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Abstract

In many systems with moving contacts spatially periodic wear patterns related to structural resonances emerge. Often,

however, the structural properties of the sliding system vary periodically with position. Based on a generic minimal model

the present work investigates the effect of a spatially periodic structural stiffness on wear pattern generation. Linear

stability of the resulting wear dynamics is analysed using spatial Floquet analysis. It turns out that the emergence of wear

patterns by instability can in general not be evaluated through stability analysis based on spatially local parameters alone.

A spatially periodic stiffness can stabilize the system, depending on the wavelength and the amplitude of the spatially

periodic parameter variation. The relevance of the effect is discussed and open points are addressed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Wear patterns are found in a large number of application fields: dust roads evolve into ‘‘washboard’’-
patterns [1], brake rotors develop uneven surfaces [2], hard disk drives are affected. The most classical field of
wear pattern generation, however, is found in train–track interaction. In that field various potential
explanations have been proposed and many aspects of the complex problem have been studied (Sato et al. [3]
estimate about 1500 papers), involving mainly the dynamics of the train and the response of the track, with the
contact mechanics generally playing the role of nonlinear stiffness and contact ‘‘filter’’ of too short
wavelengths, but also involving metallurgical aspects, different wear laws, etc. Yet, the phenomenon is not
fully understood, perhaps because some fundamental phenomena and mechanisms are still to be captured [4]:
specifically, it is still not clear if the wavelength selection occurs due to a given structural frequency, driven by
a vertical or torsional resonance of the system, due to a multi-degree-of-freedom effect, where a single
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frequency is filtered out by some criteria, or if the wavelength of the corrugation pattern is just not due to a
given structural frequency at all (see especially Refs. [4,5]).

Of the many potential causes of corrugation, the discrete spacing of the supports has sometimes attracted
attention. For example Frederick and Bugden [6] reported that a test section on a British Rail main line with
continuously supported track has not shown any signs of corrugation, whereas the neighbouring track
supported on sleepers was heavily corrugated. Corrugation may, however, also arise in systems with
continuous support.

A recent investigation in the London Underground Victoria Line [7] is another interesting case to mention.
The results show the possibility of a superposition of long- and short-wave corrugation at the same location.
The long corrugation is of about 300–400mm wavelength which corresponds to frequencies in the range
50–100Hz, which is typical of the resonance of the vehicle’s unsprung mass on the track stiffness (which is
commonly called ‘‘P2 resonance’’); the second wavelength is about 30–40mm whose frequency corresponds
(the authors say ‘‘exactly’’) to the ‘‘pinned–pinned resonance’’, in which the rail vibrates almost as if it were a
beam pinned at sleepers. In curves with higher traction, however, the long wavelength disappears, and another
peak of corrugation appears in the range 60–80mm, which the authors do not discuss, which would, however,
correspond to corrugation at about 250–500Hz. To summarize, the data presented by Grassie et al. [7] seems
to suggest that in addition to the aspects related to P2 or pinned–pinned resonance alone, additional aspects
have to be looked for. Along the same reasoning, for example Diana et al. [8] report an investigation for a
similar metro system (in Milano), which does not show evidence of either resonance being directly responsible
for corrugation. Instead they develop a model with a vertical and a torsional degree of freedom including a
track with spatially varying stiffness to take into account the presence of sleepers. Time domain simulations do
result in corrugation patterns, depending on the choice of parameters. Therefore Diana et al. [8] proposed a
‘‘triggering’’ mechanism based on the discrete nature of the support and its periodic change of stiffness.

As mentioned already, next to rail corrugation, there are also other lines of research on the topic of wear
pattern generation; e.g. there is the case of ‘‘washboarding’’ of dust roads [1,9], or the generation of wear
patterns in friction brakes [2]. The present work has originally been motivated by the latter problem. Since also
in braking systems underlying stiffness variations, e.g. due to mounting conditions or properties of brake
disks, do appear, this paper readdresses the problem of wear pattern generation in the presence of spatially
varying stiffness properties. Instead of using a time-domain approach (as. e.g. also Ref. [8]), the use of Floquet
analysis [10] is attempted. The model to be used will be highly abstracted to allow evaluation of the analysis
technique. The primary objectives of the present study therefore are to (1) gain insight into the nature of wear
pattern generation in systems with long-wavelength stiffness variations and to (2) evaluate feasibility of the
Floquet type approach presented.

The paper is structured as follows: First a single-degree-of-freedom model is introduced that has already
been used previously to study fundamental dynamical properties of wear pattern generation. The model is
extended to allow for spatially periodic stiffness characteristics. The linear stability of the system is then
analysed using Floquet analysis and results are presented. Finally, the findings are discussed and aspects not
considered yet are addressed.
2. The model and the computational approach

A single-degree-of-freedom linear harmonic oscillator sliding with a constant horizontal speed V over an
originally plane surface is considered as generic model. The surface is subjected to wear due to the power
generated by the action of the friction force due to repeated interaction of the sliders with the surface. Due to
the coupling of structural properties with the wear evolution wear patterns may emerge, see Fig. 1. The model
has already been used frequently to analyse fundamental properties of wear pattern generation (compare e.g.
Refs. [1,2,11]) and we refer to the original studies for additional aspects on wear pattern generation in general.
For the purpose of the present investigation the stiffness parameter K ¼ KðxÞ is assumed to vary periodically
in space to model underlying parameter variations, e.g. due to compliance variations of the counter-surface.
Of course the model is highly abstracted from any real world application. The purpose of the present study
does, however, not lie in quantitative prediction, but rather in analysing fundamental effects of spatial
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Fig. 1. Single-degree-of-freedom model.
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parameter variations on wear pattern generation. The abstraction thus serves to focus on the stability aspects
rather than on the specifics of an application system at hand.

The mass m of the oscillator is coupled to the surface through a linear viscous damping element with
damping constant d and a linear spring with spring stiffness K. In the following a spatial variation K ¼ KðxÞ of
this stiffness is assumed. ZðxÞ denotes the vertical position of the mass and HðxÞ the height of the counter-
surface at the momentary position x of the mass. The evolution equation for the structural oscillation of the
mass at its position reads

m
D2

Dt2
Z þ d

D

Dt
ðZ �HÞ þ KðxÞðZ �HÞ ¼ 0, (1)

where D=Dt stands for the derivative evaluated at the momentary position of the mass—i.e. the ‘‘material
derivative’’. For the analysis the equation is divided by m and a natural undamped (angular) frequency
o0 ¼

ffiffiffiffiffiffiffiffiffiffi
K=m

p
is introduced. To connect the discrete oscillator model with the spatio-temporal wear dynamics,

the model of the moving oscillator is replaced by an ensemble of moving oscillators, such that the ordinary
differential equation (1) can be replaced by a partial differential equation to be coupled with a wear evolution
equation for the wear surface to be specified later. For this the material derivative D=Dt is evaluated as
D=Dt ¼ qt þ Vqx, where V stands for the (advection) velocity of the oscillator relative to the surface. The
resulting equation in the Eulerian frame reads

ðqt þ VqxÞ
2Zðx; tÞ þ ðd=mÞðqt þ VqxÞðZðx; tÞ �Hðx; tÞÞ þ o2

0ðxÞðZðx; tÞ �Hðx; tÞÞ ¼ 0. (2)

Wear is assumed to follow an Archard type wear model, which in the present formulation may be expressed
through assuming proportionality for the rate of change in surface height (i.e. wear) to the power generated
due to friction for a given surface area. The friction force of the present model is assumed to be proportional
to the normal load and the relative sliding velocity V is assumed to be constant. The resulting local wear is
thus proportional to the local normal load the oscillator exerts on the sliding surface. Of course this
assumption on wear is highly restrictive. However, as for the high level of abstraction of the structural system,
also with respect to the wear model a strong abstraction seems appropriate. The purpose of the present work
lies in showing a general approach and general results for the case of spatially varying parameters in the
context of wear pattern generation. The approach might then later be extended also to more realistic, but
possibly also more problem specific, structural and wear models, like e.g. the Tg model [12,13].

With the normal load as m½gþ ðqt þ VqxÞ
2Z� the surface evolution equation is

qtHðx; tÞ ¼ �maðHÞ½gþ ðqt þ VqxÞ
2Zðx; tÞ�, (3)

where a factor aðHÞ parameterizes the wear rate as a function of the surface height to allow for a dependency
of the wear rate on the state of the surface topography.

Eqs. (2) and (3) form a set of equations describing both the dynamics of the oscillator as well as the wear
evolution of the counter-surface. As usual in such spatio-temporal problems (basically to allow application of
Floquet analysis) the fields are now decomposed into a component corresponding to a spatial mean value,
depending on time only, and into the deviation from that mean, i.e.

Hðx; tÞ ¼ H0ðtÞ þ hðx; tÞ; Zðx; tÞ ¼ Z0ðtÞ þ zðx; tÞ, (4)
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with hðx; tÞ and zðx; tÞ having a vanishing spatial average, hðx; tÞ ¼ 0, zðx; tÞ ¼ 0, where the overline
denotes a spatial average. To investigate the stability of a spatially homogeneous wear evolution around
the spatially averaged surface height H0ðtÞ, the nonlinear wear equation is linearized with respect to the
spatially dependent variables. Then equations for H0ðtÞ, Z0ðtÞ, hðx; tÞ and zðx; tÞ are derived in the usual way.
The result is

qtH0 ¼ �maðH0Þ½gþ q2ttZ0�, (5a)

qth ¼ �m
qa

qH

����
H0

hðgþ qttZ0Þ �maðH0Þðqt þ VqxÞ
2z, (5b)

q2ttZ0 þ ðd=mÞqtðZ0 �H0Þ þ o2
0ðZ0 �H0Þ þ o2

0ðz� hÞ ¼ 0, (6a)

ðqt þ VqxÞ
2zþ ðd=mÞðqt þ VqxÞðz� hÞ þ o2

0ðxÞðz� hÞ þ ½o2
0 � o2

0�ðZ0 �H0Þ � o2
0ðz� hÞ ¼ 0. (6b)

To simplify notation, later on sometimes the parameter b ¼ mgqa=qHjH0
will be used in Eq. (5b). Here it

stands for a possible dependency of the wear rate on the amount of wear that has already happened at a
certain position and thus brings into play a nonlinearity.

At first sight the resulting system seems to be strongly coupled. However, as has largely been shown
previously (e.g. Ref. [1]), using some plausible assumptions the equations can be decoupled. For that
purpose we first neglect the term qttZ0 due to its smallness and the implicit time-dependency of aðH0ðtÞÞ

due to the slowness of the wear process. Then one can note that the non-local term o2
0ðz� hÞ can

have a non-vanishing contribution only if the resulting ðz� hÞ has a spectral component also contained

in o2
0. Since the present paper focuses on variations of stiffness that are much longer than the

wavelength of the appearing corrugation, the term is neglected in the following. Additional justification
of this assumption will later on be gained from the results obtained. The last assumption consists in

neglecting the term ½o2
0 � o2

0�ðZ0 �H0Þ in Eq. (6b): following the previous assumptions, it can be seen

from Eq. (6a) that ðZ0 �H0Þ approaches zero, thus allowing omission of the corresponding term also in
Eq. (6b).

Finally, Eqs. (5b) and (6b) for the spatially inhomogeneous variables h and z decouple completely from
Eqs. (5a) and (6a). In addition, (5b) and (6b) form a linear system of equations periodic in space, such that
they summarize a stability problem for wear pattern generation that can be approached by spatial Floquet
analysis.

When o2
0 is spatially homogeneous, a straightforward eigenvalue problem results that has been analysed

previously (cf. Refs. [1,2]). In the following we assume o2
0 to vary periodically with some wavelength L, i.e.

o2
0ðxÞ ¼ o2

0ðxþ LÞ. Solutions of the linear differential equations with spatially periodic coefficients can then be
expressed in terms of a Floquet decomposition,

hðx; tÞ ¼ ĥðxÞ expðikxÞ expðstÞ; zðx; tÞ ¼ ẑðxÞ expðikxÞ expðstÞ, (7)

where the functions are decomposed into the product of a function with the same periodicity as the underlying
equations, i.e. ĥðxÞ ¼ ĥðxþ LÞ and ẑðxÞ ¼ ẑðxþ LÞ, and a harmonic component expðikxÞ with a so-called
Floquet wavenumber k [10].

To numerically treat the resulting system, a Galerkin technique may be employed. For that purpose ĥ and ẑ

are expanded as Fourier series,

ĥðxÞ ¼
X1
n¼0

hn exp inaxð Þ; ẑðxÞ ¼
X1
n¼0

zn expðinaxÞ, (8)

where a ¼ 2p=L is the prescribed wavenumber of the underlying parameter variation.
In principle, an infinite number of Fourier modes is necessary. In the numerical representation the Fourier

sum is, however, truncated at a certain number N of modes. In the course of the numerical analysis it has then
to be assured that sufficient convergence has been reached, such that resulting eigenvalues and eigenvectors
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remain substantially unaffected by a further increase of the truncation parameter N. For the results presented
below N has been chosen appropriately, up to values of N ¼ 24.

After substituting the functions of Eqs. (7) and (8) into Eqs. (5b) and (6b) we obtain algebraic equations for
the coefficients hn; zn by Galerkin projections: (i) the equations are multiplied by expð�iñaxÞ and (ii) integrated
over the spatial periodicity interval: ð1=LÞ

R
. . . dx.

Following this procedure, inserting the Floquet decompositions into the equations for h, i.e. Eq. (5b),
yields

0 ¼ shþ bhþmaðH0Þ s2zþ 2sV ðikÞzþ 2sV
X

n

znðinaÞ expðinaxÞ

 !
expðikxÞ expðstÞ

" #

þ V 2ðikÞ2zþ 2V2ðikÞ
X

n

znðinaÞ expðinaxÞ expðikxÞ expðstÞ

þ V 2
X

n

znðinaÞ
2 expðinaxÞ expðikxÞ expðstÞ. (9)

After Galerkin projection, dropping the common terms expðstÞ and sorting the result slightly, the following
algebraic equations result:

shñ ¼ � bhñ �maðH0Þfs
2 þ 2sV ðikÞ þ 2sV ðiñaÞ þ V 2ðikÞ2 þ 2V 2ðikÞðiñaÞ þ V 2ðiñaÞ2zñg. (10)

Analogously Eq. (6b), i.e. the z-equation can be evaluated. After introducing the corresponding Floquet
products, the result is

0 ¼ s2zþ 2sV ðikÞzþ 2sV
X

n

znðinaÞ expðinaxÞ

 !
expðikxÞ expðstÞ

þ V 2ðikÞ2zþ 2V 2ðikÞ
X

n

znðinaÞ expðinaxÞ expðikxÞ expðstÞ

þ V 2
X

n

znðinaÞ
2 expðinaxÞ expðikxÞ expðstÞ

þ
d

m
sðz� hÞ þ V ðikÞðz� hÞ þ V

X
n

ðzn � hnÞ expðinaxÞ expðikxÞ expðstÞ

" #

þ o2
0ðxÞðz� hÞ. (11)

After Galerkin projection and dropping expðstÞ:

0 ¼ ½s2 þ 2sV ðikÞ þ 2sV ðiñaÞ þ V 2ðikÞ2 þ 2V 2ðikÞðiñaÞzñ þ V2ðiñaÞ2�zñ þ
d

m
½sþ V ðikÞ þ V ðiñaÞ�ðzñ � hñÞ

þ
1

L

Z L

0

o2
0ðxÞ

X
n

ðzn � hnÞ expðiðn� n̂ÞaxÞdx. (12)

Since Eq. (6b) for z contained the spatially dependent function o2
0ðxÞ there do remain integrals over x to be

evaluated. A simple way to proceed is to decompose the spatially dependent function o2
0ðxÞ into a Fourier

series,

o2
0ðxÞ ¼

X1
m¼�1

ôm expðimaxÞ; ô�m ¼ ôn

m, (13)

where the given relations for the expansion coefficients have to be taken into account to ensure a real-valued
function.
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Using ð1=LÞ
R L

0 expðiðmþ n� n̂ÞaxÞdx ¼ dmðn̂�nÞ, the remaining integrals of the Galerkin projection can then
be evaluated in terms of convolution sums:

1

L

Z L

0

X1
m¼�1

ôm expðimaxÞ
X1
n¼0

ðzn � hnÞ expðiðn� n̂ÞaxÞdx

¼
X1

m¼�1

X1
n¼0

1

L

Z L

0

ômðzn � hnÞ expðiðmþ n� n̂ÞaxÞ

¼
X1
n¼0

ôn̂�nðzn � hnÞ. (14)

In principle, any periodic function o2
0ðxÞ that may be represented by a Fourier expansion could be used. For

the present investigation a harmonically varying stiffness is assumed: o2
0ðxÞ ¼ ô0 þ ô1 expðiaxÞþ

ôn

1 expð�iaxÞ. The convolution sums then collapse and the resulting algebraic system of equations can be
set up in a straightforward manner. After collecting all equations and assembling them a quadratic eigenvalue
problem of the form

Axþ sBxþ s2Cx ¼ 0 (15)

results, where x ¼ ½h1 h2 . . . hN z1 z2 . . . zN �
T, N is the truncation parameter of the underlying Fourier

expansions and A, B and C are corresponding coefficient matrices.
As has already been pointed out, when the eigenvalue problem is solved, it has to be ensured that N is

chosen large enough to obtain sufficiently converged eigenvalues and eigenvectors.

3. Results

To introduce the results of an underlying stiffness variation, Fig. 2 first summarizes the stability behaviour
for vanishing stiffness variation. In the present framework the spectral results, presented already earlier (see
e.g. Ref. [2]), can be obtained by setting the truncation parameter in the Floquet expansion to N ¼ 0. It then
turns out that the system has three fundamental modes. Two of them are just the vibration modes of the
moving oscillator, one of them can be identified as the surface evolution mode. The vibration modes are
damped according to the prescribed damping parameter and yield frequencies depending on the Floquet
wavenumber according to the change from the Lagrangian to the Eulerian coordinate frame: to understand
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Fig. 2. Results for vanishing inhomogeneity for m ¼ 1kg, ô0 ¼ 1 s�2, a0 ¼ aðH0Þ ¼ 10�10 s kg�1, V ¼ 1m s�1, b ¼ 0:0 s�1 and

d=m ¼ 0:1 kgms�1. (a) and (b) show the full range, (c) and (d) give magnified views of the eigenvalues corresponding to surface evolution.
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why the resulting frequencies in Fig. 2b decrease linearly with k, one could note that a stationary displacement
pattern has to result when a harmonic zðxÞ is chosen with a wavelength corresponding just to the distance the
slider travels during its period; for V ¼ 1 this here just corresponds to k ¼ 1. For other wavenumbers non-
stationary patterns must result. This somewhat peculiar behaviour does, however, not seem to become
mechanically important in the following and further discussion is therefore not given. The surface evolution
mode, magnified in Fig. 2c, shows a typical resonance like behaviour: the largest growth rates appear close to
those wavenumbers corresponding to the oscillator’s resonance frequency.
3.1. Instability of the surface evolution modes

In this subsection all results presented refer to surface evolution modes. A brief discussion of the role of the
vibration modes is postponed to the next subsection.

Example results of the analysis for spatially varying stiffness are shown in Figs. 3 and 4. Without loss of
generality the wavenumber of the stiffness variation has been set to a ¼ 0:05. For presenting the key findings, a
configuration of the system has been chosen, for which a spatially local analysis, assuming no spatial variation
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Fig. 3. Example results of Floquet analysis for m ¼ 1kg, d=m ¼ 1 kgms�1, ô0 ¼ 1 s�2, V ¼ 1m s�1, b ¼ 6� 10�10,

aðH0Þ ¼ 1� 10�10 s kg�1, a ¼ 0:05m�1. Left: the real part of the spectrum, i.e. the growth rates. In the middle: the surface-related

part of the eigenvector for the strongest growing mode. Right: local growth rate corresponding to the local stiffness at a given position.

From top to bottom the amplitude of parameter variation is increased: ô1 ¼ 0:0; 0:05; 0:10 s�2.
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of stiffness, may give instability in a certain area, while stability in another area. In Fig. 3 the amplitude
ô1 ¼ ô�1 of the stiffness variation is increased from zero to non-zero values.

First of all one notes that there are many curves in the representation of the growth rates ReðsÞ (left column
of Fig. 3). Each of these curves somewhat resembles the result shown in Fig. 2. The origin of this behaviour lies
in a mathematical ambiguity the Floquet expansion brings along for vanishing periodicity: when there is no
spatial variability of the underlying equations, and nevertheless a Floquet expansion with an arbitrary
periodicity length is assumed, the assumption of a periodic Floquet expansion function and an exponential
Floquet term does not uniquely specify the resulting eigensolutions: altogether a series expansion with terms
like exp½iðnaþ kÞx� results; since the single expansion coefficients do decouple in the case of spatial
homogeneity, the solution corresponding to a given expansion coefficient n̂ and wavenumber k̂ will then
obviously be identical to the solution from the expansion coefficient ñ ¼ n̂þm with the Floquet wavenumber
k̃ ¼ k̂ �ma, where m is a natural number. From this one may follow that the eigenvalue pattern for n ¼ 0
(corresponding to the fundamental result) repeats itself towards smaller k-values with a periodicity length of a.
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This degeneracy of the spectrum is, however, broken when a non-zero stiffness variation is admitted. Then
instability results for certain Floquet wavenumbers around k ¼ 1, i.e. the wavenumber to be expected also
from the local analysis. The corresponding surface height components of the most unstable eigenvector are
also presented in Figs. 3 and 4. Obviously corrugation with large amplitude results where also local analysis
would have shown instability. However, also in those ranges where the local analysis shows stable behaviour,
corrugation exists.

Fig. 4 shows the resulting behaviour when the wavenumber of the stiffness variation is increased. Note
especially the change of the eigenvalue structure.

At first sight, the results obtained seem plausible and not really surprising: in areas where instability is
predicted by assuming locally constant parameters, also the unstable Floquet modes show maximum wear
pattern generation. In addition, a more detailed evaluation shows—although hardly visible from the graphs by
the eye—that in regions of high stiffness the wear pattern wavelength is slightly shorter than in areas with
lower stiffness.

An important question, however, remains: Is the effort related to a solution of the complete Floquet type
problem justified, or would a local analysis based on local parameter values also be sufficient to adequately
predict wear pattern growth? At least a partial solution to this question can be obtained by performing
parameter studies. A comparison of results from a local analysis and from a Floquet analysis is presented in
Fig. 5.

The parameters are varied in a systematic way by increasing the amplitude of the spatial stiffness variation.
For vanishing variation the system is locally stable at every position and also the Floquet stability analysis
predicts stable behaviour. When the amplitude of stiffness variation is increased, the system turns locally
unstable. This goes back to the fact that larger stiffness leads to larger growth rates. To compare the results of
Floquet analysis with local growth rates, Fig. 5 gives the maximum local growth rate obtained over one spatial
period of the stiffness variation, the corresponding minimum local growth rate, as well as the horizontal
average of the local growth rates. According to this analysis the system at hand turns locally unstable for the
first time when the amplitude ô1 of the stiffness variation reaches a value of about 0.09.

Now the question arises, whether local instability at a relatively small spatial interval is already sufficient to
result in the growth of wear patterns. To answer this question maximum growth rates for the wavenumbers
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Fig. 5. Maximum growth vs. amplitude of stiffness variation. The dashed line gives the maximum local growth rate, the dotted line the

minimum local growth rate, both evaluated by ignoring spatial inhomogeneity. The dash-dotted line shows the horizontally averaged local

growth rate. Then, solid lines from top to bottom, the maximum growth rates vs. amplitude of parameter variation ô1 are shown for

different wavelengths of the parameter variation, namely a ¼ 0:02; 0:05; 0:2m�1.
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a ¼ 0:02; 0:05 and 0:2m�1 of the stiffness variation are shown in Fig. 5. One should note that these
wavenumbers roughly correspond to 50, 20 and 10 wavelengths of the local wear pattern fitting into one
period of the underlying stiffness variation. It turns out that for very large wavelengths of the parameter
variation the resulting maximum growth rates approach the results of the local linear analysis. This seems
plausible, since it could be expected that for very slow underlying parameter variations primarily the local
properties of the system determine the emergence of patterns. However, even in the case of a ratio of 0.02
between the wavelength of wear pattern and parameter variation, the deviation in predicting the onset of
pattern emergence is of the order of 20%. The closer the wavelength of parameter variation gets to the
wavelength of the local wear pattern, the larger the predicted onset values become. E.g. for a ratio of 0.2
between the wavelength of wear pattern and parameter variation, the local prediction for wear pattern
emergence would be about ô1 ¼ 0:09 s�2, while Floquet analysis predicts a value of about ô1 ¼ 0:30 s�2.

Qualitatively this behaviour could have been expected: when the underlying system changes its parameters
‘‘quickly’’, a local instability could just not have enough ‘‘time’’ or ‘‘space’’ to emerge as much as not to be
overcome by the dissipative effects active in the locally stable areas. The phenomenon is very marked and thus
could be interpreted as a stabilizing effect of parameter variations when keeping the maximum local growth
rate constant. Asymptotically, when the wavelength of the parameter variation decreases strongly, the growth
rates resulting from Floquet analysis decrease towards the growth rates corresponding to a spatial average of
local growth rates.

It thus turns out that the true growth resulting from Floquet analysis is always bounded from above by the
maximum local growth rate, and from below by the spatial average of the local growth rates. The bounding
values are approached for asymptotically large and asymptotically small wavelengths of stiffness variation,
respectively. The effect of introducing a variability in stiffness is potentially ambiguous; when starting with
knowledge about the maximum local growth rate, it turns out that the true growth rate is always smaller than
this maximum local growth rate; the variability thus could be interpreted to be stabilizing. When starting with
knowledge about the average over local growth rates, however, it turns out that the true growth rate is always
larger than that average value; from this point of view the variability could be interpreted to be destabilizing.

3.2. Parametric instability of the vibration modes

Within the context of the above analysis one may wonder how the results could be linked with the
parametric instability also to be expected in the system. To clarify this point, a parameter study was performed
in which wavenumber and amplitude of the stiffness variation were varied. Example results for a � 1m�1, i.e.
fundamental resonant forcing, are shown in Fig. 6.

As shown already at the beginning of this section, the eigenvalue analysis of the system yields modes that
can be attributed to structural vibration, and modes that can be attributed to surface evolution. When a
parametric resonance condition is met, e.g. for a � 1m�1, parametric instability does indeed result for large
enough amplitudes of the parameter variation. However, it is not the surface evolution modes that are
destabilized, but modes belonging to the group of vibration modes. In Fig. 6 this parametric instability
manifests itself by the positive growth rates which do not depend on the Floquet wavenumber k; what
basically shows that the parametric instability is a purely temporal instability, not related to any truly spatial
dynamics. The growth rates due to parametric instability are by several orders of magnitude larger than the
growth rates of the surface evolution modes. Moreover it is quite surprising that the growth of the surface
evolution modes themselves, which are also shown in Fig. 6, remains unaffected through parametric
resonance.

It may therefore be concluded that the wear pattern instability presented in the preceding subsection and
parametric instability due to parametric forcing are two independent instability mechanisms. Each mechanism
is related to distinct branches in the spectrum of the system. While wear pattern instability is independent from
parametric resonance conditions, parametric instability—as usual—depends strongly on the corresponding
parameter combinations. E.g. Fig. 7 shows a typical stability diagram for parametric instability of the system,
clearly demonstrating the typical tongue-like stability boundaries corresponding to fundamental, sub- and
super-harmonic resonances: there is a number of resonances for ao1m�1, for which the parameter variation
extends over a number of corrugation wavelengths; the smaller the corresponding a, the larger the necessary
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amplitude ô1 to destabilize the system. Then there is the fundamental resonance with a � 1m�1, and there is a
marked instability for a � 2m�1, where about two periods of the parameter variation extend over a single
wavelength of the ‘‘natural’’ corrugation wavelength. One should note, as is often the case in parametric
resonance, that the fundamental resonance (i.e. a � 1m�1) is not the most critical case; the instability with
a � 2m�1 appears for smaller amplitudes ô1.

Of course, parametric instability will also be accompanied by wear pattern formation—the parametrically
forced vibration will leave its footprints on the surface. Nevertheless wear pattern formation during
parametric instability has to be regarded as a mechanism different from the wear pattern instability in the
absence of parametric forcing. The above results of the Floquet type analysis on the effect of long-wavelength
parameter variations on wear pattern formation may therefore be considered as unrelated to parametric
instability. A more detailed analysis of wear pattern generation due to parametric forcing itself is left for future
studies. As a consequence of the present work it seems, however, sufficient to analyse parametrically driven
wear pattern formation with the classical analysis tools for parametrically driven oscillations (as e.g. in
Ref. [14] for a related system). In addition, certainly nonlinear aspects of limit-cycle formation, contact loss,
etc. will then have to be taken into account, which by far exceeds the scope of the present study.

4. Summary, conclusions and outlook

The present work addresses the influence of spatial parameter dependencies on wear pattern generation.
Using a simple generic minimal model a harmonic stiffness variation of the structural system is assumed.
Applying Floquet stability theory it is shown that a spatial variation of stiffness has a stabilizing effect, when
local maximum growth rates are taken as a comparative basis. When the wavelength of the underlying
parameter variation is asymptotically long compared to the wavelength of the wear pattern expected from the
homogeneous system, the stability boundaries obtained from regarding the local, non-varying parameters
only, seem sufficient. When the wavelength of the parameter dependency does, however, reach the order of
magnitude of the wear pattern wavelength, the parameter variations will tend to substantially stabilize the
system and spatially averaged local growth rates will asymptotically determine the stability boundary. For
general parameter conditions, however, a spatially local analysis of the stability properties alone will usually
not capture stability boundaries for wear pattern generation properly. Only a full analysis based on Floquet
theory will give correct predictions.

In addition, it has been shown that parametric resonance, possibly with accompanying wear pattern
generation, is an effect independent from wear pattern generation in the absence of parametric resonance.

The present work is of course based on a highly simplified model for both the structural as well as the
tribological system. A more problem-specific extension of the rather schematic approach presented therefore
seems highly necessary to better evaluate the true differences in predicting wear pattern emergence from using
a local or a full analysis. In addition, a more detailed investigation of wear pattern generation during
parametric excitation should be conducted.

Among the needs on better and extended modelling, just a few should be mentioned: (1) Other parameter
dependencies: In the present work merely a harmonic stiffness variation has been taken into account. Non-
harmonic variations, as well as variations of other parameters, like e.g. damping, could, however, yield further
effects, calling for an extension of the approach. (2) Structural modelling: The role of nonlinearities in the
structural system has not been investigated in the present context. This might, however, often be relevant;
especially in the case of parametric instability, or due to nonlinear stiffness characteristics possibly arising
from contact mechanics. Also, should the approach be applied to rolling contact, more adequate contact
mechanics models should be used. (3) Wear modelling: The Archard type wear is a highly simplified model for
wear. Depending on the specific application, more appropriate models have to be applied. (4) Finite size wear
regions: In many technically relevant systems the surface subjected to wear is finite, e.g. in friction brakes the
brake disk is characterized by a finite circumferential length. The present analysis for infinitely extended
systems can easily be extended to such finite systems by constraining the allowable wavenumbers for both the
underlying parameter dependency, as well as the wear pattern to the discrete set of values corresponding to the
underlying periodic boundary conditions. (5) Nonlinear surface topography evolution: The approach
presented is a linear stability analysis. Questions with respect to amplitude saturation, i.e. finite-amplitude
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issues, are not addressed. For growing surface corrugation such finite-amplitude effects might become
important.

In addition to the modelling related open points, there are also a number of additional conceptual questions
still to be answered. The problem of wear pattern emergence is a spatio-temporal problem with advective
characteristics due to the contact partners in relative motion. From e.g. plasma physics and fluid dynamics
(e.g. Ref. [15]) it has been known for many years that next to the straightforward questions of the usual—the
so-called temporal—stability analysis used, also spatial aspects concerning the propagation of perturbations
may play a role. Especially when the systems are open, as e.g. in the case of roads or rails, disturbances might
grow, according to temporal linear stability analysis; the growing perturbations within a given spatial interval
might, however, be convectively carried away downstream to areas where they could be damped away again.
These so-called ‘‘convective instabilities’’ are markedly different from the so-called ‘‘absolute instabilities’’
which after the initiation of growth affect the whole spatial domain. In some research fields with open systems
and strongly advective effects it has turned out that it is actually not the onset of temporal linear instability,
but the transition between convective and absolute instability that determines the appearance of patterns. In
addition, one could mention that next to the traditional linear stability considerations in recent years non-
modal stability aspects have gained importance for open advection affected systems (e.g. Ref. [16]). Studies on
these related alternative mechanisms seem necessary, especially with a view to the still prevailing deficiencies in
correctly delimiting parameter regimes of wear pattern emergence.
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