will always outperform the linear system; the jump-down
frequency and the maximum transmissibility will always be less than the natural frequency and the maximum
amplitude of the transmissibility of the linear system, respectively. If the amplitude of the excitation force is
such that the inequality given in Eq. (25) does not hold then the nonlinear system does not outperform the
linear system.

5. Conclusions

In this paper the transmissibility of three configurations of a QZS system have been investigated and
compared with that of a linear system. The QZS systems were all formed with a vertical spring and were
connected to oblique springs that were either linear, linear and pre-stressed or nonlinear and pre-stressed.
Assuming light damping, approximate expressions for the maximum transmissibility and jump-down
frequencies were derived. It was shown that there are advantages in having nonlinear and pre-stressed oblique
springs, and that all the QZS systems can outperform the linear system provided that the system parameters
are chosen appropriately. At frequencies much greater than the jump-down frequency the QZS systems behave
as the linear isolator with a transmissibility reducing at a rate of 20 dB per decade.
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Appendix A. Derivation of the expression for the static force–displacement characteristic

For the vibration isolator shown in Fig. 1 the relationship between the applied force f and the resulting
displacement x can be found by means of the principal of virtual work. This requires the total work by the
force f, and the reactions of the oblique springs in the x direction f1x, and the vertical spring f2, to be zero for a
virtual displacement dx, i.e.,

ðf þ 2f 1x þ f 2Þdx � 0. (A.1)

Both oblique springs are assumed to be softening, with linear stiffness k1 and cubic softening nonlinear
stiffness coefficient k3 for a single oblique spring. In addition, they are pre-stressed, i.e. compressed by length d
before connecting with the vertical spring. The corresponding restoring force f1 is given by

f 1 ¼ k1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
� dÞ � k3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
� dÞ3. (A.2)

Its scalar component in the x direction is

f 1x ¼ f 1

h� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q . (A.3)

The reaction of the vertical unstressed spring of stiffness k2 is

f 2 ¼ �k2x. (A.4)
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Combining (A.1)–(A.4) gives

f ¼ k2xþ 2k1ðh� xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
þ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðh� xÞ2
q � 1

0
B@

1
CAþ 2k3

h� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ðh� xÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ h2

p
� dÞ3. (A.5)
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