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Abstract

Internal damping of tensioned cables during flexure by transverse vibration is analyzed. The flexure causes relative

movements between the wires or strands of the cable, movements which are constrained by friction between them. Under

conditions common to vibration of overhead transmission line conductors the friction is great enough to prevent gross

sliding. However, there is microslip at the edges of the interstrand contacts, so there is frictional dissipation. In addition,

the frictional forces cause shear strains at the contacts with resulting material damping. An analysis is presented that

connects the bodily flexure of the conductor with the internal interstrand movements and forces, and with the amounts of

dissipation that occur—self-damping. Comparison of estimates based on the analysis with measured data on self-damping

reveals reasonable agreement, for a limited range. Cases lying outside that range appear to be associated with treatments

applied to cable samples involved in the measurements prior to testing. Possible mechanisms activated by these treatments

are discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The cables of overhead electric power lines are subject under wind action to vortex-induced vibration,
known in the electrical industry as ‘‘aeolian vibration.’’ The motion takes the form of vibration waves. Fatigue
of cable elements can occur at locations such as at supporting towers, where reflection of these waves causes
concentrated localized flexure of the conductor.

Severity of the vibration is determined by the balance among the vortex-driven power supplied by the wind,
the power dissipated within the conductor, and that dissipated by external sources such as attached dampers
and losses in supporting structures [1]. There is extensive information on the power imparted by the wind to
vibrating cables, or to cylinders that model them [2]. There is also well-developed technology for measuring
dissipation by attached external dampers [3]. Dissipation in supporting structures is usually small, and very
difficult to predict when it is not, so it is generally ignored in power balance calculations.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a major axis of contact ellipse
A cross sectional area of strand
b minor axis of contact ellipse; width of

line contact
B0,B1 specific damping coefficients; see Eqs. (94)

and (95).
c transverse wave velocity
C contact compliance
CE see Eq. (14)
d strand diameter
D conductor diameter
e eccentricity of contact ellipse
E Young’s modulus
EI cable flexural rigidity
f vibration frequency
F traction force on contact, referred to

strand axis; see Fig. 9
F traction force referred to principle axes

of contact; see Fig. 9
g dimensionless relative normal approach

of contacting strands
G shear modulus
h relative normal approach of contacting

strands
H cable tension
i index to strands in a layer
j index to helical layers; for innermost,

j ¼ 1
J hysteritic dissipation per cycle
k eccentricity of contact ellipse
KD see Eq. (14)
K dimensionless curvature of conductor
m cable mass per unit length
M bending moment due to interstrand

tractions
ni number of strands in layer i

N number of helical layers in cable
Ñ i;j number of contacts per unit length of a

strand of layer i with strands of layer j

Nj,j+1 number of interlayer contacts between j

and j+1 per unit length of conductor
NS Strouhal number
p dimensionless major axis of contact

ellipse
P normal load on contact
q dimensionless minor axis of contact

ellipse
Q see Eq. (72)

r radius of helix defining strand axis
RS rated conductor strength
s coordinate embedded in strand axis
Sj total inward force per unit length on

layer j

t time
T strand tension
u tangential relative displacement at ellip-

tical contact
U stored elastic energy
V wind velocity
w amplitude of cable in y direction
wmax mid-loop single amplitude
W frictional dissipation per cycle
x coordinate embedded in the cable axis
y coordinate normal to cable axis in plane

of bending (see Fig. 7)
z coordinate normal to cable axis trans-

verse to plane of bending (see Fig. 7)
Z see Eq. (70)
a lay angle of strand axis
b angle between strand axis and principle

axis of contact
g see Eq. (18)
G function defined in Eq. (20)
d displacement of strand parallel to its axis
e strain
Z displacement of strand normal to its axis
y angular position of strand in conductor

cross section
k curvature of cable axis at mid-loop
l lay length of helical strand
m coefficient of friction
n Poisson’s ratio
x see Eq. (16)
r angular position of intralayer interstrand

contact
s frictional loss tangent for parallel strands
t curvature of strand due to helicity
f difference in lay angles of adjacent layers,

jajj þ jajþ1j

c specific damping capacity of material
C specific damping capacity of conductor

stiffness
o circular frequency

indicates maximum value within a layer
indicates mean value
indicates distributed form of discrete
function
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Dissipation within the conductor, ‘‘self damping,’’ is determined through measurements in the laboratory,
where relatively short spans, generally in the range 50–100m, are vibrated at various frequencies and
amplitudes that may occur in the field, and dissipation within the conductor is measured. The measurements
are difficult and time consuming and, although procedures for making them are described in certain standards
[4,5], there is wide scatter among test results from different laboratories and, indeed, from within the same
laboratory, even for identical conductors. Some of this dispersion is certainly due to the difficulty of
measurement. The levels of vibration power involved are small. Some dispersion may result from departures
from procedures recommended in standards. However, some of it may well be associated with variations in
characteristics of the conductor samples, characteristics whose importance has not been recognized, or which
have not been considered feasible to determine. This latter possibility points to the need for a suitable
analytical model of conductor self damping mechanics. The purpose of this paper is to propose such a model
for use as a tool for exploring and better understanding those characteristics. It will be applied for that
purpose in Section 5 where its predictions will be compared with several sets of laboratory measurements of
self damping.

As noted above, overhead conductor vibration takes the form of waves. Motions are in the crosswind
direction, thus generally vertical. If the stiffness of the span supports is high, the waves traveling in opposite
directions along the span combine to form its eigenmodes. These may be complex when there are localized
sources of dissipation such as attached dampers or loses at supports. However it is sufficient for the present
discussion to focus on the case where such external damping is absent. Then the eigenmodes are real and are
formed from sine-shaped loops. Thus, the lateral displacement of the cable is w ¼ wðxÞ cos ot, where

wðxÞ ¼ wmax sin
ox

c
, (1)

wmax is mid-loop single amplitude, o is circular frequency of vibration, x is the coordinate embedded in the
cable axis, t is time and c is transverse wave velocity. Frequencies are determined approximately by the
Strouhal relation

f ¼ NS

V

D
, (2)

where V is the component of wind velocity normal to the cable, D is cable diameter, and the Strouhal number
NS is a function of Reynolds number and the roughness of the conductor surface. For the range of interest for
overhead conductors it has a value of approximately 0.185. Vibration of field spans usually shows the
simultaneous presence of several eigenmodes with frequencies clustered around that expected on the basis of
Eq. (2), leading to complexities that are beyond the scope of the paper. Thus the analysis that follows
considers the case where only one mode is present, represented by Eq. (1).

2. Background

Overhead conductors are manufactured as multi-strand concentric-lay cables to make them flexible so that
they can be wound onto reels for shipment. Flexibility is afforded by the freedom of individual strands to slide
longitudinally. Fig. 1 illustrates the direction of this sliding when a cable is given curvature k. The sliding
relieves the difference in stress—compression on the top and tension on the bottom—that would occur in a
similarly bent solid bar. Conductors are stranded with the direction of lay reversed, layer-by-layer to
Fig. 1. Longitudinal displacement of strands during flexure.
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improve their structural integrity by defining the space for each layer through a dense matrix of interlayer
contacts.

When the conductor is installed in an overhead span, it is placed under significant tension which is
distributed among the strands. The tensions in the helically shaped strands bind them against the layers below.
Strand sliding then is confronted by friction, resulting in a large increase in conductor stiffness. It was
suggested as early as 1930 that the curvature imposed on conductors by vibration could lead to frictional
damping through the sliding of the strands. Ryle [6] provided the first analytical estimates of the critical
curvature at which sliding would take place. When curvature exceeded this value frictional dissipation would
occur and there would be hysteretic damping. Ryle did not consider effects of the longitudinal elasticity of the
strands nor the tangential compliance of interstrand contacts. In fact, workable analyses of that compliance
did not become available until some years later in the work of Mindlin [7], Johnson [8], Goodman [9] and
others. The significance of this work to self damping technology has been described by Hardy et al. [10,11].
Briefly, the conductor strands do displace, as illustrated in Fig. 1, but the displacement relative to the layer
below is accommodated in large part by elastic shear strain at the interstrand contacts. However, the normal
pressure on the contact is not uniform; it tapers to zero at the edge. As a result, static friction there is overcome
by the tangential stress on the contact, and sliding occurs in an annular region along the contact periphery.
This region expands inward as the tangential load on the contact increases, and contracts outward as the load
is reduced. During vibration, the region expands and contracts for each half cycle, and the micro-slipping that
takes place results in frictional dissipation and thus conductor self damping. The analysis of Section 4 makes
generous use of the work of Hardy et al. [10,11], who have already dealt with the single-layer problem.

The magnitude of that frictional dissipation per cycle for possibly different contacting materials 1 and 2 is
given by Johnson as [8]

W ¼
1

36mP
ffiffiffiffiffi
ab
p

2� n1
G1
þ

2� n2
G2

� �
F3, (3)

assuming that the maximum thickness of the micro-slip annulus is much smaller than a. P is the normal load
on the contact, m is friction coefficient, n is Poisson’s ratio, G is shear modulus, a and b are the major and
minor semi-axes of the contact ellipse, and F is the applied traction force. Johnson [12] tested this expression
against measurements of contact damping of a steel sphere against a steel plate. He found satisfactory
agreement except at very low force amplitudes. There, W appeared to vary as the square, rather than the cube
of force amplitude. It was suggested that internal material damping was a major cause. This damping would
be associated with alternating shear stresses at the contact interface, within the no-slip region. Thus, it appears
likely that there are two mechanisms at work in conductor self damping. One is microslip at the edges of the
contact areas, with dissipation proportional to the cube of the traction force amplitude. The other is material
damping proportional to the maximum elastic energy stored in the tangential compliance of the contact by the
traction force.

Conductors are characterized by the materials of the strands, their diameters, the number of layers and the
number of strands in each, and the lay lengths of the individual layers. Lay length and lay angle are defined in
Fig. 2. A typical conductor is the aluminum conductor steel reinforced (ACSR) ‘‘Cardinal’’ with the
construction listed in Table 1. It has an overall diameter of 30.38mm, mass of 1.829 kg/m and strength of
150.35 kN. Industry standards permit some variation in lengths of lay. The values in Table 1 are based on the
‘‘preferred’’ lay ratios of Ref. [13]. The full ranges of permitted lay lengths are defined such that the space
Fig. 2. Helix dimensions.
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Table 1

Construction of ACSR (Cardinal).

Layer Material No. of strands Strand dia. (mm) Lay length l (m)

4 Aluminum 24 3.376 0.334

3 Aluminum 18 3.376 0.307

2 Aluminum 12 3.376 0.236

1 Steel 6 3.376 0.243

0 Steel 1 3.376 –
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allowed for the strands of a layer is never quite filled [14]. Exceptions occur for layers of seven strands, where
fill ratios can exceed unity for some lay lengths, and for 6-strand layers where that is always the case.
3. Approximations
(a)
 The analysis assumes that the areas of the annuli of microslip are small enough compared to the areas of
contact that the elastic compliance of the contacts is not affected. Then the conductor behaves linearly.
Stresses are proportional to strains, and the interstrand tractions at contacts are proportional to the
distortion of the conductor, i.e. its curvature.
(b)
 Conductor curvature is assumed to remain constant over the length of lay in any layer. From (1),
curvature is,

d2w

dx2
¼ �wmax

o2

c2
sin

ox

c
, (4)

where wave velocity is given by [15],

c ¼

ffiffiffiffiffi
H

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ 4p2f 2 m � EI

H2

rs
, (5)

where H is the tension in the cable, m is its unit mass, and EI is its flexural rigidity. The value of the second
radical remains close to unity for conditions encountered in aeolian vibration. The deviations from unity
are useful for determining the actual flexural rigidity EI from laboratory measurements of wave length as a
function of frequency. For ‘‘Cardinal’’ ACSR at a tension of 25 percent of its rated strength, c � 236m=s.
Now, as a matter of observation, aeolian vibration is almost never observed in winds greater than 10 m/s.
At that wind speed for ‘‘Cardinal’’, Eq. (2) indicates a frequency of 61Hz. The wave length would be
c/f ¼ 3.86m. At lower wind speeds the wave length would be greater. Thus, referring to Table 1, the lay
lengths of the strands would be one-tenth or less of the wave length. Focusing on the middle of the sine-
shaped loop of Eq. (4), one tenth of the wave length would encompass 7181 about the 901 point. The sine
function would then remain between 0.95 and 1.00.
(c)
 Interstrand tractions between layers are applied to a strand at discrete points along its length, where it
crosses the strands of the layer above or below. At a certain point it is helpful to represent this array of
discrete tractions with a continuous traction function. The density of contacts within a lay length affects the
soundness of that substitution. The number of contacts in a lay length of Layer a with strands of Layer b is,

mab ¼ nb 1þ
la

lb

� �
, (6)

in which nb is the number of strands in Layer b and l is the lay length. Referring to Table 1, the lowest
density, about 12, occurs in the contacts of the 12-strand layer with the 6-strand layer. The angular
increment between contacts is about 301. The impact of this large increment is reduced by the fact that there
are 12 strands in Layer a in this example, so there are about 144 contacts between the 6- and 12-strand layers
within a lay length of the 12-strand layer.
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4. Analysis
4.1. Normal loads at contacts between layers

The dimensions of the contact area and the elastic properties of the contacting materials determine
tangential compliance at contacts. The normal loads at the contact determine the contact dimensions. These
normal loads are created by inward pressure by strands due to their combination of static tension and
curvature. This curvature for a helical strand is

t ¼
sin2 a

r
, (7)

where a is the lay angle of the strand axis and r is the helix radius to that axis. The inward pressure per unit
length of strand is Y ¼ Tt, where T is the tension in the strand. Then the total inward force originating in a
layer per unit length of conductor is

nT
sin2 a

r cos a
. (8)

Each layer except the outer layer transmits the pressure from layers above it through to layers below. Thus, in
a conductor of N helical layers, the force on layer joN is

Sj ¼
XN

j

niTi sin
2 ai

ri cos ai

. (9)

The total number of contacts between layer j and the layer above it is

Nj;jþ1 ¼ njnjþ1
1

lj

þ
1

ljþ1

� �
. (10)

Thus, the normal load per contact between layers j and j+1 is

Pj;jþ1 ¼
1

njnjþ1

1

lj

þ
1

ljþ1

� ��1XN

i¼j

niTi sin
2 ai

ri cos ai

. (11)

Note that the layers are not self-supporting through intralayer interstrand pressures since layer fill ratios are
less than unity. The 6-strand layer is an exception. Since the space within that layer is always larger than the
center strand, the force from all helical layers is borne by pressure between the strands of the 6-strand layer. It
can be shown that this pressure, per unit length of contact is

P1;1 ¼
S1

6

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

3

16p2
tan2 a1

r . (12)

4.2. Contact characteristics

Hertzian contact between non-parallel cylindrical bodies results in an elliptical contact area. Its dimensions
are determined by the diameters of the cylinders, the angle between their axes, their elastic properties and the
normal load on the contact. The major and minor semi-axes are given by, respectively [16],

a ¼ pðPKDCEÞ
1=3; b ¼ qðPKDCEÞ

1=3, (13)

where, P is the normal force on the contact:

KD ¼
0:75
1

d1
þ

1

d2

; CE ¼
1� n21

E1
þ

1� n22
E2

, (14)
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Fig. 3. Dimensionless ellipse semi-axes. Solid—major axis p; dashed—minor axis q.
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where d is strand diameter and E is Young’s modulus. The relative approach of contacting strands is given by

h ¼ gðP2C2
E=KDÞ

1=3 (15)

p, q and g are functions of an angle x. p and q are illustrated in Fig. 3. x is found from

cos x ¼
KD

1:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

d2
1

þ
4

d2
2

þ
8

d1d2
cos 2f

s
, (16)

where f is the angle between the cylinder axes. If d1 ¼ d2; x ¼ f: Although curvature t of the cylinders can
also influence the contact dimensions, it is small enough that conductor strands may be considered locally
straight. Eqs. (14) and (16) reflect that simplification. x is related to the eccentricity e of the contact ellipse
through the relation

cos x ¼
e2

2� e2
. (17)

The functions p and q are given in tabular form in Ref. [16], but are made available as polynomials in f in
Appendix A, applicable to the range of x found in conductors. When the contacting strands are of equal
diameter, the major principal axis of the contact ellipse bisects the angle between the axes of the two strands.
When the strand diameters are different, the major principle axis of the ellipse is rotated toward the axis of the
smaller strand. It can be shown from Ref. [17] that this rotation is

g12 ¼
1

2
arctan

sin 2f12

d2

d1
þ cos 2f12

0
BB@

1
CCA� f12

2
(18)

where d24d1.
The average stress on the contact interface is simply sn ¼ P=pab. It is found that in practice this stress is

substantially greater than the bearing yield stress for the aluminum alloy used in most overhead conductors,
1350-H19. Elastic–plastic modeling of contact indentation [8] suggests that this yield stress should be about
3Y, where Y is the yield stress in tension or compression. For 1350-H19, Y � 100MPa. Thus the average
contact stress is expected to be about 300MPa. Indeed, measurements by the author of contact dimensions
under different loads correlate well with this value when the crossing angle is 901, as shown in Fig. 4. For the
crossing angles that occur in overhead conductors, 101–301 however, the average stress is more nearly
240MPa.

Yielding of the contact expands the contact area. For purposes of this study, the shape of the contact ellipse
is assumed to remain that found for the Hertz contact. In addition, it is assumed that once yielding occurs the
average stress over the contact area is equal to the bearing yield stress, thus determining the area of the yielded
contact. Yielding of the contact also increases the relative approach of the contacting strands. Again for
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Fig. 4. Average contact stress under yield for 3.68 mm strands of 1350-H19 aluminum. Dashed—901 crossing angle; solid—101 to 301

crossing angles.

Fig. 5. Tangential compliance functions. Solid—parallel to ellipse major axis; dashed—parallel to ellipse minor axis. n ¼ 0.33.
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purposes of this study, that approach is estimated using the plausible but unproven model that h varies in
proportion to contact area during yielding.

As noted earlier, most of the relative tangential displacement of contacting strands is absorbed in elastic
shear strain at the interfaces. This elastic behavior is characterized by tangential compliance, the ratio of the
relative displacement to the tangential shear force causing it, C ¼ u/F. When the contact is elliptical the
compliances in the directions of the two principal axes are different. If both strands are of the same material,
they are given by Ref. [18]

u

F
¼

1

2Ga
G

a

b
; n

� �
, (19)

where,

G
a

b
; n

� �
¼

2� n
2

2KðkÞ

p
�

n
2p2ð2� nÞ

NðkÞ

k

� �
(20)

and

NðkÞ ¼ 4p
2

k
� k

� �
KðkÞ �

2

k
EðkÞ

� �
. (21)

K and E are the complete elliptic integrals of the first and second kind of argument ðp=2; kÞ where
k2
¼ 1� b2=a2. In Eq. (20), the (+) option applies to u and F in the b direction and (�) to u and F in the

a direction. The G functions are shown in Fig. 5 and are presented as polynomials in a/b in Appendix A for the
case where n ¼ 0.33.
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When the contacting strands are of different materials,

Cj;jþ1 ¼
1

4Gja
G

a

b
; nj

� �
þ

1

4Gjþ1a
G

a

b
; njþ1

� �
. (22)

As noted in Section 4.1, the innermost helical layer is self-supporting through pressure between its strands.
The interstrand contacts take the form of narrow strips of width b. For Hertzian contact [8],

b2
¼

2dP1;1ð1� n2Þ
pE

. (23)

It has been shown [19] that the longitudinal compliance at such contacts is

Cx ¼
b2

dP1;1ð1� nÞ
ln
2d

b
�

1

2

� �
�

1

2pG
. (24)

However, measured values of Cx for aluminum strands were found to be roughly twice theoretical values.
It was suggested that roughness of mill quality strands may have been responsible.

4.3. Strand displacements

When the conductor is flexed to curvature k, the strands tend to displace longitudinally, as illustrated in
Fig. 6. At the point of maximum displacement, curvature at mid-loop is

k ¼
4p2f 2wmax

c2
. (25)

These displacements are functions of position along the strand. Let the strands in a layer be numbered as in
Fig. 7. When the curvature is constant along the conductor, the displacements will be greatest where y ¼ 0 or
Fig. 6. Positive longitudinal displacements of strands during positive flexure.

Fig. 7. Strand numbering (at x ¼ 0).
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p, and will be zero where y ¼7p/2. Thus the displacements may reasonably be assumed to take the form

d ¼ d̂ cos y. (26)

Displacement d of a point along a strand is measured with respect to the position it would occupy if the
conductor flexed as a solid bar. Thus, when all interstrand contact compliances are taken to be zero, d ¼ 0
everywhere.

Now the helical axis of the ith strand takes the form

yi ¼ r sin yi; zi ¼ r cos yi, (27)

where

yi ¼ 2p
i � 1

n
�

x

l

� �
. (28)

The (�) option pertains to right-hand pitch and (+) to left-hand pitch. For the case where the conductor is
flexed in the y direction to a curvature k, and where d ¼ 0, the strand experiences a strain �ky in the direction
normal to the conductor cross section. The strain of the strand along its axis is then �ky cos2 a. If this strain is
released by allowing the strands to slide freely, displacements df occur such that

dfi ¼ k cos2 a
Z

yi ds ¼
krl
2p

cos a cos yi, (29)

where s is the coordinate embedded in the strand axis. Note that ds ¼ dx= cos a and dx ¼ ðl=2pÞdy.
The integration in Eq. (29) is carried from the top of the helix where y ¼ p=2 to yi.

It is important to note that strands may experience lateral displacements Z as well as longitudinal
displacements d. The layers of strands in overhead conductors are not tightly packed, i.e. they do not
completely fill the circumferential space provided for them when the conductor is manufactured in compliance
with industry standards [13,20], except for the first layer above the core strand. Thus, the total displacement
has two components as illustrated in Fig. 8 for each of the two strands engaged in contact. The strands of the
innermost helical layer are well-packed so Z ¼ 0 throughout that layer.
4.4. Tractions at interlayer contacts

The relative displacements across interlayer contacts determine the traction force F that is transmitted.
This force is conveniently resolved into componentsFa and Fb along the major and minor axes of the contact
ellipse. The contact compliances in those two directions are given by Eq. (19) and are denoted

Ca ¼ d=Fa; Cb ¼ Z=Fb. (30)

The total traction F is the vector sum of Fa and Fb. Denote the force by strand 1 upon the contact as F12,
and that by strand 2 on the contact as F21. These can be resolved into components longitudinal and lateral to
strands 1 and 2 as illustrated in Fig. 9.

Fig. 9 was constructed with the major principle axis of the contact ellipse parallel to the conductor axis.
Actually, if a1aa2, the ellipse is tilted by ja1j � ja2j, and if the diameters of the contacting strands are not
Fig. 8. Displacements of two strands in contact.
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Fig. 9. Forces on interstrand contact.

C.B. Rawlins / Journal of Sound and Vibration 323 (2009) 232–256242
equal it will be tilted further by g12. For the lay angle and strand diameters found in overhead conductors,
however, these deviations are small enough to neglect.

Referring to Figs. 8 and 9, we find

Fa12 ¼
1

Ca12
ðd1 cos a1 � Z1 sin a1 þ d2 cos a2 � Z2 sin a2Þ, (31)

Fb12 ¼
1

Cb12
ðZ1 cos a1 þ d1 sin a1 � Z2 cos a2 � d2 sin a2Þ, (32)

F12 ¼Fa12 cos a1 þFb12 sin a1; F21 ¼Fa12 cos a2 þFb12 sin a2, (33)

F 012 ¼Fb12 cos a1 �Fa12 sin a1; F 021 ¼Fb12 cos a2 þFa12 sin a2. (34)

The subscripts for F, Ca and Cb have been extended to indicate that they pertain to contacts between layers
1 and 2. Correspondingly, the forces between layers 2 and 3 may be written

Fa23 ¼
1

Ca23
ðd2 cos a2 � Z2 sin a2 þ d3 cos a3 � Z3 sin a3Þ, (35)

Fb23 ¼
1

Cb23
ðZ2 cos a2 þ d2 sin a2 � Z3 cos a3 � d3 sin a3Þ, (36)

F23 ¼Fa23 cos a2 þFb23 sin a2; F32 ¼Fa23 cos a3 þFb23 sin a3, (37)

F 023 ¼Fb23 cos a2 �Fa23 sin a2; F 032 ¼Fb23 cos a3 þFa23 sin a3. (38)

Note that d1, d2, Z1, Z2 are all assumed to share the same angular position y in Eqs. (31) and (32), and d2, d3, Z2,
Z3 to do so in Eqs. (35) and (36).

It is convenient to put these forces in distributed form, i.e. as force per unit length of strand. That can be
done by multiplying them by the number of contacts per unit length. The number of contacts of a strand of
layer 2 with layer 1 and with layer 3 are, respectively,

Ñ21 ¼ n1
1

l1
þ

1

l2

� �
cos b2; Ñ23 ¼ n3

1

l2
þ

1

l3

� �
cos b2. (39)

Then the total traction per unit length upon a strand in layer 2 from layers 1 and 3, parallel and transverse to
that strand, amount to, respectively,

F̃2 ¼ Ñ 21F12 þ Ñ23F 23; F̃
0

2 ¼ Ñ 21F 012 þ Ñ23F 023, (40)

where it is now assumed that all of d1, d2, d3, Z1, Z2 and Z3 share the same y and F̃2 and F̃
0

2 are functions of that
value. F̃2 induces a gradient in strand tension that will be addressed below. Since there is no pressure between
the strands of layer 2, F̃

0

2 ¼ 0.
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Substitution of Eqs. (31)–(39) into Eq. (40) yields polynomials in d1, d2, d3, Z1, Z2 and Z3. These may be
expressed as

F̃2 ¼ X 1d1 þ X 2d2 þ X 3d3 þ X 4Z1 þ X 5Z2 þ X 6Z3, (41)

F̃
0

2 ¼ Y 1d1 þ Y 2d2 þ Y 3d3 þ Y 4Z1 þ Y 5Z2 þ Y 6Z3, (42)

where

X 1 ¼ Ñ 21
cos a1 cos a2

Ca12
�

sin a1 sin a2
Cb12

� �
, (43)

X 2 ¼
Ñ21

Ca12
þ

Ñ 23

Ca23

� �
cos2 a2 þ

Ñ21

Cb12
�

Ñ23

Cb23

� �
sin2 a2, (44)

X 3 ¼ Ñ 23
cos a2 cos a3

Ca23
�

sin a2 sin a3
Cb23

� �
, (45)

X 4 ¼ �Ñ 21
sin a1 cos a2

Ca12
þ

cos a1 sin a2
Cb12

� �
, (46)

X 5 ¼ � Ñ21
1

Ca12
�

1

Cb12

� �
þ Ñ 23

1

Ca23
�

1

Cb23

� �� �
sin a2 cos a2, (47)

X 6 ¼ �Ñ 23
sin a3 cos a2

Ca23
þ

cos a3 sin a2
Cb23

� �
, (48)

Y 1 ¼ Ñ 21
sin a1 cos a2

Cb12
þ

cos a1 sin a2
Ca12

� �
, (49)

Y 2 ¼ �X 5, (50)

Y 3 ¼ Ñ 23
sin a3 cos a2

Cb23
þ

cos a3 sin a2
Ca23

� �
, (51)

Y 4 ¼ Ñ 21
cos a1 cos a2

Cb12
�

sin a1 sin a2
Ca12

� �
, (52)

Y 5 ¼ �
Ñ 21

Ca12
þ

Ñ 23

Ca23

� �
sin2 a2 �

Ñ 21

Cb12
þ

Ñ23

Cb23

� �
cos2 a2, (53)

Y 6 ¼ Ñ 23
cos a2 cos a3

Cb23
�

sin a2 sin a3
Ca23

� �
. (54)

The analysis above focused on layers 1, 2 and 3, but it can be generalized by substituting j�1, j and j+1 for
those values. The coefficients X and Y above may then be applied to a generic layer j by incorporating those
substitutions. The tractions within the innermost layer arise from the relative displacements of adjacent
strands of the layer. For strand i of that layer, the traction from both sides is (see Fig. 10):

F i ¼
diþ1 � di

Cx

þ
di�1 � di

Cx

¼ �
2di � di�1 � diþ1

Cx

. (55)

From Eqs. (26) and (28),

di ¼ d̂ cos 2p
i � 1

n
�

x

l

� �
. (56)
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Fig. 10. Forces on innermost layer strand element.
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It can be shown that

2di � di�1 � diþ1 ¼ 2d̂ 1� cos
2p
n

� �
cos 2p

i � 1

n
�

x

l

� �
. (57)

Thus,

Fi ¼ �
2d̂
Cx

1� cos
2p
n

� �
cos 2p

i � 1

n
�

x

l

� �
. (58)

4.5. Determination of strand displacements

The tractions at the interstrand contacts cause increments in strand tension T. Let

T ¼ T þ DT . (59)

Since the strand is longitudinally elastic, tension variation DT is accompanied by a longitudinal strain
� ¼ DT=EA in which A is strand area. For layer 2, DT2 results from the accumulation of the longitudinal
tractions F12, F32 of Eqs. (33) and (37). F̃2 from Eq. (40) represents this collection of tractions as a continuous
function which causes a gradient �dDT2=ds2 in DT2. Then,

d�2
ds2
¼

1

EA

dDT2

ds2
¼ �

1

EA
F̃2. (60)

Since dx ¼ cos a2 ds2,

d�2
dx
¼ �

1

EA cos a2
F̃2. (61)

Denoting as de2 the longitudinal displacement associated with e2, the total longitudinal displacement is
d2 ¼ df 2 þ d�2. Then,

�2 ¼ cos a2
d

dx
ðdf 2 � d2Þ. (62)

Then, differentiating Eq. (62) and substituting from Eqs. (61) and (41),

d2

dx2
ðdf 2 � d2Þ ¼ �

X 1d1 þ X 2d2 þ X 3d3 þ X 4Z1 þ X 5Z2 þ X 6Z3
EA cos2 a2

. (63)

From Eq. (29),

d2df 2

dx2
¼ �

kr2l2
2p

cos a2 cos y2
dy2
dx

� �2

¼ �2p
kr2

l2
cos y2. (64)
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Combining Eqs. (63) and (64),

d2d2
dx2
�

X 1d1 þ X 2d2 þ X 3d3 þ X 4Z1 þ X 5Z2 þ X 6Z3
EA cos2 a2

¼ �2p
kr2

l2
cos a2 cos y2. (65)

But, since curvature k is constant, d2 must vary sinusoidally with y2:

d2d2
dx2
¼ �

4p2

l22
d2. (66)

Thus,

4p2

l22
d2 þ

X 1d1 þ X 2d2 þ X 3d3 þ X 4Z1 þ X 5Z2 þ X 6Z3
EA cos2 a2

¼ 2p
kr2

l2
cos a2 cos y2. (67)

For brevity, let

Jl ¼ X l=EA cos2 a2; Kl ¼ Y l=EA cos2 a2; l ¼ 1 . . . 6. (68)

Further, to generalize, let layers 1, 2 and 3 become j�1, j and j+1. Then Eq. (67) becomes

4p2

l2j
dj þ J1dj�1 þ J2dj þ J3djþ1 þ J4Zj�1 þ J5Zj þ J6Zjþ1 ¼ Zj, (69)

where

Zj ¼ 2p
krj

lj

cos aj cos yj. (70)

Recalling that there is no interstrand pressure within a layer, F̃
0

2 ¼ 0. Then from Eq. (42)

K1dj�1 þ K2dj þ K3djþ1 þ K4Zj�1 þ K5Zj þ K6Zjþ1 ¼ 0. (71)

It is understood that the Jl and Kl are calculated for layer j.
In the case of the innermost layer, Eq. (69) must provide for the intralayer tractions of Eq. (58) in the form

of the additional term,

Q ¼
2d1

EACx cos a1
1� cos

2p
n1

� �
cos y1. (72)

Eqs. (69) and (71) can be written for each helical layer. If there are N layers, there will then be 2N equations.
They can be made simultaneous by letting y be the same for all layers. For convenience, let yj ¼ 0, for
j ¼ 1yN. Then the set of equations can be expressed in matrix form. The result is shown in Eq. (73) for a
cable with four layers.

4p2D2

l21
þ J2 þ Q̂ J3 � � � � � � J5 J6 � � � � � �

J1
4p2D2

l22
þ J2 J3 � � � J4 J5 J6 � � �

� � � J1
4p2D2

l23
þ J2 J3 � � � J4 J5 J6

� � � � � � J1
4p2D2

l24
þ J2 � � � � � � J4 J5

K2 K3 � � � � � � K5 K6 � � � � � �

K1 K2 K3 � � � K4 K5 K6 � � �

� � � K1 K2 K3 � � � K4 K5 K6

� � � � � � K1 K2 � � � � � � K4 K5

2
6666666666666666666666664

3
7777777777777777777777775

d̂1
d̂2
d̂3
d̂4
Ẑ1
Ẑ2
Ẑ3
Ẑ4

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼

Ẑ1

Ẑ2

Ẑ3

Ẑ4

0

0

0

0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(73)
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Table 2

Sample results, Cardinal at 25 percent RS.

Layer j 4 3 2 1

Contact force Pn 18.2 60.9 238.2 N/contact

Elastic contact to layer below a 0.205 0.355 0.653 mm

b 0.031 0.043 0.050 mm

v 3.6 7.4 11.9 mm
Stress 915 1276 2298 MPa

Plastic contact to layer below a 0.403 0.822 2.031 mm

b 0.060 0.099 0.157 mm

v 13.8 39.9 88.5 mm

At mid-loop and y ¼ 0 df 7.64 5.32 2.74 1.43 mm
dj 1.78 �0.46 0.60 �0.016 mm
Zj 0.54 0.86 0.34 mm
Fj,j�1 11.02 8.05 33.6 N

f ¼ 30Hz; ymax ¼ 635mm; tensile stress: aluminum—49.4MPa, steel—218MPa; strand tension: aluminum—443N, steel—1955N;

bearing yield stress: aluminum—240MPa.
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The vector of displacements d̂; Ẑ may be obtained by solution of Eq. (73). Table 2 presents results of a sample
set of calculations.
4.6. Flexural rigidity

Using Eq. (62), the increment in tension in strand i of layer j is

DTi;j ¼ EjAj cos aj

d

dx
ðd̂f ;j � d̂jÞ cos 2p

i � 1

n
�

x

l

� �� �
,

¼
2pEjAj

lj

cos ajðd̂f ;j � d̂jÞ sin 2p
i � 1

n
�

x

l

� �
. (74)

From Eq. (29),

d̂f ;j ¼
krjlj

2p
cos aj. (75)

Then

DT̂ j ¼ �EjAj cos aj krj cos aj �
2p
lj

d̂j

� �
. (76)

The bending moment arising from layer j is

Mj ¼ DT̂rj cos aj

Xnj

i¼1

sin2 2p
i � 1

nj

�
x

lj

� �� �
¼

nj

2
DT̂rj cos aj. (77)

Thus,

Mj ¼
nj

2
rjEjAj cos

2 aj krj cos aj �
2p
lj

d̂j

� �
. (78)
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The flexural rigidity of the complete cable is

EI ¼
1

k

XN

j¼1

Mj þ
p
64

XN

j¼0

njEjd
4
j . (79)

EI ¼
1

k

XN

j¼1

nj

2
rjEjAj cos

2 aj krj cos aj �
2p
lj

d̂j

� �
þ

p
64

XN

j¼0

njEjd
4
j . (80)

4.7. Forces at interstrand contacts

The tractions at the interlayer contacts between layers 1 and 2 were given by Eqs. (31) and (32). These
equations may be put in generalized form by substituting j and j+1 for 1 and 2.

For the intralayer contacts of layer 1, let the angular position of the contact between strands i and i+1 be ri.
Then

diþ1 � di ¼ d̂1 cos ri þ
p
n1

� �
� cos ri �

p
n1

� �� �
¼ �d̂1 sin ri sin

p
n1

. (81)

Then the maximum interstrand traction per unit length is

F̂1:1 ¼ �2
d̂1
Cx

sin
p
n1

. (82)

Unlike interlayer traction, it occurs at r1 ¼ �p=2, on the top and bottom of the conductor.

4.8. Material damping at contacts

As noted earlier, measurements of damping at contacts [7,12] indicated material hysteresis to be a significant
component, in fact the dominant one at low traction forces. This source of damping is generally characterized
by specific damping ratio

c ¼ J=U , (83)

where J is the energy dissipated in an incremental volume of material per cycle and U is the strain energy
stored in that volume at the point of maximum strain [21]. c is a function of the materials in contact. If they
have different properties, its effective value is,

cj;jþ1 ¼
1

Cj;jþ1
cj

2� nj

Gj

þ cjþ1

2� njþ1

Gjþ1

� �
. (84)

The same definition applies to a body in which the strain is not uniform over its volume, and can be applied
to a contact where the strain is concentrated in a small region. If c is known for a material, it has the same
value for a body or a contact composed of that material. For a contact, the maximum stored energy is
U ¼F2C=2. However, for interlayer contacts, compliance C is different in the directions of the two principal
axes. Thus,

Jj;jþ1 ¼
c
2
ðCa;j;jþ1F

2
a;j;jþ1 þ Cb;j;jþ1F

2
b;j;jþ1Þ. (85)

For the intralayer contacts of layer 1, dissipation per unit length is

J1;1 ¼
c
2

CxF
2
1;1. (86)

Frictional dissipation at interlayer contacts between strands of the same material is given by Eq. (3) for the
case where traction is in the direction of an ellipse principle axis. The case for other directions of loading does
not appear to have been addressed in the literature. For present purposes we will assume that the effective
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Table 3

Coefficients for calculation of frictional loss tangent for parallel strands.

b/d 0.00190 0.00286 0.00330 0.00369 0.00404

B 6310 6000 4380 3510 3000
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traction force is the vector sum of Fa;i;iþ1 and Fb;i;iþ1. Then the contact dissipation becomes

W j;jþ1 ¼
ðF2

a;j;jþ1 þF2
b;j;jþ1Þ

3=2

36mj;jþ1Pj;jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðabÞj;jþ1

p 2� nj

Gj

þ
2� njþ1

Gjþ1

� �
, (87)

where provision is made for different materials in the contacting strands.
An analytical approach to frictional dissipation at parallel strand contacts also appears not to have been

addressed in the literature. Measured values of the loss tangent for aluminum-to-aluminum strands of
1350-H19 alloy have been reported in the form

s ¼ B
d
d
, (88)

for a range of values of theoretical b/d [19]. Values of B are listed in Table 3. The maximum stored energy per
unit length of contact is CxF

2
1;1=2. Then, noting that d ¼ CxF1;1, frictional dissipation per unit length of

contact is

W 1;1 ¼ p
B

d
C2

xF
3
1;1. (89)

4.9. Conductor self damping

Dissipations given by Eqs. (85)–(89) are those that occur at individual contacts. These contacts are
distributed around the girth of the layer according to y, and along the conductor’s length according to ox=c.
For a conductor vibrating in sine-shaped loops as in Eq. (1) both distributions are sinusoidal. The
J dissipations are proportional to F2 and thus to cos2 y sin2ðox=cÞ. The mean of that distribution is 3

8
. The

W dissipations are proportional to F3 and thus to cos3 y sin3ðox=cÞ. The mean of that distribution is 5
16
. Thus,

the total dissipation per unit length of conductor, averaged over a loop, is

DE ¼
3

8
J1;1 þ

XN�1
j¼1

Nj;jþ1Jj;jþ1

 !
þ

5

16
W 1;1 þ

XN�1
j¼1

Nj;jþ1W j;jþ1

 !
. (90)

It is useful to express self damping as the ratio of dissipation to the maximum energy stored in flexure.
Averaged over a loop maximum stored energy is

E ¼ 1
4
EIk2. (91)

Then we may define the specific damping capacity of conductor stiffness as

C ¼
DE
E
¼ B0 þ B1K: (92)

Here we introduce the dimensionless curvature K, defined as

K ¼
D

2
k. (93)

It is equivalent to the bending strain of the conductor envelope at mid-loop. Substituting from Eqs. (85)–(89),

B0 ¼
3

2EIk2
c1;1CxF̂

2

1;1 þ
XN�1
j¼1

cj;jþ1Nj;jþ1ðCa;j;jþ1F̂
2

a;j;jþ1 þ Cb;j;jþ1F̂
2

b;j;jþ1Þ

" #
, (94)
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B1 ¼
5

2EIk3D
p

B

d
C2

xF̂
3

1;1 þ
XN�1
j¼1

Nj;jþ1ðF̂
2

a;j;jþ1 þ F̂
2

b;j;jþ1Þ
3=2

36mj;jþ1Pj;jþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðabÞj;jþ1

p 2� nj

Gj

þ
2� njþ1

Gjþ1

� �2
4

3
5. (95)

B0 pertains to material damping and B1 to frictional damping.

5. Comparison with measured self-damping

5.1. Approach

Data on conductor self-damping is obtained through measurements in laboratory spans [4,5]. The data are
presented as dissipation pc in mw/m as a function of f and ymax for each combination of conductor size and
tension tested. Fig. 11 shows a typical set of results [22]. Dissipation may also be calculated from the above
analysis, utilizing Eqs. (91) and (92), as

pc ¼ fDE ¼ fCE ¼ f
EI

D2
K2
ðB0 þ B1KÞ. (96)

Thus it should be possible to surmise B0 and B1 from measurements of pc by expressing Eq. (96) as

B0 þ B1K ¼
D2

fEIK2
pc. (97)

The parameter on the right, expressed as a function ofK, should define a linear function with intercept B0 and
slope B1. However, EI is not generally known to the experimenter. It can be determined experimentally
through Eq. (5) but that is not required by Refs. [4,5] and is seldom done.

It is helpful to define

c0 ¼
EI

D4
B0 and c1 ¼

EI

D4
B1. (98)

Eq. (97) can then be expressed:

EI

D4
C ¼ c0 þ c1K ¼

pc

fD2K2
¼

H2=m2

4p4D4f 5w2
max

pc. (99)

The parameter on the left is called the reduced specific damping capacity for flexure. The final step in Eq. (99)
takes advantage of Eqs. (93) and (25). Then, if the parameter on the right is calculated from experimental data
as a function of K, its intercept and slope are c0 and c1, respectively. These values may be compared with
predictions based on Eqs. (94), (95) and (98). Fig. 12 illustrates this process for the data that Fig. 11 was based
Fig. 11. Self-damping power, Hawk ACSR (26/7) at 20 percent of rated strength [22]. Frequencies: A–G—20.3, 24.0, 31.6, 37.3, 43.1, 49.1,

57.2Hz, respectively.
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Fig. 12. Reduced specific flexural damping capacity for data of Fig. 11.
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on. Regression of the data for Fig. 12 yields, c0 ¼ 43MPa and c1 ¼ 0.78TPa. Note that c0 and c1, like B0

and B1, pertain to material damping and frictional damping, respectively.
5.2. Extraneous sources of damping in measured data

It is important to note that Eqs. (91) and (92) consider only damping internal to the conductor. Laboratory
measurements of pc include other sources of dissipation, and these must be subtracted from the raw data or
avoided in the measurements. One source always present is fluid-dynamic damping by the air in the
laboratory. This may be estimated and removed on the basis of Ref. [23]. A second source is localized sharp
flexure at clamps at the span supports, so-called ‘‘end-point damping.’’ This source may be eliminated from
the data by employing the inverse standing wave ratio method rather than the power method [4] for the
measurements. Alternatively, if the power method is used, the inverse standing wave ratio method may be used
to determine the end point damping so that it can be subtracted from the raw data. Or, finally, end point
damping may be minimized by use of flexures at the span terminations. The standards require that at least one
of these options be employed.

A third source of external dissipation is transmission of energy through supports due to less-than-complete
longitudinal rigidity there. This source, so-called ‘‘elongational damping,’’ harnesses the small pulsations in
conductor tension that accompany standing- wave vibration. It can be modeled as though it were elongational
hysteresis in the conductor. Its magnitude is specific to the experimental setup and may be estimated by trial
and error on the basis of its effectiveness in suppressing scatter in the estimated value of c0.
5.3. Input parameters for analytical estimates

Analytical estimates of c0 and c1 from Eqs. (94), (95) and (98) rely upon knowledge of conductor structure
(D, di, N, ni, ai, li, m), its material properties (Ei, Gi, ni, bearing yield stress), tension H and the conditions of
vibration (f, ymax). They also rely upon estimates of the strand tensions Ti and assumptions about coefficients
of friction mi,j and the specific damping capacities ci of the materials. The last three require some discussion.

In homogeneous conductors, strand tensions are well estimated by dividing H by the total number of
strands in the conductor. In bimetallic conductors such as ACSR, and where different alloys are employed
such as in aluminum conductor, aluminum alloy reinforced (ACAR), estimates of strand tensions must take
into account nonlinear stress-strain characteristics of the aluminum portion and possibly its creep strain.
A suitable procedure for this, known as the Alcoa Graphic Method, is described in Ref. [24] and computer
programs for carrying out the calculations are available, e.g. Sag10 [25]. The estimated strand tension
distributions are found to depend on the sequence of conductor tensions, and their durations, that have been
applied to the conductor. Thus, the self-damping of a certain conductor at a tension of 15 percent of its rated
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strength (RS) could be different depending upon whether or not it had previously been loaded to, say, 30
percent RS.

The coefficient of friction appropriate to Eqs. (3) and (87) is that of sliding. Measurements on contacting
aluminum strands yield values ranging from 0.4 to 0.9 for as-drawn, mill quality samples, tested under
oscillating traction at several crossing angles [22]. However the amplitudes of sliding in those tests, several
mm, were much larger than those occurring at interstrand contacts during conductor vibration. Calculations
based on the analysis of Section 4, and illustrated in Table 2, indicate that those amplitudes should not exceed
a few microns. Thus, there is significant uncertainty as to what values of mi,j to employ.

There appears to be little applicable data on specific damping capacities ci of materials used in overhead
conductors, nor is it clear which of the several metallurgical mechanisms may be involved. Specific damping
capacity c is in general a function of both temperature and frequency. Tests by Guan et al. [26] point toward
values for aluminum in the region of 0.1 at 20 1C. However, the data were acquired at 1Hz. Kaufman [27]
reports values in the range 0.04–0.08 at about 25Hz and room temperature.

5.4. Selection of measured self damping data

The next subsection presents a comparison of the analysis against several sets of self damping
measurements. These sets were selected from a larger collection encompassing results from several
laboratories. Most of the sets were acquired using the inverse standing wave ratio method, or using flexures
at the supports to minimize end-point damping. However, two sets where the power method was employed
without correction for end-point damping are included. It was possible to apply that correction on the basis of
measurements of that damping, for the sizes of conductor involved, from another laboratory [22]. The
selection was further limited based on the assumption that conductor self damping is indeed hysteretic and
specific to energy stored by flexure. Then C and, therefore, CEI=D4, should be a single-valued function of K.
Thus, the second selection criterion was whether the set yielded such a function when its data were plotted
according to Eq. (99). A third criterion was whether estimated elongational damping was found to be small.

As noted in the introduction, the measurement process is difficult; scatter is to be expected. Fig. 12 reflects
that reality. However, the collapse of the data of Fig. 11, with its span of three decades, into the 2:1 range of
Fig. 12, supports the conclusion that this set of measurements meets the selection criterion. The other selected
data sets displayed similar collapse. However, some sets had to be dropped because the range of K was too
narrow to support estimates of c0 and c1. Details on the selected sets are listed in Table 4. The dimensions of
the conductors involved are listed in Table 5.

5.5. Measurements versus the analytical model

Comparison of analytical estimates with measured data is hampered by uncertainties over coefficients of
friction mi,j, material specific damping c, and the division of tension between the aluminum and steel
components of the conductor. Certain of the data sets came from tests where the conductor sample had been
prestretched at a tension greater than the highest test tension for some period. Unfortunately, records of the
actual prestress tension and its duration are no longer available. For purposes of this study, analytical
estimates of c0 and c1 assumed that mij ¼ 0:6; c ¼ 0:1; and that the samples had been held for 4 days at test
tension before the measurements.

Measured values of c0 and c1, derived from measured data through Eq. (99) from charts such as Fig. 12 are
listed in Table 4, along with corresponding analytical estimates. The ratios of measured to analytical values of
c0 and c1 are plotted as functions of conductor tension in percent of RS in Figs. 13 and 14, respectively.
Measurements on the same sample at different tensions are connected by lines. The points and lines are coded
to distinguish three groups.

One group, comprising four lines, is from tests where the conductor sample had been prestretched, i.e. held
for several days at a tension equal to or greater than the highest test tension, before measurements were made.
Due to the passage of time, information on specific tensions and their durations are no longer available and,
for Items 4, 5 and 6 of Table 4, it has been assumed that the measurement sequence began with the highest
tension. A second group comprising three lines represents tests where the conductor sample had been
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Table 4

Comparison of measured and analytical estimates of c0 and c1.

Item Ref. Size Stranding Notes H (% RS) Measured Analytical

c0 (MPa) c1 (TPa) c0 (MPa) c1 (TPa)

1 [22] Cardinal 54/7 a 15 48.5 0.317 39.1 1.043

2 [22] Cardinal 54/7 a 25 85.2 0.297 35.0 0.626

3 [22] Cardinal 54/7 a 30 85.4 0.312 33.5 0.519

4 [22] Drake 26/7 b 30 24.3 1.303 45.5 0.756

5 [22] Drake 26/7 b 35 0.0 1.647 44.1 0.651

6 [22] Drake 26/7 b 40 12.1 1.868 42.9 0.572

7 [22] Hawk S1 26/7 c 25 49.0 0.870 47.1 0.901

8 [22] Hawk S2 26/7 c 20 36.4 0.806 49.1 1.114

9 [22] Hawk S2 26/7 c 20 43.0 0.769 49.1 1.114

10 [22] Hawk S2 26/7 c 25 66.0 0.590 47.1 0.901

11 [22] Hawk S2 26/7 c 30 37.1 0.656 45.5 0.756

12 [22] Hawk S2 26/7 c 35 58.2 0.624 44.1 0.651

13 [22] Hawk S2 26/7 c 40 17.0 1.212 42.9 0.572

14 [22] Hawk S3 26/7 c 15 33.2 0.492 51.6 1.454

15 [22] Hawk S3 26/7 a,c 15 47.1 0.302 51.6 1.454

16 [22] Hawk S3 26/7 a,c 20 82.5 0.324 49.1 1.114

17 [22] Hawk S3 26/7 a,c 25 80.1 0.524 47.1 0.901

18 [22] 795 (63/19) 63/19 24 36.6 0.450 36.7 0.676

19 [28] Eagle 30/7 26.5 13.2 0.425 41.5 0.809

20 [29] Bersfort 48/7 15 72.8 0.696 44.8 1.561

21 [29] Bersfort 48/7 20 43.7 0.787 42.0 1.140

22 [29] Bersfort 48/7 25 46.1 0.615 39.9 0.892

23 [29] Bersfort 48/7 30 41.2 0.629 38.2 0.728

24 [31] Finch 54/19 b,d 15 104.3 1.863 41.1 1.061

25 [31] Finch 54/19 b,d 20 99.5 0.873 38.3 0.773

26 [31] Finch 54/19 b,d 25 64.0 0.637 36.3 0.606

27 [31] Hawk 26/7 b,d 15 66.7 1.008 51.6 1.454

28 [31] Hawk 26/7 b,d 20 50.7 0.688 49.1 1.114

29 [31] Hawk 26/7 b,d 25 31.8 0.885 47.1 0.901

30 [30] Hawk 26/7 b 10 160.1 1.721 55.0 2.073

31 [30] Hawk 26/7 b 20 93.9 2.532 49.1 1.114

32 [30] Hawk 26/7 b 30 89.8 1.844 45.5 0.756

Notes: (a) Sample was subjected to at least 24 hours of severe vibration; (b) sample was prestretched at high tension before testing;

(c) S1, S2, S3 refer to samples 1, 2, 3; (d) end-point damping subtracted; provided from Ref. [22].

Table 5

Conductors represented in laboratory measurements.

Name Area Diameter (mm) Stranding composition Weight (kg/m) Strength (kN)

Aluminum (mm2) Total (mm2) Aluminum Steel

No. Diam. No. Diam. (mm)

Hawk 242 281 21.79 26 3.44 7 2.68 0.978 86.7

Eagle 282 348 24.21 30 3.46 7 3.46 1.298 123.7

Drake 403 468 28.14 26 4.44 7 3.47 1.628 140.1

403 638 28.52 63 2.85 19 2.27 1.724 186.8

Cardinal 483 546 30.78 54 3.38 7 3.38 1.829 150.4

Finch 564 635 32.84 54 3.65 19 2.19 2.130 173.9

Bersfort 686 747 35.6 48 4.3 7 3.3 2.37 180.1

C.B. Rawlins / Journal of Sound and Vibration 323 (2009) 232–256252
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Fig. 13. Ratio of measured to calculated c0 (material damping). Squares: unseasoned group. Triangles: prestretched group. Circles:

vibration aged.

Fig. 14. Ratio of measured to calculated c1 (frictional damping). Squares: unseasoned group. Triangles: prestretched group. Circles:

vibration aged.
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‘‘vibration-aged’’, i.e. exposed to at least 24 hours of severe vibration, prior to testing. The tests in the third
group were not reported to have received either pre-measurement treatment; their samples were
‘‘unseasoned’’.

The ratios of measured to analytical values of c0 are plotted in Fig. 13. For the unseasoned group, the ratios
cluster around unity and do not display a trend with respect to tension. Ratios for the tests preceded by
vibration aging or prestretching tend to deviate on the high side from the unseasoned samples. Lines for the
vibration aged group indicate positive trends with increasing tension. Those for the prestretched group
indicate negative trends. Overall, correlation between measured and analytical values of c0 extends only as far
as order of magnitude.

Ratios of measured to analytical values of c1 are plotted in Fig. 14. The unseasoned group appears to
correlate well within itself, and to define a function that rises with conductor tension. Over the range from 20
to 35 percent RS, the correlation between measured and analytical values of c1 may be considered good,
considering the uncertainties affecting several parameters involved in the analysis. The measured to analytical
ratios for the vibration aged group are consistently low compared with the unseasoned group, while those for
the prestretched group are almost entirely on the high side, and generally by a substantial margin.
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6. Discussion

It is clear from the comparisons in Figs. 13 and 14 that there are deficiencies in the analytical approach. These may
lie in the structure of the analysis, in assumptions and approximations, or in the quality of input data. By and large,
they point to the need for further research. The following comments concern the directions those efforts might take.
6.1. Unseasoned group

It is helpful to begin with the area where correlation between measurement and analysis was best: the
unseasoned group. The ratios of measured to analytical values of c0 are plotted in Fig. 13. c0 pertains to
material damping, assumed to be hysteretic. As noted earlier, there is a paucity of data on material specific
damping capacity c for overhead conductor aluminum alloys in the temperature and frequency ranges of
interest. The c0 ratios for the unseasoned group cluster around unity. Their average is 0.96, and standard
deviation is 0.36, tending to support the casually assumed value, c ¼ 0.1.

As noted above, there is good correlation between measured and analytical estimates of c1 in the tension
range 20–35 percent RS indicating that in that area, at least, the analytical structure, with its assumptions and
approximations, is sound. Thus the deviation between measurement and analysis is likely due to input data.
Examination of Eq. (87) suggests coefficient of friction m as a source. The analysis used m ¼ 0.6, resulting in a
c1 ratio ranging from 0.7 to 1.0. Had the analysis used m ¼ 0.71, well within the range of doubt, the ratio
would have ranged from 0.81 to 1.19. Thus, more refined measurements of coefficients of friction, particularly
at very small amplitudes of sliding, would be helpful.

Eq. (87) is also affected by the estimated sizes of the interstrand contacts. As discussed in Section 4.2, and
illustrated in Table 2, the normal loads on these contacts put them well into the plastic region. The bearing
yield strength has been used to estimate contact areas. However, the data of Fig. 4 show that average contact
stress at low normal loads is smaller than the 240MPa used in the calculations. Finite element studies by
Hardy et al. [32] show that the uniform distribution of pressure over the contact area, assumed in the analysis,
is only realized when the contact is well into the plastic regime. In early stages of that regime, average pressure
is significantly less than the yield stress. The effect is that, at the smaller normal loads that occur at lower
tensions, the contact areas would be larger than estimated, leading to reduced Wj,j+1 and, therefore, reduced
B1 and c1. This would raise the unseasoned points at 15 percent RS in Fig. 14 toward unity. The analytical
approach would be improved by better modeling of the lower contact loadings.
6.2. Prestretched group

The highest-tension point in the unseasoned group in Fig. 14 displays a sharp rise in the c1 ratio, indicating
that the analysis substantially underestimates c1. This deviation is shared by most of the points in the
prestretched group. Evidently, effects of exposure to high conductor tension take actual conductors beyond
the limits of the analytical treatment. It seems likely that the pertinent assumption is that the pressure between
strands of a given layer remains zero. Standards governing conductor fabrication assure that, as
manufactured, any layer with more than seven strands does not fill the circumferential space allotted to it.
In fact, if preferred lay ratios are used, there is very nearly 1 percent of extra space in the outer layer of ACSR.

When conductors are tensioned, relative normal displacements h of the interlayer contacts occur. These
cause the conductor diameter to shrink. The amount of shrinkage can be estimated by accumulating the
displacements layer-by-layer. Examples of these displacements were given in Table 2, for both purely elastic
and purely plastic strains. The displacements for the plastic regime were estimated using an assumed model
that is, as noted earlier, plausible but unproven. The estimates are thus somewhat speculative. Calculations
using that model indicate that when tension reaches about 30 percent RS conductor diameter has decreased
enough to eliminate the extra space in the outer layer. At that point the lateral displacements Z are forced to
zero, and any further increase in tension results in intralayer pressures between strands. These pressures would
have two effects. One would be to activate frictional and hysteretic damping within layers. The other would be
to relieve the interlayer contacts of some of the pressure predicted by Eq. (11). Contact area would then be
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reduced, leading to increased hysteretic and frictional damping there. Subsequent reduction in tension would
leave the plastic deflections in place, so these effects would tend to persist.

Analysis of these effects is beyond the scope of the present paper. It might be possible to estimate the shift in
the interstrand pressure distribution, albeit with limited confidence. However, the intralayer frictional
movements would involve gross sliding, requiring more complex dissipation models than Eqs. (3) and (86).
Prestretching is an area that invites further research.

6.3. Vibration-aged group

The three lines for c1 ratio in the vibration-aged samples in Fig. 14 lie significantly below the unseasoned
group, indicating that the analysis overestimated frictional damping. It appears that exposure to severe
vibration affected the interlayer contacts. Eq. (87) suggests that the coefficient of friction was substantially
increased and/or the contact area was expanded. Laboratory study of contact wear for very small relative
movements is needed. Johnson has already done this for contact between a hard steel ball and hard steel plate
[12]. He found evidence that, even without gross sliding, fretting damage occurred in the annular region at the
edge of the contact where there was microslip. The coefficient of friction in the fretted region appeared to
increase to a value about double that of a fresh surface. This could account for at least part of the deviation of
this group from the unseasoned group. Fretting behavior of aluminum is not necessarily the same as that of
steel, so a separate testing program is indicated to develop this possibility.

The c0 ratios for the vibration aged group tend to deviate on the high side of those for the unseasoned samples,
suggesting that fretting damage caused an increase in c. Fretting in aluminum is known to produce a layer of
disturbed material composed of finely divided particles of aluminum, permeated with aluminum oxide [33,34]. This
layer is somewhat spongy, so increased damping capacity is reasonable. The aging was applied at the lowest test
tension, so the fretting occurred in a small contact area. Note in Fig. 13 that the measured value of c0 increased as
tension increased. This increase could be explained on the basis that, as increasing tension caused the contact to
expand, the spongy fretted region was absorbed into the no-slip area of the contact where material damping takes
place.

7. Conclusions

The analytical model described in the paper connects the behavior of the composite conductor with the
basic mechanisms thought to be involved in self-damping: material damping and micro-friction at interstrand
contacts. The model yields estimates of self-damping that are in reasonable agreement with measured data
within a limited range. Cases where agreement is poor appear to be associated with treatments applied to the
conductor samples involved in the measurements prior to testing. The specific treatments are exposure to
severe vibration, and exposure to higher-than-normal tension for some period. Possible mechanisms by which
these treatments produce their effects are described, offering direction to further research.

Appendix A. Polynomials for functions used in Eqs. (13), (15) and (19)
Function
 p
 q
 g
 G(a/b,n)
 G(a/b,n)

Transverse
 Parallel
Argument
 x
 x
 x
 a/b
 a/b

v0
 1.88711E+01
 1.62280E�01
 1.22969E�01
 5.14839E�01
 4.20504E�01

v1
 �1.32533E+02
 1.02588E+00
 1.38237E+00
 3.89839E�01
 4.95105E�01

v2
 5.14558E+02
 �1.06150E+00
 �1.65436E+00
 �5.81438E�02
 �6.96486E�02

v3
 �1.09125E+03
 4.92256E�02
 1.36152E+00
 4.78148E�03
 5.57749E�03

v4
 1.18555E+03
 1.79314E+00
 �6.38800E�01
 �1.87643E�04
 �2.15874E�04

v5
 �5.15439E+02
 �1.44525E+00
 1.20246E�01
 2.72816E�06
 3.11405E�06
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Polynomials take the form,
P5

i¼0vi arg
i. p, q, g are valid for x less than 0.7 radians.

n ¼ 0.33.
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