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Abstract

When a laminar boundary layer exists on the surface of an aerofoil up to the trailing edge, a tone or a number of tones

are sometimes produced. These tones have been the subject of a number of investigations which have proposed a variety of

different mechanisms regarding their production. This paper gives a brief overview of the previously proposed mechanisms

and then describes the development of a theoretical model to estimate the tone frequencies. The model is validated against

a number of well-known published experiments and also against the results of an experimental investigation undertaken by

the authors. The model is compared with other models available for predicting laminar boundary layer instability noise

and is shown to be accurate and robust. Unlike previous models, which are empirical, the model presented in this paper is

purely theoretical and could be used to predict the frequency of laminar boundary layer instability noise produced by an

arbitrary aerofoil.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When a laminar boundary layer exists on one surface (usually the pressure surface) of an aerofoil up to the
trailing edge, in certain instances a tone or a number of high amplitude tones are produced. The first
comprehensive study on noise generated in this way was done by Paterson et al. [1] who attributed the tonal
noise produced by the aerofoils to vortex shedding from the trailing edge. Paterson et al. [1] observed that the
‘peak frequency’, fs, of the noise produced by the interaction of airflow with the aerofoil scaled approximately
according to the following relationship:

f s ¼ 0:011U1:5
1 ðCnÞ�0:5 (1)

where UN is the free-stream airflow speed, C is the aerofoil chord and n is the kinematic viscosity of air.
Paterson et al. [1] observed that the presence of the tone was associated with a laminar boundary layer existing
up to the trailing edge of the aerofoil. Also, they found that the sound radiated from the trailing edge exhibited
a ladder type variation for small variations in the free stream velocity UN and that the frequency of the tones
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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on each rung of the ladder was approximately proportional to U0:8
1 . It was also observed that a number of

tones at different frequencies could exist at one flow velocity, see Fig. 1.
Tam [2] proposed that the source of the tonal noise was a self-excited feedback loop between the point of

first instability (the point at which the boundary layer first becomes unstable) on the surface of the aerofoil and
a point downstream in the wake. Tam’s model is outlined below.

Laminar boundary layer instabilities, known as Tollmien–Schlichting waves (T–S waves, see Ref. [3]),
become amplified as they move over the aerofoil surface. Upon reaching the trailing edge these instabilities
propagate into the wake where they cause the wake to vibrate laterally. These wake vibrations emit an acoustic
wave which propagates upstream and reinforces the original disturbance completing the feedback loop. The
loop is maintained if the sound has appropriate phase and magnitude to couple with the boundary layer
instability waves at the source (the point of first instability). Tam’s [2] proposed feedback mechanism was
modified by a number of other investigators including Wright [4], Longhouse [5], Fink [6] and Arbey and
Bataille [7].

As Tam [2] and most subsequent investigators assume that the tones are in some way produced by laminar
boundary layer instabilities, the tonal noise generation mechanism will be referred to as ‘laminar boundary
layer instability noise’ (as per Refs. [8,9]). Although other investigators refer to the same phenomenon as
laminar boundary layer vortex shedding noise (e.g., [10]).

Arbey and Bataille [7] conducted a comprehensive experimental and theoretical investigation on the noise
generated by an aerofoil immersed in a laminar flow and found that the spectrum consisted of a broadband
contribution which peaked at fs and a discrete contribution at equidistant frequencies fn. They concluded that
the broadband contribution could be attributed to the diffraction of hydrodynamic instabilities (T–S waves) in
the developing boundary layer by the trailing edge, whereas the equi-spaced discrete frequencies were due to
an aeroacoustic feedback loop, between the aerofoil trailing edge and the point of first instability. Arbey and
Bataille’s proposed feedback loop is summarized in Fig. 2.

As the frequency of the boundary layer instabilities scale with the boundary layer thickness, Arbey and
Bataille [7] proposed that the frequency of the broadband noise scaled with U1:5
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Fig. 1. Ladder-type frequency relationship observed by Paterson et al. [1] (from Ref. [7]).
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The T-S wave forms in the boundary layer on the 
pressure surface of the aerofoil 

The T-S wave propagates along the surface of the 
aerofoil. As the wave propagates through different 
boundary layer profiles its am plitude and phase change.

As the T-S wave travels over the trailing edge of the 
aerofoil, sound is pr oduced and radiates from the trailing 
edge. Some of this sound travels back upstream towards 
the point of first instability 

At certain frequencies the phase of the 
sound wave and the phase of the T-S 
wave are equal at the point of first 
instability so the sound wave 
reinforces the T-S wave

Fig. 2. Flow diagram of the feedback loop proposed by Arbey and Bataille [7].
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observations and analysis of Paterson et al. [1]. They formulated an empirical relationship for fs based on the
analysis of experimental data from tests on a number of different aerofoils.

f s ¼
StsU1

dnTE
(2)

In Eq. (2) Sts was determined to be 0.04870.003 and d�TE is the displacement thickness at the trailing edge
of the aerofoil (which was calculated using the method of Mari et al. [11]). Arbey and Bataille [7] also found
Eq. (2) to be in reasonable agreement with Eq. (1).

Arbey and Bataille [7] proposed fn could be determined from the following relationship:

f nLA

cr

1þ
cr

c0 �U1

� �
¼ nþ

1

2
; n ¼ 1; 2; 3; . . . (3)

where LA is defined as the distance between the point of maximum velocity over the aerofoil surface and the
trailing edge (which was calculated using the method of Henry [12]), cr is the propagation speed of the T–S
wave, c0 is the speed of sound and UN is the free-stream airflow speed. They also give an empirical formula for
calculating the frequency spacing between the tones Df

Df ¼
KUm

LA

(4)

In Eq. (4) K ¼ 0.8970.05 and m ¼ 0.8570.01. For laminar boundary layer instability noise Arbey [13]
confirmed the source of the sound was close to the trailing edge using an acoustic imaging technique. This
source of sound was proposed by Arbey and Bataille [7] to be caused by the diffraction of T–S waves around
the sharp trailing edge of the aerofoil.

The sound produced by instability waves has been studied by Dolgova [14], Akylas and Toplosky [15],
Laufer and Yen [16] and Crighton and Hueere [17]. Aizin [18] investigated the generation of sound by a T–S
wave which convects over the trailing edge of a very thin flat plate. The analysis considered the diffraction of a
T–S wave at the end of a flat plate in a uniform flow. Aizin derived an analytical expression for the acoustic
radiation into the far field. The analysis showed that the sound field had the same frequency as the T–S wave
in the boundary layer and was directly proportional to the pressure exerted by the T–S wave at the sharp edge.

Archibold [19] also investigated the development of T–S waves on the surface of an aerofoil spanning the
working section of a low speed wind tunnel. It was found that the T–S waves were the source of excitation of
standing waves within the tunnel. The acoustic waves excited the growth of T–S waves from the point of
first instability on the aerofoil surface. The T–S waves then became amplified as they passed over the surface
of the aerofoil and produced sound as they convected over the trailing edge. The feedback loop proposed
by Archibald is quite similar to that proposed by Arbey and Bataille [7] (except that feedback is provided
by acoustic standing waves in the tunnel rather than acoustic waves propagating upstream from the trailing edge).
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Using linear stability analysis and experimental measurements of the boundary layer profiles over the
pressure surface of an aerofoil, McAlpine et al. [8] and Nash et al. [9] were able to calculate the total
amplification of T–S waves over the pressure surface of an aerofoil. They proposed that the frequency of the
tonal noise was identical to the frequency of the T–S wave that underwent maximum amplification over the
aerofoil surface and that the majority of amplification occurred across a small separation bubble close to
the trailing edge which was present in the cases they were investigating. McAlpine et al. [8] proposed the
following tone selection mechanism ‘‘the tones may simply be explained in terms of the amplification of
boundary layer instabilities and we believe that a feedback mechanism is not a necessary condition for the
generation of tonal noise y however, the coupling between the boundary layer instabilities and the wake
instabilities together with an upstream feedback mechanism about the separation bubble provides a
mechanism which results in the narrow band spectral characteristics of the acoustic tone.’’

Brooks et al. [10] give an expression for determining the peak frequency fs produced by an aerofoil
exhibiting laminar boundary layer instability noise. They provide an empirical model that can be used for
predicting the peak frequency of the laminar boundary layer instability noise produced by an NACA0012
aerofoil. The model is only really applicable to cases where the NACA0012 aerofoil is used. However, their
model is compared with the model presented here and with the experimental results of the other investigators.
For completeness the model is given fully in Appendix A.

An experimental investigation undertaken by the authors indicated that a feedback mechanism similar to
that proposed by Arbey and Bataille [7] was producing laminar boundary layer instability noise on aerofoils
immersed in an airflow (the sound pressure spectrum produced by the aerofoils exhibited a broadband hump
with a number of evenly spaced tones). The aerofoils being investigated were relatively thick (18–30 percent
thickness to chord ratios) and as the model of Brooks et al. [10] was empirical and based only on tests using a
NACA0012 aerofoil the applicability of their model for predicting the frequency of laminar boundary layer
instability noise was questioned.

This paper describes an accurate and purely theoretical method of calculating the frequency of laminar
boundary layer instability tones produced by an aerofoil according to Arbey and Batille’s feedback loop. In
Section 2 a method, based on that proposed by McAlpine et al. [8] and Nash et al. [9], to calculate the
amplification of a T–S wave over the surface of an aerofoil using an easily automated method of solving the
Orr–Sommerfeld equation is described. A model based on the feedback mechanism proposed by Arbey and
Bataille [7] is then developed. While in Section 3 the model is validated against a number of published
experiments and also against the results of an experimental investigation undertaken by the authors. A
number of recommendations are made in Section 4.

The motivation for this work came from a desire to predict the presence of tones produced by an
automobile ‘roof rack’ cross-bar, which resembled a thick aerofoil. The final method can be used to predict the
frequency of laminar boundary layer instability tones and could possibly be incorporated into a general
method for the prediction of aerofoil tone noise, such as Ref. [10]. Possible applications occur when the noise
produced by an aerofoil in a low-Reynolds number flow are of concern e.g. automobile roof racks and micro
wind-turbines.

2. Modelling T–S wave propagation

2.1. Mean flow calculation

The growth of the boundary layer over the surface of the aerofoil was modelled using the XFOIL software
package. XFOIL is a coupled potential flow solver and boundary layer integral method. The general XFOIL
methodology is described in Ref. [20], while the boundary layer formulation is described in Ref. [21]. XFOIL
was selected because of its ability to very quickly and accurately determine boundary layer profiles on an
aerofoil surface even for mildly separated flows.

The boundary layer displacement thickness d* and shape factor H were calculated at stations located at
2 percent chord intervals from the leading edge to the trailing edge of the aerofoil. The boundary layer velocity
profile at each station was defined as the Falkner–Skan velocity profile with an identical shape factor to that
calculated using XFOIL (the XFOIL laminar boundary layer formulation assumes a Falkner–Skan boundary
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layer profile). The Falkner–Skan boundary layer is described by the following equations:

f 000 þ ff 00 þ bð1� f 02Þ ¼ 0 (5)

f ð0Þ ¼ f 0ð0Þ ¼ 0; lim
Z!1

f 0ðZÞ ! 1 (6)

In Eqs. (5) and (6) f0 is the dimensionless velocity profile (non-dimensionalized by the local free stream
velocity) and the prime denotes differentiation with respect to the dimensionless coordinate Z which is defined
Z ¼ Ẑ=L where L is a length scale which is defined below:

L ¼
dn

g
; g ¼

Z 1
0

ð1� f 0ÞdZ (7)

In Eq. (7) d* is the dimensional boundary layer displacement thickness and f0 is the dimensionless
Falkner–Skan velocity profile with the same shape factor H as the boundary layer under consideration
(H ¼ d*/y, where y is the boundary layer momentum thickness).

The Orr–Sommerfeld equation requires the boundary layer velocity profile to be determined accurately. For
the cases presented in this paper the boundary layer profiles were determined by solving the Falkner–Skan
equation using the parallel shooting technique described by Cebeci and Keller [22] employing a fourth order
Runge–Kutta–Gill solver.
2.2. Stability analysis

Following the method described in Refs. [8,9] it is assumed that the two-dimensional T–S waves can be
modeled by spatial modes of fixed frequency with slowly changing wavelengths. The stream function cðx̂; Ẑ; tÞ
of these T–S waves is described by the following expression:

cðx̂; Ẑ; tÞ ¼ fðẐÞ ei
R

âðx̂Þ dx̂�ôt
� �

(8)

In Eq. (8) i �
ffiffiffiffiffiffiffi
�1
p

, t is time, f is the perturbation amplitude and Ẑ is the stream-normal coordinate. The
complex wavenumber â is assumed to vary slowly with the streamwise coordinate x̂ and the wavenumber of
the least stable mode at a point along the surface of the aerofoil is calculated for a given velocity profile U,
Reynolds number R and frequency ô by solving the Orr–Sommerfeld equation

ðUa� oÞðf00 � a2fÞ �U 00afþ
i

R
ðfiv
� 2a2f00 þ a4fÞ ¼ 0 (9)

The prime denotes differentiation with respect to the dimensionless coordinate Z ¼ Ẑ=L, R ¼ UNL/n is the
Reynolds number, here UN is the local free-stream velocity and the variables in the Orr–Sommerfeld equation
are all non-dimensional i.e.,

a ¼ âL; U ¼ Û=U1; o ¼ ôL=U1; c ¼ ĉ=U1 (10)

The hat indicates the dimensional variable. For boundary layer flow Eq. (9) is subject to the following
boundary conditions:

Z ¼ 0; f ¼ 0; f0 ¼ 0 (11a)

lim
Z!1

; f ¼ 0; f0 ¼ 0 (11b)

The Orr–Sommerfeld problem defined by Eqs. (9), (11a) and (11b) describes the development of infinitesimal
disturbances in a boundary-layer flow with velocity profile U(Z). The Orr–Sommerfeld equation may be solved
for fixed (R,o) to determine the wavenumber a of the least stable mode at any point in the (R,o) plane. The
Orr–Sommerfeld problem was solved using a Chebyshev matrix technique which is described below.
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2.3. Numerical method

For the spatial stability case the eigenvalue appears to the fourth power in the Orr–Sommerfeld equation.
To reduce the order of the eigenvalue problem from a fourth order problem to a second order problem a
transformation is introduced (following Haj-Hariri [23])

f ¼ F e�aZ (12)

The reduced Orr–Sommerfeld equation is thus

ðio� iaUÞðF00 � 2aF0Þ þ iU 00aFþ
1

R
ðFiv � 4aF000 þ 4a2F00Þ ¼ 0 (13)

with the same boundary conditions as Eqs. (11a) and (11b) with f replaced by F. The transformed
perturbation amplitude F(Z) was approximated by a series of Chebyshev polynomials Tn(x):

FðZÞ ¼
XN

n¼0

anTnðxÞ; where TnðxÞ ¼ cosðn cos�1ðxÞÞ (14)

The Chebychev polynomials were defined on the interval (�1pxp1) at the Gauss–Lobbotto collocation
points xi:

xi ¼ cos
pi

N

� �
; i ¼ 0; . . . ;N (15)

The derivatives of F were found by differentiating the coefficients an through the use of derivative operators D̂:

FkðZiÞ ¼
XN

j¼0

D̂
k

ijajTjðxiÞ (16)

The derivative operator D on the Chebyshev domain (�1pxp1) and can be constructed in matrix form (see
for example Ref. [24])

D1
00 ¼ �D

1
NN ¼

2N2 þ 1

6
; D1

ii ¼ �
Zi

2ð1� Z2i Þ
(17)

D1
ij ¼ �

cjð�1Þ
iþj

ciðZj � ZiÞ
if iaj; c0 ¼ 2 and ci ¼ 1 (18)

Higher order derivative operators are defined

Dk ¼ ðD1Þ
k (19)

The derivative operators Dk are defined on the Chebyshev domain (�1pxp1) and are required to be mapped onto
the semi-infinite domain (0pZpN). This was done using an algebraic transformation (see for example Ref. [25]):

Zj ¼ l
1� xj

1þ sþ xj

(20)

where Zj is the jth Gauss–lobotto point xj transformed to the semi-infinite domain. In this study it was found that
s ¼ 2 and l ¼ 50 provided stable results. It should be noted that this transformation truncates the domain at Z ¼ l,
and thus the boundary conditions described by Eq. (11b) are applied at Z ¼ l rather than at infinity. The good
agreement between results obtained using the current method and the results obtained using the method of Ng and
Reid [26], who correctly apply the upper boundary condition, indicates that the truncation of the domain does not
significantly affect the accuracy of the method. Applying the chain rule to the derivative matrices Dk, the derivative

matrices for the semi-infinite domain, D̂
k
are

D̂
1

ij ¼
dx

dZ
D1

ij ; D̂
2

ij ¼
dx

dZ

� �2

D2
ij þ

d2x

dZ2
D1

ij (21)



ARTICLE IN PRESS
M.J. Kingan, J.R. Pearse / Journal of Sound and Vibration 322 (2009) 808–828814
D̂
3

ij ¼
dx

dZ

� �3

D3
ij þ 3

d2x

dZ2
dx

dZ
D2

ij þ
dx3

dZ3
D1

ij (22)

D̂
4

ij ¼
dx

dZ

� �4

D4
ij þ 6

d2x

dZ2
dx

dZ

� �2

D3
ij þ 3

d2x

dZ2

� �2

þ 4
d3x

dZ3
dx

dZ

 !
D2

ij þ
dx4

dZ4
D1

ij (23)

where the derivatives dx/dZ, d2x/dZ2, etc. are all evaluated at Zi. Substituting the series representation for F (Eq. (16))
into the reduced Orr–Sommerfeld eigenvalue problem (Eq. (13)) yields the following second order eigenvalue
problem

ðAa2 þ Baþ CÞF ¼ 0 (24)

where

A ¼ 2UD̂þ 4D̂
2
=R (25)

B ¼ �2ioD̂� iUD̂
2
þ iU00 � 4D̂

3
=R (26)

C ¼ ioD̂
2
þ D̂

4
=R (27)

and where U and U00 are diagonal matrices with Uii ¼ U(Zi) and U00ii ¼ U 00ðZiÞ being, respectively, the velocity U and

its second derivative U 00 at the transformed Gauss–Lobotto points Zi.
Boundary conditions are applied to the first and last two rows of A, B and C. Following Bridges and Morris

[27], the eigenvalues of the companion matrix are the roots of the corresponding polynomial equation, a
companion matrix for Eq. (24) can be written as

�B �C

I 0

� �
� a

A 0

0 I

� �	 

aF

F

� �
¼ 0 (28)

This equation represents a complex generalized eigenvalue problem and can be solved by the QZ algorithm.
The advantage of the method is it is quick, accurate and identifies a number of T–S modes from which the least
stable can be identified. Unlike local solvers the method requires no initial guess of the value of the least stable
mode and is thus well suited to automation.

The method returns a spectrum of eigenvalues which contains (1) eigenvalues corresponding to T–S modes,
(2) pseudo-eigenvalues and (3) finite approximations to the continuous spectrum in the complex a-plane (see
for example Ref. [28]). As only eigenvalues which correspond to growing T–S waves are desired, the
eigenvalues which do not correspond to T–S waves are removed by searching only for the least stable
eigenvalue (minimum ai) between 0.2oaio0 and 0oaro30. The method appears to be robust and accurate
and was used to plot curves of constant spatial amplification for the Blasius boundary layer (Fig. 3).

Note that the Blasius boundary layer velocity profile is given by setting b ¼ 0 in Eq. (5) and dividing the
non-dimensional stream-normal coordinate Z by two. Also, all lengths are non-dimensionalized by d*, rather
than L, i.e., Rdn ¼ U1d

n=n and odn ¼ ôdn=U1.
The least stable T–S mode calculated using the method described here is compared with the calculation of

Jordinson [29] in Table 1.

2.4. Wind tunnel corrections

For tests conducted on an aerofoil immersed in a free-jet, because of the finite size of the free-jet, the
pressure distribution over the aerofoil is slightly different to that of an aerofoil in free space. Therefore a ‘free
equivalent aerofoil’, which had the same surface pressure distribution as the aerofoil in the wind tunnel, was
calculated using the method of Brooks and Marcolini [30]. For tests conducted in a closed wind tunnel, a solid
blockage correction was applied to the measured wind tunnel velocity, and an equivalent free aerofoil was
calculated using the method of Allen and Vincenti [31]. Both methods described in Refs. [30,31] apply a
correction to the camber-line of the aerofoil, which converts the aerofoil to the ‘free equivalent aerofoil’. The
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Table 1

Validation of the method for predicting least stable T–S mode.

Rdn odn Jordinson Method presented in this paper

598 0.1297 0.3079–0.0019i 0.30784–0.00190i

998 0.1122 0.3086–0.0057i 0.30859–0.00571i

Fig. 3. Contours of constant spatial amplification for Blasius boundary layer flow determined using the method described here (the outer

curve corresponds to the ai ¼ �5� 10�4).
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thickness distribution is assumed to remain the same. Details of the wind tunnel corrections can be found in
the references given above.
2.5. T– S wave amplification

The total amplification A of a T–S wave with slowly varying complex wavenumber between x̂ ¼ a and x̂ ¼ b

(where b is downstream of a) over the aerofoil surface S is

A ¼ exp �

Z b

a

âiðx̂ÞdSðx̂Þ
� �

(29)

The integral in Eq. (29) was evaluated using the rectangle rule. The T–S wavenumber â was evaluated at
2 percent chord intervals from the leading edge to the trailing edge.

McAlpine et al. [8] noted that the general method makes several assumptions which may compromise the
accuracy of the calculations in certain circumstances. In the Orr–Sommerfeld problem it is assumed that the
flow is parallel, which is a reasonable assumption when the boundary layer growth is relatively small.
However, in regions where the boundary layer thickness increases rapidly the calculations will become
inaccurate. Also, for flows where the separation becomes very large, the boundary layer equations may
become invalid. The model therefore is only applicable when separation is located close to the trailing edge of
the aerofoil, and the height of the region of reversed flow remains relatively small.
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2.6. Extension of the model to include a tone selection mechanism

By solving the Orr–Sommerfeld equation at a number of stations over the aerofoil surface, the phase change
between the point of first instability and the trailing edge can be calculated at a particular frequency. The
model is based on the feedback loop proposed by Arbey and Bataille [7] and is used to evaluate their proposed
feedback mechanism against published experimental results in Section 3. It should be noted that Arbey and
Bataille [7] include a similar feedback model in their work, however the exact details of the calculation of the
variation of the T–S wave phase over the surface of the aerofoil was not clear.

Assuming that sound is produced at the trailing edge and propagates upstream outside the boundary layer
to the point of first instability, by calculating the phase change of both the sound and the T–S wave around the
feedback loop, the frequency at which T–S waves will become reinforced and produce tonal noise may be
calculated. The total phase change around the feedback loop may be deduced by considering each component
of the loop separately.

Considering first the phase change of the T–S wave as it propagates downstream along the aerofoil surface.
The phase change between each station can be calculated by solving the Orr–Sommerfeld equation at each
station. From this the total phase change between the point of first instability and the trailing edge can be
calculated at a particular frequency. From inspection of the stream function of the T–S wave (Eq. (8)) the
phase change over the aerofoil surface S between the point of first instability (at x̂ ¼ a) and the trailing edge
(at x̂ ¼ b) is Z b

a

ârðx̂ÞdSðx̂Þ (30)

The integral in Eq. (30) is a function of frequency and was evaluated using the rectangle rule at a number of
discrete frequencies.

According to Arbey and Bataille [7], diffraction of the T–S wave around the trailing edge results in a 1801
(p radians) phase shift which must be added to the total phase change around the feedback loop (this was
observed in the experiments of Yu and Tam [32]). The sound wave generated at the trailing edge then
propagates back upstream at a speed of approximately c0�UN,L, where c0 is the speed of sound relative to the
fluid and UN,L is the average free-stream airflow speed over the surface of the aerofoil between the trailing
edge (x1 ¼ b) and the point of first instability (x1 ¼ a). The phase change of the sound wave is thus

2pfL

c0 �U1;L
(31)

In Eq. (31) L is the distance along the aerofoil surface between points a and b. At each frequency the point of
first instability, a, was taken to be the first station where ai became negative. The total phase change around
the feedback loop is thus Z b

a

ârðx̂ÞdSðx̂Þ þ pþ
2pfL

c0 �U1;L
(32)

When this expression is equal to a multiple of 2p the acoustic wave will reinforce the T–S wave at the point of
first instability and will result in a tone being produced, i.e., tones will occur at frequencies at which the
following relationship is satisfied:

1

2p

Z b

a

ârðx1Þdx1 þ
1

2
þ

fL

c0 �U1;L
� F ðf Þ ¼ n; n ¼ 1; 2; 3 . . . (33)

In the current method the phase function F(f) was calculated over the range of frequencies for which T–S wave
amplification occurs. A least squares parabola was fitted to F(f) and frequencies which satisfied F(f) ¼ n

(which correspond to tone frequencies fn) were determined.
As the airflow speed varies with height in the boundary layer, the phase change of the sound propagating

back upstream will vary throughout the boundary layer whereas in the model the sound wave is assumed to
propagate back upstream outside the boundary layer. For the cases investigated in this paper because only low
Mach number airflows (UN,L5c0) are of interest here, the variation of the phase of the sound wave vertically
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through the boundary layer on the surface of the aerofoil should be relatively small and thus this
approximation should be acceptable.

It is assumed that viscosity damps the feedback mechanism so that the T–S wave reinforcement and
subsequent growth remains linear. The level of tone produced appears to not be related to the total
amplification of the T–S waves which is indicative of a feedback mechanism, for which the level of the tone
would be limited by when the feedback loop becomes ‘saturated’.

For the method presented here only modes which are amplified up to the trailing edge (from the point of
first instability) are considered. Also for all calculations it was assumed that the kinematic viscosity n was
equal to 1.51� 10�5m2 s�1 and that the speed of sound c0 was equal to 343m s�1.
3. Validation of the model

3.1. Description of validation cases

In this section the models described in Section 2 are used to predict the laminar boundary layer instability
tone frequencies for four validation cases. The validation cases are taken from three published investigations
and an experimental investigation undertaken by the authors. The empirical models of Brooks et al. [10],
Arbey and Bataille [7] and Paterson et al. [1] are also used to predict tone frequencies. The results of all four
models are compared to determine how applicable they are to predicting the laminar boundary layer
instability noise produced by an arbitrary aerofoil under arbitrary flow conditions (angle of incidence,
Reynolds number, etc.).

The four validation cases are summarized in Table 2.
As stated previously, it is assumed that laminar boundary layer instability tones are produced by the

feedback mechanism proposed by Arbey and Bataille [7]. The sound pressure spectrum produced by this
mechanism consists of a series of approximately evenly spaced tones superimposed on a broadband hump
centered on the peak frequency fs. In each of the studies used for comparison, fs is defined slightly differently.
The various definitions are given below
�

Ta

Va

Ae

Ch

UN

An

Wi

Re
In the model presented here it is assumed that fs is equal to the frequency of maximum T–S wave
amplification, which is equal to the frequency of the peak in the broadband hump in the sound pressure
spectrum.

�
 In the model of Brooks et al. [10], fs refers to the frequency of the peak in the sound pressure level spectrum.

�
 In Paterson et al.’s [1] equation (Eq. (1)) fs does not refer to the peak broadband frequency, but rather the

frequency of the dominant tone. As noted by Arbey and Bataille [7] the dominant frequency observed by
Paterson et al. [1] should indeed be identified with fs defined here since the broadband contribution, on
which the discrete spectrum is superimposed, determines the value of the dominant frequency of the overall
noise spectrum.

�
 Although McAlpine et al. [8] propose a slightly different mechanism by which laminar boundary layer

instability noise is produced, they do calculate the frequency of maximum T–S wave amplification (which
they assume is the frequency of the tone) for case 2 which is referred to here as fs.
ble 2

lidation case summary.

Case 1 Case 2 Case 3 Case 4

rofoil NACA0012 NACA0012 NACA0012 NACA0018

ord (m) 0.08 0.3 0.229 0.1

(m s�1) 20.2 29.7 30-60 30

gle of incidence relative to flow direction 01 41 61 81

nd tunnel type Free-jet Closed wind tunnel Free-jet Free-jet

sults presented in Ref. [7] Ref. [8] Ref. [1] Present work
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3.1.1. Case 1

Arbey and Bataille [7] measured the noise produced by an 80mm chord aerofoil inclined at 01 to a

20.2m s�1 airflow. As the aerofoil was immersed in a free jet at 01 angle of incidence, no wind tunnel
corrections were applied for the calculations presented here. The height of the free jet at the tunnel exit was
150mm and the aerofoil was mounted in the centre of the free jet.

The sound pressure spectrum contained a series of evenly spaced tones at frequencies fn, superimposed upon
a broadband contribution centered about fs, and was typical of the laminar boundary layer instability noise
spectra produced by the aerofoils Arbey and Bataille [7] investigated. Although they do not record the
frequencies of these tones they do give empirical expressions based on the results of a larger experimental
investigation which will be used for comparison with the various models.

3.1.2. Case 2

McAlpine et al. [8] and Nash et al. [9] measured the noise produced by a 300mm chord NACA0012 aerofoil
inclined at 41 to the airflow. A single high amplitude tone was observed at 1048Hz. The boundary layer
velocity profiles were measured over the pressure surface of the aerofoil using laser Doppler anemometry and
the total T–S wave amplification was calculated using a method similar to that described in Section 2 (a
different method of solving the Orr–Sommerfeld equation was used). McAlpine et al. [8] observed a small
region of separated flow close to the trailing edge of the aerofoil in which T–S waves underwent large
amplification.

The working section of the closed wind tunnel in which the experiments were undertaken had a rectangular
cross-section of 0.85m (wide)� 0.6m (high) and was 1.5m long with corner fillets tapering from
0.141m� 0.106m at the entry to 0.123m� 0.093m at the exit. The wind tunnel corrections applied in the
calculations presented here neglect the effect of the corner fillets, i.e., a rectangular tunnel cross section was
assumed. The aerofoil was mounted in the centre (height-wise) of the working section and spanned the width
of the working section. The wind tunnel velocity was reported by Nash et al. [9] to be 29.7m s�1.

3.1.3. Case 3

Paterson et al. [1] measured the noise produced by a 9 in. chord NACA0012 aerofoil inclined at 61 to a
30–60m s�1 airflow. They observed that when the frequency of the tones which were produced were plotted
against airflow speed the tones arranged themselves into a ‘ladder’ (see Fig. 1), which for large variations in
airflow speed the tone frequency was proportional to �U1:5

1 but for small variations in airflow speed the tone
frequency was proportional to �U0:85

1 (these are the ‘rungs’ of the ladder).
The experiments were undertaken in a free jet of rectangular cross-section 3100 high� 2100 wide� 3000 long.

The aerofoil was mounted in the centre (height-wise) and spanned the width of the working section.

3.1.4. Case 4

For this case the noise produced by a 100mm chord NACA0018 aerofoil inclined at 81 to a 10–40m s�1

airflow is considered. Calculations are presented for only the 30m s�1 case.
The experiments were undertaken, as part of a larger investigation by the authors, within the low-noise wind

tunnel in the Department of Mechanical Engineering at the University of Canterbury. The wind tunnel is an
open circuit type with testing being undertaken within the exit jet. The maximum airflow speed within the exit
jet is 44m s�1 with a turbulence intensity of �1 percent over the entire airflow speed range. For the
experimental work described here the tunnel was significantly modified to reduce the noise level. These
modifications included relocating the fans further away from the outlet jet, lining a significant portion of the
wind tunnel with sound absorbing material, adding a low frequency absorber section and placing an ‘anechoic
shelter’ over the exit jet to reduce background noise from the rest of the laboratory wing where the wind tunnel
is housed. The modifications are described in detail in Kingan and Pearse [33].

The wind tunnel airflow speed for each test was measured using a pitot tube and water micromanometer.
The aerofoil was placed in the centre of the free jet, which was square with dimensions 700mm� 700mm, and
the aerofoil spanned the width of the free jet. No endplates were attached to the aerofoil. The sound pressure
level was measured using a Brüel & Kjær 1/200 microphone (type 4189) placed just outside the airflow directly
below the middle of the trailing edge of the aerofoil. The signal from the microphone was fed to a Brüel &
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Kjær 2260 sound analyser running BZ 7208 FFT software. The FFT analysis had a frequency resolution of
approximately 15Hz for all tests.

The sound pressure spectrum produced at an airflow speed of 30m s�1 is shown in Fig. 4 (left). A
broadband ‘hump’, and several tones are evident. This is similar to the spectra observed by Arbey and Bataille
[7] and was typical of the spectra observed for the experiments described here.

Fig. 4 (right) shows the frequency of the tones produced by the aerofoil versus airflow speed. For cases
where more than one tone was observed at a single airflow speed, the frequency of the loudest tone is indicated
by a square and the frequency of the other tones is indicated by crosses.

The frequency of the loudest tone varied with U1:5
1 which is identical to the relationship observed by

Paterson et al. [1] and indicated that the tones were being produced by the laminar boundary layer instability
noise mechanism.
3.2. Results: case 1

The peak frequency fs predicted by each of the models is summarized in Table 3. It is assumed that the
empirical model of Arbey and Bataille [7] (Eq. (2)) gives an accurate estimate of fs for this case.

The values of fs predicted by the models of Paterson et al. [1] and Brooks et al. [10] are in reasonable
agreement with the prediction of Eq. (2). However, the value of fs calculated using the method described in
Section 2 was 26 percent higher than that predicted by Eq. (2). The reason for this large difference is possibly
due to the inaccurate calculation of the boundary layer growth over the surface of the aerofoil by XFOIL
because of the very low Reynolds number. This result represents the largest error in the calculated value of fs

using the method described in Section 2 which the authors have encountered.
Fig. 4. Sound pressure level versus frequency at 30m s�1 (left); tone frequency versus airflow speed for a 100mm chord NACA0018

aerofoil inclined at 81 to the airflow (right).
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Table 3

Case 1: peak frequency prediction.

Investigator fs (Hz) fs/fs,Arbey and Bataille

Arbey and Bataille [7]; Eq. (2)a 1077 1

Paterson et al. [1]; Eq. (1) 909 0.84

Brooks et al. [10]; Appendix A 1102 1.02

Method described in Section 2 1356 1.26

aAssuming d* ¼ 0.9mm from Table 1 in Ref. [7].

Table 4

Case 1: tone frequency prediction.

n see Eq. (33) 7 8 9 10 11 12

fn (Hz) 1006 1158 1311 1468 1626 1788

Df ¼ fn+1�fn (Hz) 152 154 156 159 161
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Eq. (4) gives Df ¼ 166Hz (using LA ¼ 0.069 from Table 2 in Ref. [7]) which is in good agreement with the
frequency spacing between the tones predicted using the method described in Section 2, which are given in
Table 4.

For this case the XFOIL flow simulation predicted a region of mildly separated flow on both surfaces of the
aerofoil close to the trailing edge. The calculation of the total amplification over the surface of the aerofoil
showed that T–S waves were highly amplified in this separated flow region. This is consistent with the
hypothesis of McAlpine et al. [8] and Nash et al. [9] who considered the existence of such a region of separated
flow essential for the production of tonal noise. The total T–S wave amplification (A) and the variation of the
phase function (F), calculated using the method described in Section 2 are shown in Fig. 5.

3.3. Results: case 2

For this particular case the XFOIL calculation predicted a region of mildly separated flow close to the
trailing edge (downstream of 86 percent chord length from the leading edge). Several of the dimensionless
Falkner–Skan boundary layer velocity profiles close to the trailing edge, which were fitted to the shape factors
predicted by the XFOIL calculation, are shown in Fig. 6.

It is assumed that the peak frequency fs corresponds closely to the tone frequency ftone ¼ 1048Hz. The
results of the various models for predicting fs are given in Table 5.

The method described in Section 2 predicted a value for fs which was in good agreement with that calculated
by McAlpine et al. [8] who used experimentally measured boundary layer velocity profiles in their calculation,
while the other models gave less accurate predictions of fs.

McAlpine et al. [8] only observed one tone at 1048Hz for this case. However, using the method described in
Section 2 frequencies at which feedback would occur were calculated. The results are listed in Table 6.

The feedback frequency fn ¼ 1042Hz corresponded most closely with the tone (at 1048Hz) observed by
McAlpine et al. [8].

As was observed by McAlpine et al. [8] and Nash et al. [9] there were relatively high levels of T–S wave
amplification in the regions of mildly separated flow close to the aerofoil trailing edge, which is clearly shown
in the plot of T–S wave amplification rates below (Fig. 7).

The XFOIL simulation predicted transition would occur at 98.3 percent chord, which is downstream of the
last station used in the calculations presented here (at 98 percent chord). McAlpine et al. [8] also observed that
no tone was observed when the aerofoil was inclined at an angle of 31 to the airflow for which XFOIL predicts
transition at 96 percent chord length from the leading edge. XFOIL predicts transition using a simple ‘‘en

transition criterion’’ [20]. Free transition is notoriously difficult to predict and actually occurs over a finite
distance, however, for cases where transition is predicted to occur well upstream of the trailing edge (as in the
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Fig. 6. Dimensionless Falkner–Skan boundary layer velocity profiles at a number of stations close to the trailing edge of the aerofoil (the

number adjacent to each curve corresponds to the station position as a fraction of the chord from the leading edge).

Fig. 5. Total amplification A (left) and phase function F (right).

M.J. Kingan, J.R. Pearse / Journal of Sound and Vibration 322 (2009) 808–828 821
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Table 5

Case 2: peak frequency prediction.

fs (Hz) fs/ftone

McAlpine et al. [8] (calculation) 1050 1.00

Arbey and Bataille [7] (Eq. (2)a 1521 1.45

Paterson et al. [1] Eq. (1) 853 0.81

Brooks et al. [10] Appendix A 1039 0.99

This paper Eq. (32) 1000 0.95

aUsing d�TE ¼ 0:95mm from Eq. (A.5).

Table 6

Case 2: tone frequency prediction.

n (see Eq. (33)) 17 18 19 20 21 22

fn (Hz) 985 1042 1100 1159 1219 1280

Fig. 7. Local T–S wave amplification rates (ai) at various chordwise positions along the aerofoil surface (the number adjacent to each

curve corresponds to the station position as a fraction of the chord from the leading edge).
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31 angle of incidence case) it may be assumed that laminar boundary layer instability noise will not be
produced. For cases where transition occurs close to the trailing edge, or where the flow is close to undergoing
transition, there will be some uncertainty as to whether laminar boundary layer instability noise will actually
occur. Whether it does or not will depend heavily on factors such as the free-stream turbulence level, the
roughness of the aerofoil surface and air temperature.

3.4. Results: case 3

The peak frequency fs predicted using the models of Brooks et al. [10] and the method described in Section 2
are in reasonable agreement with the empirical relationship given by Paterson et al. [1] (Eq. (1)) which was
based on the results of this and other experiments. The model of Arbey and Bataille [7] (Eq. (2)) in which d�TE
was calculated using Eq. (A.5) predicts fs values which appear to be significantly in error (Fig. 8).
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Fig. 8. fs calculated using a number of different methods.

Fig. 9. Total T–S amplification A (left) and phase function F (right) at various airflow speeds (UN in m s�1 is indicated by the number

adjacent to the curve).

M.J. Kingan, J.R. Pearse / Journal of Sound and Vibration 322 (2009) 808–828 823
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Table 7

Case 3: tone frequency prediction.

UN (m s�1) 30 33 36 39 42 45 48 51 54 57 60

Df (Hz); this paper 78 85 91 97 103 109 116 119 125 129 136

Df (Hz); Eq. (4)a 103 111 120 128 137 145 153 161 169 177 185

aUsing LA ¼ 0.156m from [7] Table 2.

f (
H

z)

103

102

U (ms-1)

f ∞ U1.35

n = 15, f ∞ U0.84
n = 16, f ∞ U0.83
n = 17, f ∞ U0.82
n = 18, f ∞ U0.82
n = 19, f ∞ U0.81
n = 20, f ∞ U0.80
n = 21, f ∞ U0.79

Fig. 10. ‘Ladder diagram’ calculated using the method described in this paper.
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The total T–S wave amplification (A) and the phase function (F), calculated using the methods described in
Section 2 for airflow speeds between 30 and 60m s�1 are shown in Fig. 9.

The difference between the two tone frequencies either side of the frequency of maximum T–S wave
amplification was taken to be equal to Df. This is compared with Df calculated from Eq. (4) in Table 7 and
shows moderately good agreement between the two models.

The tone frequencies fn and frequency of maximum T–S wave amplification fs predicted by the models
developed in this paper are plotted against UN in Fig. 10. The classic ‘ladder’ diagram is reproduced with the
frequency of maximum T–S wave amplification scaling in proportion to U1.35, which is close to the U1.5 scaling
observed by Paterson et al. [1], while the tone frequencies scale in proportion to U0.79–0.84, which is close to the
�U0.85 scaling observed by Paterson et al. [1].

As in the previous cases, the XFOIL simulation predicted a region of mildly separated flow close to the
trailing edge of the aerofoil on the pressure surface for all airflow speeds. For all cases the T–S waves
underwent a relatively high level of amplification in the regions of mildly separated flow.
3.5. Results: case 4

The calculated frequency of maximum amplification was 1760Hz which is 16 percent higher than the
loudest tone observed at 1512Hz. The four calculated tone frequencies which corresponded most closely with
the experimentally observed tones are recorded in Table 8.
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Table 8

Case 4: calculated and observed tone frequencies.

n (see Eq. (33)) 8 9 10 11

fn (Hz) calculated 1654 1865 2082 2307

fn (Hz) experiment 1512 1758 1958 2238

Table 9

Case 4. Peak frequency prediction.

fs (Hz) fs/ftone
*

Paterson et al. [1]; Eq. (1) 1470 0.97

Brooks et al. [10]; Appendix A 1713 1.13

Method described in Section 2 1760 1.16

ftone
* is the frequency of the loudest tone—1512Hz.
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The frequencies of the tones predicted by the feedback model agree reasonably well with the experimental
results. As expected these four tone frequencies corresponded to the highest levels of calculated T–S
amplification and corresponded to amplification distances of 8–11 T–S wavelengths.

The peak frequency fs calculated by the various models are given in Table 9.
The model of Brooks et al. [10] is empirical and was derived from testing exclusively on a NACA0012

aerofoil. Therefore the frequencies predicted by it are only really applicable to tests undertaken on the
NACA0012 aerofoil. It is, therefore, somewhat surprising that the model predicts a value for fs which is
reasonably close to the frequency of the loudest tone produced in this experiment. This agreement is most
probably just coincidence as the boundary layer thickness at the trailing edge of the NACA0012 aerofoil will
be somewhat different to that of the NACA0018 aerofoil. The applicability of Brooks et al.’ [10] model to
other aerofoil shapes is of interest, as it could be used to predict the frequency of tones produced by aerofoil
profiles other than the NACA0012 aerofoil. This is one of the advantages of the model described in this paper,
in that as it is purely theoretical, it is applicable to any aerofoil shape and airflow condition. The model of
Paterson et al. [1] also predicts a peak which is very close (3 percent lower) to the frequency of the loudest tone
which occurred in the experiment.

Again the XFOIL simulation predicted a region of mildly separated flow existed close to the trailing edge on
the pressure surface of the aerofoil in which T–S waves underwent a high level of amplification.
4. Recommendations

In experiments undertaken by the authors it was observed that a stalled aerofoil also produced tones which
had the same spectral characteristics as the laminar boundary layer instability noise cases considered in this
paper. It is therefore reasonable to assume that the tones produced by the stalled aerofoils were due to the
laminar boundary layer instability noise mechanism described here. For such cases the authors have had some
success in predicting the frequency of the tones using the method described in Section 2 but using commercial
CFD software to predict the steady pressure distribution over the aerofoil surface and a boundary layer
integral technique to predict the boundary layer profiles over the pressure surface of the aerofoil. However,
this method assumes that the pressure distribution on the pressure surface of the aerofoil does not vary
significantly with time which may be questionable for a stalled aerofoil.

To speed up the method for practical implementation into an aerofoil noise prediction code, a library of
dimensionless T–S wavenumbers a could be determined for a range of different Falkner–Skan boundary layer
profiles (similar to those provided in Ref. [34]).
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An analysis of the accuracy of the XFOIL transition criterion to determine when laminar boundary layer
instability noise will occur is required. Assuming laminar boundary layer instability noise occurs at all
Reynolds numbers lower than when transition was predicted to occur at 498 percent chord from the leading
edge appeared to work well for the limited number of cases considered here.
5. Conclusions

A theoretical model for laminar boundary layer instability noise proposed by McAlpine et al. [8] and Nash
et al. [9] was extended to incorporate a tone selection mechanism based on the feedback mechanism proposed
by Arbey and Bataille [7] and was used to predict the frequencies of the tones for a number of cases. The
model employed a global method of solving the Orr–Sommerfeld equation which led to easy automation. The
models could be used as a predictive tool for laminar boundary layer instability noise on arbitrary aerofoil
shapes. This is significant as no accurate method of doing this currently exists for making laminar boundary
layer instability noise predictions, (although empirical models exist for the NACA0012 aerofoil).

Supporting the hypothesis of McApline et al. [8] and Nash et al. [9] the XFOIL simulations predicted a
region of mildly separated flow close to the trailing edge for all cases investigated in this paper (where laminar
boundary layer instability noise was produced). The T–S waves underwent high levels of amplification in these
regions of mildly separated flow.

Empirical models were used to predict the laminar boundary layer instability noise produced by a
NACA0018 aerofoil. The results are compared with the current model and with an experimental investigation
conducted by the authors. The proposed model reasonably accurately predicted the frequency of the tones
produced by the aerofoil while the empirical models gave mixed results. The ability of empirical models
derived from tests on one aerofoil shape to predict the frequency of laminar boundary layer instability noise
was questioned.

Due to the nonlinear nature of the feedback mechanism the level of tones is not related to the level of
amplification over the pressure surface of the aerofoil. Thus the model can only be used for predicting
frequencies at which tones will occur and could not be extended to predict the level of the tones.
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Appendix A. Model of Brooks et al.

Brooks et al. [10] give the following model for prediction the peak frequency produced by a NACA0012
aerofoil exhibiting laminar boundary layer instability noise. The aerofoil is of chord C, is inclined at angle of
incidence at, is immersed in a free-jet of height h, speed UN and viscosity n.

For an aerofoil in a closed wind tunnel a� is replaced by the angle of incidence of the free equivalent aerofoil
(see Section 2.4):

f s ¼
St0U1

dP

(A.1)

St0 ¼ St0110
�0:04an (A.2)

0:18 RCp1:3� 105

St01 ¼ 0:001756R0:3931
C 1:3� 105oRCp4� 105

0:28 4:0� 105oRC

(A.3)
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d0
C
¼ 101:6569�0:9045 log10 RCþ0:0596ðlog10 RC Þ

2

;
dP

d0
¼ 10�0:04175anþ0:00106a

2
� (A.4)

dn0
C
¼ 103:0187�1:5397 log10 RCþ0:1059ðlog10 RC Þ

2

;
dnTE
dn0
¼ 10�0:0432anþ0:00113a

2
� (A.5)

RC ¼ U1C=n; an ¼
at

Z
; Z ¼ ½ð1þ 2sÞ2 þ

ffiffiffiffiffiffiffiffi
12s
p

�; s ¼
p2

48

� �
C

h

� �2

(A.6)
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[11] C. Mari, D. Jeandel, J. Mathieu, Méthode de calcul de couche limite turbulente compressible avec transfert de chaleur, International

Journal of Heat and Mass Transfer 19 (1976) 893–899.
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