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Abstract

The finite element computation of structures such as waveguides can lead to heavy computations when the length of the

structure is large compared to the wavelength. Such waveguides can in fact be seen as one-dimensional periodic structures.

In this paper a simple recursive method is presented to compute the global dynamic stiffness matrix of finite periodic

structures. This allows to get frequency response functions with a small amount of computations. Examples are presented

to show that the computing time is of order log2N where N is the number of periods of the waveguide.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

We study here the computation of structures considered as waveguides, as shown in Fig. 1, with symmetries
which can be a translation (a), a rotation (b) or a periodicity (c). Thus these waveguides can be uniform
or periodic. The vibration of such waveguides has been the topic of much research. One can find analytical
or finite element models of waveguides and people are generally interested by the computation of wave
propagations and dispersion curves or by the determination of the frequency response functions. A first
approach considers structures with constant cross-sections as the cases (a) and (b) of Fig. 1. For example,
Refs. [1,2] used a wave approach to study the vibrations of structural networks composed of simple uniform
beams, and solved for the dynamics of individual elements and of the junctions between elements by analytical
methods. The efficiency is greatly improved compared to FE methods as a beam can be modelled using only a
single element.

The first numerical approaches were proposed by Refs. [3,4] to approximate the cross-sectional
deformations by finite elements. The authors of Refs. [5,6] applied similar ideas to the calculation of wave
propagations in rails using a finite element model of the cross-section of a rail. They then calculated dispersion
relations and accelerances. Dispersion relations for elastic waves in helical waveguides were also considered by
Ref. [7]. For general waveguides with a complex cross-section, the displacements in the cross-section can be
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. Examples of waveguide structures.
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described by the finite element method while the variation along the axis of symmetry is expressed as a wave
function. Following these ideas, Refs. [8–13] developed the spectral finite element approach. This leads to
efficient computations of dispersion relations and transfer functions but special elements need to be developed
for each element type. This makes the connection with the standard use of the finite element method difficult
and does not allow the benefits of powerful existing finite element software to be exploited. Similar techniques
were also developed by Refs. [14,15] for the computation of dispersion relations in damped waveguides.

More general waveguides can be studied by considering periodic structures. Numerous works provided
interesting theoretical insights in the behaviour of these structures, see for instance the work of Ref. [16] and
the review paper by Ref. [17]. Mead also presented a general theory for wave propagation in periodic systems
in Refs. [18–20]. He showed that the solution can be decomposed into an equal number of
positive and negative-going waves. The approach is mainly based on Floquet’s principle or the transfer
matrix and the objective it to compute propagation constants relating the forces and displacements on the two
sides of a cell (a single period) and the waves associated to these constants. For complex structures
FE models are used for the computation of the propagation constants and waves. The final objective is to
compute dispersion relations to use them in energetic methods, see Refs. [21–25]. In Ref. [26] the general
dynamic stiffness matrix for a periodic structure was found from the propagation constants and waves. It
leads to a matrix linking the extreme sides of the structure and allows to compute transfer functions in the
structure.

The last approach is purely computational and uses rotational and cyclic symmetries to solve the problem
by a decomposition of the displacements in cosine and sine functions. It is thus possible to find the transfer
functions or modal shapes for periodic structures. A review of the current practises can be found in Ref. [27].
These methods allow computing the frequency response functions in a number of operations proportional to
the number of cells in the structure. This paper develops this last approach and presents a recursive method to
calculate the forced response of structures such as those illustrated in Fig. 1. A section of the waveguide is
modelled using conventional FE methods, using a commercial FE package. The resulting mass, stiffness and
damping matrices are then post-processed to give the dynamic stiffness matrix of the cell. Then a recursive
method is applied to compute the global dynamic stiffness matrix of the whole waveguide and finally the
transfer functions in the structure.

This paper presents a different approach from the previously published paper [26]. Both papers aim at
computing the global dynamic stiffness matrix of a N cells structure. But in Ref. [26] waves in a period were
computed and from these waves the dynamic stiffness matrix of a complete structure was obtained with a
computational cost independent of the number of periods in the structure. However, the computation of the
waves can be time consuming when the number of degrees of freedom (dofs) in a section is large because this
needs the computation of eigenvalues of nonsymmetric matrices. On the contrary, in the present approach no
wave needs to be computed and the global dynamic stiffness matrix is obtained by products and inverses of
matrices with the same dimensions as the dynamic stiffness matrix of a cell. Then, the frequency response
functions can be obtained easily without the computation of any wave.
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The paper is divided into two parts. In the first part the recursive method for the finite element analysis of
periodic structures is presented. In the second part two examples consisting in a beam and a plate are described
before the conclusion.

2. Finite element analysis of periodic structures

Consider a periodic structure, as shown in Fig. 2, which is made of a large number N of cells. We are interested
by the computation of the frequency response function for a point force excitation F ¼ 1 somewhere in the
structure and a response u at another point. We propose here an efficient method to compute this function by
using a recursive approach to get the dynamic stiffness matrix of different sets of cells.

2.1. Behaviour of a cell

Consider first the case of only one cell. The discrete dynamic equation of a cell obtained from a FE model at
a frequency o and for the time dependence e�iot is given by

ðK� ioC� o2MÞq ¼ f (1)

where K, M and C are the stiffness, mass and damping matrices, respectively, f is the loading vector and q the
vector of the dofs. A viscous damping is considered here but the same results could be obtained with other
damping models. Introducing the dynamic stiffness matrix eD ¼ K� ioC� o2M, decomposing the dofs into
boundary ðBÞ and interior ðIÞ dofs as shown in Fig. 3, and assuming that there are no external forces on the
interior nodes, result in the following equation:eDBB

eDBIeDIB
eDII

" #
qB

qI

" #
¼

fB

0

� �
(2)

The interior dofs can be eliminated using the second row of Eq. (2), which results in

qI ¼ �
eD�1II

eDIBqB (3)
Interior dofs
I

B

Boundary dofs

L R

Fig. 3. Interior and boundary dofs for a single cell.
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Fig. 2. Periodic structure made of N cells with an excitation by a force F.
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The first row of Eq. (2) becomes

fB ¼ ðeDBB � eDBI
eD�1II

eDIBÞqB (4)

It should be noted that only boundary dofs are considered in the following. The cell is assumed to be meshed
with an equal number of nodes on their opposite sides. The boundary dofs for one cell are decomposed into
left ðLÞ and right ðRÞ dofs as shown in Fig. 3. Thus, Eq. (4) is rewritten as

fL

fR

" #
¼

D
ð1Þ
LL D

ð1Þ
LR

D
ð1Þ
RL D

ð1Þ
RR

" #
qL

qR

" #
¼ Dð1Þ

qL

qR

" #
(5)

where Dð1Þ is the dynamic stiffness matrix of a single cell. This matrix is symmetric if the matrices K, M and C

in relation (1) are symmetric.

2.2. Computation of reduced dynamic stiffness matrices

Consider a structure made of two cells with the respective dynamic stiffness matrices denoted by A and B as
in Fig. 4. We propose to remove the internal dofs at the boundary between the two cells to compute the
dynamic stiffness matrix, denoted Dð2Þ, relating the dofs in the first section of A and the last section of B. The
dynamic stiffness matrix of the substructure with two cells is computed by

f1

f2

f3

264
375 ¼ ALL ALR 0

ARL ARR þ BLL BLR

0 BRL BRR

264
375 q1

q2

q3

264
375 (6)

As there is no load on the interior section, one gets f2 ¼ 0 and

q2 ¼ �ðARR þ BLLÞ
�1
ðARLq1 þ BLRq3Þ (7)

The global dynamic stiffness matrix of the two-cells structure is thus

f1

f3

" #
¼

ALL � ALRðARR þ BLLÞ
�1ARL �ALRðARR þ BLLÞ

�1BLR

�BRLðARR þ BLLÞ
�1ARL BRR � BRLðARR þ BLLÞ

�1BLR

" #
q1

q3

" #

¼
D
ð2Þ
LL D

ð2Þ
LR

D
ð2Þ
RL D

ð2Þ
RR

24 35 q1

q3

" #

¼ Dð2Þ
q1

q3

" #
(8)

This defines the matrix Dð2Þ which relates the forces and displacements dofs at the extreme sections of the two-
cells structure. It can be easily checked that if the matrices A and B are symmetric, the resulting matrix Dð2Þ of
BA

21 3

Fig. 4. Structure with two cells and three sections.



ARTICLE IN PRESS
D. Duhamel / Journal of Sound and Vibration 323 (2009) 163–172 167
relation (8) is also symmetric. The operation of removing the interior dofs is now denoted by f:; :g such that we
can write

Dð2Þ ¼ fA;Bg (9)

2.3. Case of general structures

Consider now a structure without internal load and made of 2n cells. We propose to recursively remove the
internal dofs between adjacent cells to compute the dynamic stiffness matrix, denoted Dð2

nÞ, relating the dofs in
sections 1 and 2n. Consider firstly a structure with two identical cells. From the precedent analysis, one sees
that its dynamic stiffness matrix is given by Dð2Þ ¼ fDð1Þ;Dð1Þg. Repeating the process (see an illustration in
Fig. 5), one gets the dynamic stiffness matrix of the structure with 2n cells in n steps by the recursive relation

Dð2
nÞ ¼ fDð2

n�1Þ;Dð2
n�1Þg (10)

This matrix is such that

f1

f2n

" #
¼

D
ð2nÞ

LL D
ð2nÞ

LR

D
ð2nÞ

RL D
ð2nÞ

RR

24 35 q1

q2n

" #
¼ Dð2

nÞ
q1

q2n

" #
(11)

In cases where the structure is not composed of a number of cells which equals a power of two, one can
modify the previous procedure using the binary representation of the total number of cells N. Consider the
example where N ¼ 11 ¼ 1011b in binary representation. One calculates first the dynamic stiffness matrix for a
structure with eight cells, then this structure is assembled with a structure made of two cells which has been
computed during the computation of the eight-cells structure. Finally the resulting matrix is assembled with a
one cell matrix. The approach can be resumed by

Dð11Þ ¼ ffDð8Þ;Dð2Þg;Dð1Þg (12)

in which the matrices Dð2
nÞ are computed by the method presented before. The elimination of the interior dofs

gives the matrix linking the forces and displacements dofs in sections 1 and N. One can notice that the final
matrix is computed with a number of operations of order log2N, thus saving a huge number of computations
when we compare to a standard approach in which all the matrices of the cells are assembled into a global
matrix.

Using this method it is easy to compute the matrices for the parts of the structure, respectively, on the left
and on the right of the force. Assembling these two matrices, applying the appropriate boundary conditions
on the first and last sections, one gets the final linear system. This system has a number of dofs which equals
approximately three times the number of dofs in a section.
3

2

n

. . . . . .

2 cells

8 cells

4 cells

2n cells

1
step

Fig. 5. Structure at each step.
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Fig. 7. Frequency response functions for a beam with 2� 8 elements (upper graph) and 2� 1024 elements (lower graph): — analytical

solution, ��� finite element solution. The position of the excitation point is shown in Fig. 6 and the response is computed at the same

point.
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Fig. 6. Beam structure (a) and beam element (b).
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3. Examples

3.1. Beam structure

In the first example, we consider the beam shown in Fig. 6 which is made of elements with four dofs. The
stiffness and mass matrices of an element of length l are given by

Ke ¼
EI

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

26664
37775 (13)

Me ¼
rSl

420

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

26664
37775 (14)

Here, E is Young’s modulus, I the second moment of area, r the density of the material and S the cross-
sectional area of the beam. Using the previous approach, one can compute the dynamic stiffness matrices for
the sections on the left and on the right of the force. The damping matrix is obtained by using a complex
Young modulus such that E ¼ E0ð1þ iZÞ with Z ¼ 0:01 leading to a hysteretic damping instead of the viscous
one such that D̃ ¼ ð1þ iZÞK� o2M. The beam is made of steal such that E0 ¼ 2� 1011 Pa, r ¼ 7800 kg=m3,
F

L=1m

L=1m

h=0.001m

x 

y

Fig. 9. Plate example.
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Fig. 8. Computing time versus the number of cells in the beam.
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the length of the beam L ¼ 1m, I ¼ 8:33� 10�14 m4 and S ¼ 10�6 m2. The matrix for the whole beam is
obtained by assembling the matrices of the left and right parts of the beam on each sides of the force. Taking
into account the fixed displacement boundary conditions by removing the corresponding dofs in the global
matrix results in the final system. Fig. 7 presents the frequency response functions for structures with,
respectively, 8 and 1024 elements in each part of the beam. It can be seen that 8 elements are not sufficient to
compute accurately the solution while 1024 elements lead to a very good result.

In Fig. 8, the cpu time of the computation is plotted versus the global number of elements in the beam. The
computation of 10 000 points in frequency is made for each mesh of the beam and the largest mesh has
2� 4196 elements for the complete beam. A linear behaviour of the cpu time versus the logarithm of the
number of elements can be seen as expected.

3.2. Plate

Consider now the plate shown in Fig. 9. The mesh of a cell is obtained by Abaqus and consists in 50
elements of size Ly=50� Lx=2n where n is the number of cells along the direction x. The mass and stiffness
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Fig. 10. Frequency response functions for a plate with 2� 16 cells (upper graph) and 2� 256 cells (lower graph): — analytical solution,

��� recursive finite element solution and � � standard finite element solution. The excitation is located at the centre of the plate as shown

in Fig. 9 and the response is computed at the same point.
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matrices are produced by Abaqus then there are loaded in Matlab and the precedent procedure allows
computing the displacement for a load at the centre of the plate. Information on the size are given in Fig. 9
and the plate is still made of steal. The boundary conditions are simply supported on all sides. Fig. 10 presents
the frequency response functions for structures with globally 32 and 512 cells. It can be seen, as for the beam,
that 32 cells are not sufficient to compute accurately the solution while 512 cells lead to much better results.
For high frequencies a discrepancy with the analytical solution can still be seen. It has been checked that the
result can be considerably improved by taking 100 elements instead of 50 along the direction y. The figures
also present the results from the standard finite element approach obtained by assembling the elementary
matrices for each period and solving the global linear system. It can be seen that both finite elements
computations yield identical results.

In Fig. 11, the cpu time of the computation is plotted versus the global number of cells in the plate. The
computation of 100 points in frequency is made for each mesh of the plate and the largest mesh has 2048 cells
along x for the complete plate. Once again a linear behaviour of the cpu time versus the logarithm of the
number of cells can be observed. The computing times for the recursive and standard finite element methods
are compared in Table 1. It can be seen that the recursive method is a little slower than the standard method
for a number of periods lower than 16. For a larger number of periods the recursive method tends to be more
and more efficient as the number of periods increases.
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Fig. 11. Computing time versus the number of cells in the plate.

Table 1

Computing times for recursive and standard FEM methods.

Number of periods Recursive method (s) Classical FEM (s)

2 18.3 14.4

4 28.8 20.1

8 39.5 33.7

16 50.3 69.2

32 57.0 164.3

64 71.8 435.0

128 82.7 1295.0

256 93.4 4093.1

512 100.0 13 901.4

1024 114.8 49 271.1

2048 125.6 184 397.3
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4. Conclusion

A method has been described to compute frequency response functions for waveguide structures with
periodic or homogeneous sections. The proposed method allows computing the solution in a time
proportional to the logarithm of the numbers of cells in the structure. This simple recursive method can be
applied for any type of one-dimensional periodic waveguides. It could be used in the future for the
computation of complex structures such as tyres.
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