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Abstract

Accurate analytical type solutions are obtained for the free in-plane vibration eigenvalues and mode shapes of fully

clamped orthotropic rectangular plates. Appropriate governing differential equations for orthotropic plates are developed

in dimensionless form and employed. Solutions are obtained by the method of superposition. It will be apparent that the

solution procedure can be readily extended to analyze plates with other types of classical boundary conditions. The work

reported is a natural extension of earlier work related to the in-plane vibration of isotropic plates. This appears to be the

first analytical type study related to orthotropic plate in-plane vibration. It is expected that results tabulated here will form

a valuable reference against which the results of other researchers may be compared.

r 2009 Elsevier Ltd. All rights reserved.

1. Introduction

It is generally agreed that the amount of research devoted to free in-plane vibration of rectangular plates is
extremely small in comparison to that devoted to free transverse vibration of the same plates. A listing of some of
the more recent publications dealing with in-plane vibration is provided by Bardell et al. [1]. Designers of elastic
structures have traditionally been more interested in the plate transverse vibration which can be excited by forces of
relatively low frequencies. Nevertheless, it remains a fact that excitation of in-plane vibration, with higher associated
natural frequencies, can occur when thin plates are subjected to high speed tangential flows, for example.

In recent years the present author has been involved in furthering research related to in-plane rectangular
plate free vibration. He has introduced the superposition method for resolving these problems (see for example
Refs. [2–4]). This method has already been employed very successfully in the analysis of rectangular plate
transverse vibration. Excellent agreement has been obtained when computed results were compared with the
findings of Bardell et al. [1]. A more recent paper dealing with elastically restrained edges has been published
by Du et al. [5]. They describe a mathematical approach for analysis of in-plane vibration of rectangular
isotropic plates supported by general elastic boundary conditions. They refer to this as ‘‘an analytical method’’
although it is the present writer’s understanding that any method which expresses the displacement solutions
as a summation of continuous differentiable functions constitutes an analytical method. This would include
the superposition method or the Ritz method, for example, but not the finite element method.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a,b dimensions of quarter plate
Ex, Ey Youngs moduli related to the x and y

directions, respectively
Ey/Ex stiffness ratio
Eta symbol used for coordinate Z of Figs. 7–12
Gxy modulus of elasticity in shear
K number of terms used in building block

solutions
Psi symbol used for coordinate x in Figs. 7–12
t time
u,v displacements in x and y directions,

respectively
U,V dimensionless displacements u/a and v/b,

respectively
x,y plate rectangular coordinates

sx,sy normal stresses related to x and y

directions, respectively
sx*,sy* dimensionless normal stresses, defined in

text
txy shear stress
txy* dimensionless shear stress defined in text
x,Z dimensionless coordinates x/a and y/b,

respectively
r mass density of plate material
nx,ny Poisson ratios related to x and y direc-

tions, respectively
ex,ey longitudinal strain in x and y directions,

respectively
f plate aspect ratio, b/a
l2 dimensionless frequency, ¼ oaOr(1�nxny)/

Ex
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They take their displacement solutions in the form of double Fourier series augmented by single Fourier
series, the latter series being pre-multiplied by selected polynomials. The solutions thus formulated are
constrained to satisfy the prescribed boundary conditions. This requires obtaining Fourier expansions for the
polynomials referred to above. Finally, the constrained forms of the displacement expansions are substituted
into the governing differential equations in order to develop a truncated matrix from which the problem
eigenvalues are extracted.

In the abstract the authors state that the in-plane displacements are expressed through the superposition of
two Fourier type expansions. In this writer’s view what is employed is a summation of series solutions, not a
superposition. In the classical work of Timoshenko it is clear that the term ‘‘Superposition’’ refers to the
superimposing of two or more solutions to distinct physical problems, static or dynamic, one-upon-the-other,
and constraining them in such a way that a solution to the basic problem of interest may be achieved. This is
not what is done in the method employed by Du, et al. Their method does, however, appear to give results
in good agreement with previously published data for the case of plates with classical boundary conditions.
The amount of computation work required in applying their method, appears nevertheless, to be massive and
far exceeds that required by others investigating problems in the same area. The computational procedures
outlined in two extensive appendices as well as in the main body of the paper are required to apply their
method.

The authors were apparently unaware at the time of writing, of an existing publication in the literature
resolving the problem of free in-plane vibration of rectangular plates with elastic support normal to the plate
edges. A solution was obtained in the earlier publication by a much more concise approach employing the
method of superposition [4].

The object of the present paper is to extend the superposition method to the analysis of in-plane free
vibration of orthotropic rectangular plates. Attention is focused on plates where the principal directions of
orthotropy co-inside with directions along the rectangular plate edges. For illustrative purposes the analysis
described here is restricted to in-plane vibration of the fully clamped plate. It will be seen, however, that the
method described can be extended to analyze the free vibration of rectangular plates with other combinations
of classical boundary conditions.

A limited number of plate in-plane free vibration mode shapes are provided in the present paper. In
addition, computed eigenvalues are tabulated for a limited number of plate geometries and orthotropic plate
elastic properties. It is hoped that these results will provide data against which the findings of other researchers
may be compared.



ARTICLE IN PRESS
D.J. Gorman / Journal of Sound and Vibration 323 (2009) 426–443428
2. Mathematical procedure

2.1. The free vibration mode families

It will be obvious that free in-plane vibration mode displacements for the fully clamped rectangular plate will
possess a certain amount of symmetry with respect to the plate central axes. We say that a mode possesses
symmetry with respect to a central axis if displacements along the axis are everywhere zero and displacements
perpendicular to the axis pass through a maximum along this same axis. Conversely, a mode is said to possess
anti-symmetry with respect to an axis if displacements normal to the axis are everywhere zero and displacements
parallel to the axis reach a maximum along this same axis. These definitions are discussed in detail in Ref. [2].

We therefore anticipate three distinct families of mode shapes. These are, symmetric-symmetric modes
which possess symmetry with respect to each central axis, anti-symmetric–anti-symmetric modes which
possess anti-symmetry with respect to each axis, and symmetric–anti-symmetric modes which possess
symmetry with respect to one axis and anti-symmetry with respect to the other.

In what is to follow we will continue with the practice of analyzing each family of modes separately. As will
be seen, this leads to a complete delineation between the mode families and helps simplify the mathematical
treatment of the problem.

2.2. Development of non-dimensional equilibrium equations

Utilizing the coordinate system of Fig. 1 and the list of symbols as provided in the nomenclature the basic
equilibrium equations are written as

qsx

qx
þ

qtxy

qy
¼ r

q2u
qt2

, (1)

and

qtxy

qx
þ

qsy

qy
¼ r

q2v
qt2

. (2)

The stress–strain relationships for orthotropic plate in-plane normal stresses are reviewed in Ref. [6], for
example, and are as follows:

sx ¼
Ex

ð1� nxnyÞ
½�x þ ny�y� and sy ¼

Ey

ð1� nxnyÞ
½�y þ nx�x�, (3a,b)

while the shear stress–displacement relationship is

txy ¼ Gxy

qv

qx
þ

qu

qy

� �
. (3c)
2a

2b

ξ,x,U

η ,y,V

Fig. 1. Rectangular plate with central axes.
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Introducing the strain–displacement relationships the above expressions for sx and sy become,

sx ¼ A11
qu

qx
þ A12

qv

qy
and sy ¼ A22

qv

qy
þ A21

qu

qx
, (4a,b)

where

A11 ¼
Ex

1� nxny

; A12 ¼
nyEx

1� nxny

; A22 ¼
Ey

1� nxny

and A21 ¼
nxEy

1� nxny

. (5a2d)

In view of the Betti Principle the product nyEx ¼ nxEy, therefore A12 ¼ A21.
Returning to Eqs. (1) and (2), and introducing the stress–displacement relationships for normal and shear

stresses we obtain

A11
q2u
qx2
þ A12

q2v

qxqy
þ A66

q2v
qxqy

þ
q2u
qy2

� �
¼ r

q2u

qt2
, (6)

and

A66
q2v
qx2
þ

q2u

qxqy

� �
þ A22

q2v

qy2
þ A12

q2u

qxqy
¼ r

q2v
qt2

, (7)

where A66 ¼ Gxy.
Dividing displacements u and v by quarter plate edge length ‘a’, and coordinates x and y by quarter plate

edge lengths ‘a’ and ‘b’, respectively, it is readily shown that the equilibrium Eqs. (6) and (7) may be written,
respectively, as

q2U

qx2
þ

ny

f
q2V
qxqZ

þ
Gð1� nxnyÞ

Exf
q2V
qxqZ

þ
1

f
q2U
qZ2

� �
þ l4U ¼ 0, (8)

and

Gxyð1� nxnyÞ

Ex

q2V

qx2
þ

q2U
fqxqZ

� �
þ

Ey

f2Ex

q2V

qZ2
þ

ny

f
q2U

qxqZ
þ l4V ¼ 0. (9)

where l2 ¼ oaOr(1�nxny)/Ex.
Finally, the equilibrium Eqs. (8) and (9) may be written, respectively, in more compact form as

a11
q2U

qx2
þ

a12

f
q2V
qxqZ

þ
a66

f
q2V
qxqZ

þ
1

f
q2U
@Z2

� �
þ l4U ¼ 0, (10)

and

a66
q2V

qx2
þ

1

f
q2U

qxqZ

� �
þ

a12

f
q2U

qxqZ
þ

aj11

f2

q2V
qZ2
þ l4V ¼ 0, (11)

where a11 ¼ 1, a12 ¼ ny, a66 ¼ Gxy(1�nxny)/Ex and a|11 ¼ Ey/Ex.
Eqs. (10) and (11) are the dimensionless formulations of the equilibrium equations employed here for

orthotropic plate in-plane free vibration analysis. In the limit as the orthotropic plate properties approach
those of an isotropic plate it is found, as expected, that the above equilibrium equations approach those of the
isotropic plate [2].

2.3. The in-plane normal and shear stresses in non-dimensional form

Utilizing expressions for the quantities sx and sy introduced earlier, we now introduce the dimensionless
stress quantities,

s�x ¼
sxð1� nxnyÞ

Ex

or s�x ¼
qU

qx
þ

ny

f
qV

qZ
, (12a,b)
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and

s�y ¼
syð1� nxnyÞ

Ey

or s�y ¼ nx

qU

qx
þ

1

f
qV

qZ
. (12c,d)

We also now introduce the dimensionless shear stress quantity,

t�xy ¼
txyf
Gxy

or t�xy ¼
qU

qZ
þ f

qV

qx
. (12e,f)

2.4. The fully symmetric modes

The orthotropic rectangular plate of interest is shown schematically in Fig. 1. Taking advantage of
symmetry we follow well established practices and analyze one quarter of the plate only, as shown on the left
hand side of Fig. 2. Small circles adjacent to the x and Z axes indicate lines of modal symmetry. Free vibration
modes will have zero displacement along these axes. Displacements normal to the axes take on a maximum
amplitude along these same axes.

Free vibration analysis of this family of modes is accomplished through superimposing solutions for the
response of the two forced vibration problems (building blocks) shown schematically to the right of the figure.
These building blocks are identical to those described earlier for analyzing fully symmetric modes of the fully
clamped isotropic rectangular plate [3]. Only a brief description of the analytical procedure will be provided,
therefore, for the sake of completeness. We begin by focusing attention on the first building block. A condition
of zero displacement parallel to the edges x ¼ 1, and Z ¼ 1, is imposed. The edge Z ¼ 1, is driven by
a distributed harmonic normal stress of circular frequency o and represented in the figure by short arrows.
We represent amplitude of response of this building block with Levy type series as

Uðx; ZÞ ¼
X1

m¼1;2

UmðZÞ cos mpx, (13)

and

V ðx; ZÞ ¼
X1

m¼1;2

V mðZÞ sin mpx. (14)

It will be noted that each term in this Levy type solution satisfies exactly the required conditions of
symmetry along the Z axis, as well as zero displacement V along the edge, x ¼ 1.

Following established practices Eqs. (13) and (14) are substituted into the equilibrium Eqs. (10) and (11) to
obtain

am1UkmðZÞ þ bm1V jmðZÞ þ cm1UmðZÞ ¼ 0, (15)

and

am2V
k
mðZÞ þ bm2U

j
mðZÞ þ cm2V mðZÞ ¼ 0, (16)

where superscripts imply differentiation with respect to the variable, Z, and

am1 ¼
a66

f2
; bm1 ¼

emp

f
ða12 þ a66Þ; cm1 ¼ �a11empsþ l4, (17a2c)
U,ξ

b

a ξ

η η

ξ

V,η

Fig. 2. Building blocks employed in analysis of symmetric–symmetric modes of fully clamped plate.
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am2 ¼ aj11=f
2; bm2 ¼ �

emp

f
ða66 þ a12Þ; cm2 ¼ �a66empsþ l4, (18a2c)

here symbols emp and emps are introduced to represent the quantities mp, and (mp)2, respectively. Note that
the quantities am1, bm1, etc., differ from those of the fully clamped isotropic plate, [3], only in that now
quantity am2 equals the ratio (Ey/Ex)/j

2 instead of 1/j2 (the isotropic case).
Exact solutions for the quantities Um(Z) and Vm(Z) of Eqs. (15) and (16) were obtained in Ref. [3]. There is

therefore no need to describe the solution procedure in detail here. Only a brief description of the steps
involved is provided for completeness.

By manipulation of Eqs. (15) and (16) through addition and subtraction the quantity Vm(Z) is isolated in
order to obtain the fourth order ordinary homogeneous differential equation

V IV
m ðZÞ þ bVkmðZÞ þ cV mðZÞ ¼ 0, (19)

where b ¼ (am1cm2�bm1bm2+cm1am2)/am1am2 and c ¼ cm1cm2/am1am2.

Again, superscripts indicate the order of differentiation with respect to Z.
The squares of the roots of the characteristic equation associated with Eq. (19) are

�21 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� 4c

p
2

and �22 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� 4c

p
2

. (20a,b)

Consider first the forms of solution applicable for Eq. (19) when the quantity b2�4cX0. This latter
condition has always been found to hold when analyzing isotropic plates. The quantities e1

2 and e2
2 will then

always be real though they could be positive or negative. In Ref. [3] we designated these quantities Root1 and
Root2, respectively. We also introduced the quantities,

bm ¼
p
jRoot1j and gm ¼

p
jRoot2j. (21a,b)

Three possible forms of solution for Eq. (19) were shown to exist. They are:
Solution 1: Root1X0, Root2p0, then

VmðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sin gmZþDm cos gmZ. (22)

Solution 2: Root1p0, Root2p0,

VmðZÞ ¼ Am sin bmZþ Bm cos bmZþ Cm sin gmZþDm cos gmZ. (23)

Solution 3: Root1X0, Root2X0,

V mðZÞ ¼ Am sinh bmZþ Bm cosh bmZþ Cm sinh gmZþDm cosh gmZ. (24)

The quantities Am, Bm, etc., are constants to be evaluated according to the boundary conditions to be
enforced.

Before establishing the quantity Vm(Z) one further significant step is required. It is found that for
orthotropic plates the quantity, b2�4c, discussed above, is not necessarily positive. In fact, this is the main
difference encountered in moving from isotropic to orthotropic plates. Accordingly, we must formulate the
correct known solution for this special case. To achieve this end we set up the following quantities,

zz1 ¼ �b=2; zz2 ¼
p
� ðb2

� 4cÞ=2; zz3 ¼ tan�1ðzz2=zz1Þ; zz4 ¼ fzz12 þ zz22g1=4, (25a2d)

with

R ¼ zz4 sinðzz3=2Þ and S ¼ zz4 cosðzz3=2Þ. (25e,f)

The solution for the quantity Vm(Z) then becomes,

VmðZÞ ¼ Am sin RZ sinh SZþ Bm sin RZ cosh SZþ Cm cos RZ sinh SZþDm cos RZ cosh SZ. (26)

We will refer to this as Solution 4.
With solution for the quantity Vm(Z) available for any problem of interest we turn to evaluation of

the companion quantity Um(Z). It is readily shown that through manipulation of the equilibrium Eqs. (15)
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and (16), we can express the quantity Um(Z) in terms of the derivatives of the quantity Vm(Z) as follows [3]:

UmðZÞ ¼
am1am2

cm1bm2
V kjmðZÞ þ

am1cm2 � bm1bm2

cm1bm2

� �
V jmðZÞ. (27)

Details of this mathematical operation as it applies to the first three forms of the solution, (b2�4c)X0, are
provided in Ref. [3]. The same procedure is followed for the solution with (b2�4c)p0.

The next step is to evaluate the constants appearing in these solutions utilizing the prescribed boundary
conditions. It will be obvious that for fully symmetric mode vibration analytical terms appearing in the
quantity Vm(Z) which are anti-symmetric with respect to the x axis must be deleted. This eliminates two of the
four constants which appear in the four solution forms.

A third boundary condition to be enforced is the requirement of zero displacement parallel to the driven
edge, Z ¼ 1. Details related to enforcement of this boundary condition for the first three solution forms are
provided in Ref. [3]. An identical procedure is followed in connection with the fourth solution form, however,
it is cautioned that because of the existence of products of trigonometric and hyperbolic functions in this latter
solution the operation of taking derivatives of the quantities Vm(Z) and Um(Z) will be considerably more
laborious. After deleting terms anti-symmetric about the x axis for this latter solution, and enforcing the third
boundary condition as described above, the quantity Vm(Z) will have taken on the form,

V mðZÞ ¼ Amfsin RZ sinh SZþ y1m cos Z cosh SZg. (28)

Finally, we must evaluate the last unknown appearing in those solution forms through enforcement of
dynamic equilibrium between the local normal stress and the imposed driving stress along the driven edge.
Amplitude of this distributed driving stress is expressed in series form, for the fully symmetric mode study as

s�yjZ¼1 ¼
X1

m¼1;2

Em sin empx: (29)

This edge condition is easily enforced. It is shown, for example, in Ref. [3] that the solution for Vm(Z) related to
the first form of solution is written as

V mðZÞ ¼ Emy11m½cosh bmZþ y1m cos gmZ�, (30)

with companion solution Um(Z) given as

UmðZÞ ¼ Emy11m½a2m sinh bmZþ y1ma4m sin gmZ�, (31)

where expressions for y11m, y1m, a2m etc., are to be found in the reference. Corresponding expressions also are
given for these displacements as they relate to the second and third solution forms.

Solution for the same quantities related to the fourth form of solution is obtained in an identical fashion but
the quantities y1m and y11m will be more complicated because of the presence of products of trigonometric and
hyperbolic functions as discussed above. In the present work it is shown that for the fourth form of solution
we obtain

VmðZÞ ¼ Emy11m½sin RZ sinh SZþ y1m cos RZ cosh SZ�, (32)

and

UmðZÞ ¼ Emy11m½RR1 sin RZ cosh SZþ RR2 cos RZ cosh SZ�

þ Emy11my1m½RR3 cos RZ sinh SZþ RR4 sin RZ cosh SZ�, (33)

where quantities y11m, y1m, RR1,RR2, etc., must be evaluated.
It is important to note that we now have available the response of any force driven orthotropic building

block as discussed above to any distributed harmonic normal stress enforced along the driven edge.
We turn next to determining the response of the second building block of Fig. 2. It differs from the first in

that it is driven along the edge, x ¼ 1, with conditions of zero displacement parallel to this edge. A condition
of zero motion parallel to the edge, Z ¼ 1, is also imposed. The second building block is essentially a mirror
image of the first and it will be apparent that its solution can be obtained through a transformation of that
already developed for the first [3]. A proper interchange of axes is required. Certain rules must be followed in
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performing this axis interchange and it will be seen that they are slightly more complicated than those related
to isotropic plates. We still wish to use the symbols U and V to indicate displacement parallel to the x and Z
axes, respectively. After interchange of the variables x and Z we write for response of the second building block
(see Eqs. (13) and (14)),

Uðx; ZÞ ¼
X1
n¼1;2

UnðxÞ sin npZ; (34)

and

V ðx; ZÞ ¼
X1
n¼1;2

VnðxÞ cos npZ; (35)

where the subscript ‘n’ is used in order to avoid confusion with solution for the first building block. Here, in
the interest of brevity we may introduce the symbols enp ¼ np, with enps ¼ enp2. In order to obtain the
solution for this second building block we must make the following temporary changes, in this order:
(1)
 replace l2 with the quantity l2jOEx/Ey;

(2)
 replace j with its inverse 1/j;

(3)
 referring to quantities a11, a22, etc., following Eq. (11), set a12 ¼ nx, and replace A66 with A66 Ex/Ey; and

(4)
 we now denote the quantities am1, bm1 etc., of Eqs. (15) and (16) by the symbols an1, bn1, etc., and enp and

enps will replace emp and emps. an2 now becomes (Ex/Ey)/f
2.
These new quantities permit evaluation of bn and gn, replacing bm and gm of the first three forms of solution
for the first building block. Quantities R and S associated with the fourth solution are also evaluated as was
done for the first building block. Quantities y1n and y11n, etc., for each of the four forms of solution are
extracted from quantities y1m and y11m, etc., of the previous solution by simply replacing the quantities bm, gm,
etc., with the new quantities bn, gn, etc.

This completes obtaining of the solution for response of the second building block of Fig. 2. It is shown that
this latter solution is obtained through an orderly transformation of the solution provided for the first. Before
discussing generation of the eigenvalue matrix for the obtaining of eigenvalues and mode shapes for free
vibration of any mode family of interest we will first introduce solutions for the building blocks related to the
fully anti-symmetric and symmetric–anti-symmetric mode families of orthotropic plates.

2.5. The fully anti-symmetric modes

The quarter plate associated with this family of modes is shown schematically on the left hand side of Fig. 3.
Displacements are anti-symmetric with respect to both the x and Z axes. Analysis of this family of modes is
accomplished by means of the two building blocks shown to the right of the figure. They will each, of course,
satisfy the same anti-symmetric mode conditions along the axes.

Driven edges of the building blocks again have zero displacement parallel to these edges. The same edges are
subjected to a distributed harmonic normal driving stress. Non-driven outer edges have zero displacement
parallel to these edges.

The mathematical procedure followed in analyzing this family of modes differs very little from that
described for the fully symmetric mode family. Only these differences will be elaborated upon. In order to
a

b

U,ξ

V,η η

ξ ξ

η

Fig. 3. Building blocks employed in analysis of fully anti-symmetric modes of fully clamped plate.
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satisfy the new boundary conditions we now represent the displacements of the first building block as

Uðx; ZÞ ¼
X1

m¼1;2

UmðZÞ sinð2m� 1Þpx=2, (36)

and

V ðx; ZÞ ¼
X1

m¼1;2

V mðZÞ cosð2m� 1Þpx=2. (37)

Substituting these displacement expressions in the equilibrium equations we again obtain Eqs. (15) and (16)
where now

am1 ¼
a66

j2
; bm1 ¼ �

emp

j
½a12 þ a66�; cm1 ¼ �a11empsþ l4, (38a2c)

and

am2 ¼
aj11
j2
; bm2 ¼

emp

j
½a66 þ a12� and cm2 ¼ �a66empsþ l4. (39a2c)

Here, emp ¼ (2m�1)p/2, and emps ¼ emp2. The symbols a11, a12, a66, and a|
11, are as defined earlier following

Eq. (11).
Again, the ordinary differential Eq. (19) and its solution forms are applicable, the only difference being that

the coefficients will be changed. bm and gm related to the first three solution forms are now available as well as
quantities R and S related to the fourth solution form. The major difference is that now for the quantities
Vm(Z) we must delete terms symmetric with respect to the x axis. Deleting these terms and enforcing the
applicable boundary conditions along the driven edge we now obtain for the first form of solution, for
example,

V mðZÞ ¼ Emy11m½sinh bmZþ y1m sin gmZ�, (40)

with

UmðZÞ ¼ Emy11m½a1m cosh bmZþ y1m cos gmZ�, (41)

again, with quantities y11m etc., available from Ref. [3]. The fourth form of solution will be written as

VmðZÞ ¼ Emy11m½sin RZ cosh SZþ y1m cos RZ sinh SZ�, (42)

with

UmðZÞ ¼ Emy11m; ½RR1 sin RZ sinh SZþ RR2 cos RZ cosh SZ�, (43)

where for this solution, quantities y11m, y1m, RR1, etc., must be evaluated.
A solution for response of the second building block of Fig. 4 is obtained through a transformation of the

first building block solution following rules of transformation provided in detail earlier.

2.6. The symmetric– anti-symmetric modes

The quarter plate associated with this family of modes is shown schematically on the left hand side of Fig. 4.
Displacements are symmetric with respect to the x axis and anti-symmetric with respect to the Z axis. Analysis
a

b

U, ξ ξ ξ

V, η η η

Fig. 4. Building blocks employed in analyzing symmetric–anti-symmetric modes of fully clamped plate.
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of this family of modes is accomplished by means of the two building blocks shown to the right of the figure.
They each must satisfy the required boundary conditions along the respective axes. These building blocks have
also been described in Ref. [3] so only a brief description is provided here.

The in-plane displacements U and V of the first building block will be given by Eqs. (36) and (37) related to
the first building block of the fully anti-symmetric mode study. Quantities am1, bm1, etc., will be identical to
those provided for the earlier study. The only difference in obtaining solution to response of the first building
block is that now terms for displacement V, anti-symmetric about the x axis, must be deleted. Enforcing
appropriate boundary conditions along the driven edge one solves for the quantities U and V for all possible
solution forms. Solutions for the first three forms are available in Ref. [3]. Solutions of the first form are as
given by Eqs. (30) and (31) with the parameters y1m and y11m as provided in the reference. The form of the
fourth solution will be identical to that given by Eqs. (32) and (33). Of course, the related quantities y1m, y11m,
RR1, etc., must be computed.

It is obvious that solution for response of the second building block of Fig. 4 cannot be extracted from that
of the first. The problem was addressed in Ref. [3]. The procedure adopted was to first obtain a solution for
response of the building block of Fig. 5. Solution for the second building block of Fig. 4 can then be extracted
from this latter solution through an interchange of axes.

It is seen that solution for the building block of Fig. 5 differs only slightly from that of the first building
block employed earlier in the symmetric–symmetric mode study. The single difference lies in the fact that
terms symmetric about the x axis must be deleted when evaluating the quantity V(x,Z). This has in fact been
done for the first three forms of solution, (b2�4cX0), in Ref. [3] and is not repeated here. The first form
of solution will be expressed according to Eqs. (40) and (41) with quantities y1m, and y11m available from
Ref. [3]. The fourth solution will take the form given by Eqs. (42) and (43), where again the quantities y1m,
y11m, RR1, etc., must be computed.

Finally it will be evident that solution for the second building block of Fig. 4 is readily extracted from that
given immediately above through transformation of the axes. This completes development of all building
block solutions required for the free in-plane vibration analysis of the fully clamped orthotropic plate.
2.7. Development of eigenvalue matricies

Generation of this matrix for clamped isotropic plates is described in detail in Ref. [3]. Since the process for
generation of the matrix for orthotropic plates is essentially identical, only a very brief description is given
here.

Concentrating on the two building blocks employed in the symmetric–symmetric mode study, for
illustrative purposes, we recognize that solutions for these respective building blocks must be superimposed,
one-upon-the-other, and their driving coefficients, Em and En must be constrained so as to satisfy the condition
of zero net displacement perpendicular to the quarter plate outer edges. This is achieved by first expanding the
contributions of each building block to displacement along these edges in an appropriate trigonometric series.
By utilizing the sine series of Eq. (14) we find that a series expansion of the first building block contribution to
a

b

U,ξ

V,η

Fig. 5. Intermediate building block utilized in analyzing symmetric–anti-symmetric modes of fully clamped plate.
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Em En
m=1 2        3 n=1         2        3

Fig. 6. Schematic representation of eigenvalue matrix based on 3-term building block solutions.
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displacement along the edge, Z ¼ 1, already exists. Contributions of the second building block toward this
same displacement are expanded in the same series following standard procedures. We thus arrive at a set of K

linear homogeneous algebraic equations relating the 2K driving coefficients, where K equals the number of
terms utilized in the building block solutions.

A corresponding set of K equations is obtained through imposing the condition of zero net displacement
normal to the edge, x ¼ 1. We thus arrive at a set of 2K homogeneous algebraic equations relating the 2K

unknown driving coefficients. Eigenvalues are those values of the parameter l2 which cause the determinant of
the coefficient matrix of these equations (the eigenvalue matrix) to vanish. A schematic representation of this
eigenvalue matrix, based on three term building block solutions, is presented in Fig. 6.

With eigenvalues established, one of the non-zero driving coefficients is set equal to unity, thereby
permitting establishment of the mode shape associated with any eigenvalue. Solutions for eigenvalues and
mode shapes for the remaining two mode families are obtained in an identical fashion.
3. Presentation of computed results

3.1. Selection of input parameters

There are, of course, an infinite number of input parameter combinations which could be utilized in
orthotropic plate analysis. For illustrative purposes a particular set of such values was utilized in the work
reported here.

First we select a value for the stiffness ratio Ey/Ex. We choose to consider the product nynx to equal n2,
where n is the Poisson ratio for isotropic materials and is taken here to equal 0.3. This permits immediate
evaluation of ny and nx whose ratio ny/nx must equal Ey/Ex. Finally, we must assign a value to Gxy, the
modulus of elasticity in shear for the orthotropic material. It is suggested by Zillard [7], that a reasonable
formulation for this parameter is given by the ratio [ExEy]

1/2/2(1+nxny). In particular, we will be interested
in formulation of the quantity a66 ¼ Gxy/Ex(1�nxny), introduced earlier. It follows, therefore, that we
may write

a66 ¼
Ey

Ex

� �1=2 1� nxny

2ð1þ ½nxny�
1=2Þ

( )
. (44)

It is noted that as the ratio Ey/Ex approaches unity all parameters return to those of the isotropic plate.
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3.2. Tabulation of computed eigenvalues

For each of the three mode families studied, eigenvalues have been computed and tabulated with the
stiffness ratio Ey/Ex taking on values of 1.0, 1.25, 1.5, 2.0, and 2.5. Plate aspect ratios take on values of 1.0,
1.25, 1.5, and 2.0, as well as the inverse of these values. In the case of symmetric–anti-symmetric mode studies
results are also tabulated for plates with ratios Ey/Ex equal to the inverse of those given above. This is
necessary because of the lack of symmetry encountered when analyzing symmetric–anti-symmetric modes.
These computed eigenvalues are to be found in Tables 1–4.

It will be noted that eigenvalues are tabulated to four significant digits. Numerous convergence studies were
conducted before selecting a value of K, the number of terms employed in the building block solutions. It was
concluded that a value of K equal to 9 would assure four digit accuracy in computed results. This is the value
of K employed in computing all results reported here.
Table 1

Fully symmetric mode eigenvalues.

Mode Ey/Ex

1.0 1.25 1.5 2.0 2.5

f ¼ 1.0

(1) 2.118 2.235 2.332 2.488 2.611

(2) 2.593 2.738 2.882 3.142 3.371

(3) 3.798 4.010 4.182 4.442 4.608

f ¼ 1.25

(1) 1.918 1.999 2.067 2.175 2.256

(2) 2.347 2.483 2.613 2.844 3.046

(3) 3.164 3.337 3.480 3.721 3.917

f ¼ 1.5

(1) 1.801 1.860 1.910 1.962 2.027

(2) 2.201 2.331 2.451 2.663 2.845

(3) 2.733 2.874 2.990 3.187 3.349

f ¼ 2.0

(1) 1.678 1.714 1.702 1.750 1.790

(2) 2.035 2.154 2.259 2.434 2.576

(3) 2.249 2.347 2.453 2.587 2.721

f ¼ 1.0/1.25

(1) 2.397 2.562 2.700 2.918 3.088

(2) 2.934 3.104 3.255 3.550 3.811

(3) 3.954 4.183 4.370 4.661 4.882

f ¼ 1.0/1.5

(1) 2.701 2.914 3.093 3.376 3.596

(2) 3.301 3.490 3.669 3.986 4.279

V(3) 4.100 4.353 4.567 4.911 5.187

f ¼ 1.0/2.0

(1) 3.356 3.663 3.926 4.345 4.663

(2) 4.070 4.305 4.515 4.899 5.240

(3) 4.499 4.815 5.090 5.560 5.964
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Table 2

Fully anti-symmetric mode eigenvalues.

Mode Ey/Ex

1.0 1.25 1.5 2.0 2.5

f ¼ 1.0

(1) 2.929 3.056 3.118 3.181 3.219

(2) 3.354 3.563 3.745 4.012 4.207

(3) 3.641 3.876 4.127 4.634 5.094

f ¼ 1.25

(1) 2.524 2.746 2.901 3.054 3.114

(2) 3.107 3.219 3.319 3.521 3.648

(3) 3.337 3.460 3.599 3.912 4.251

f ¼ 1.5

(1) 2.188 2.404 2.586 2.850 2.992

(2) 2.981 3.095 3.166 3.270 3.379

(3) 3.197 3.263 3.342 3.527 3.741

f ¼ 2.0

(1) 1.762 1.936 2.090 2.352 2.566

(2) 2.813 2.939 3.027 3.133 3.176

(3) 2.936 3.062 3.119 3.193 3.288

f ¼ 1.0/1.25

(1) 3.155 3.212 3.250 3.304 3.345

(2) 3.884 4.156 4.364 4.680 4.924

(3) 4.171 4.553 4.914 5.482 5.782

f ¼ 1.0/1.5

(1) 3.282 3.332 3.372 3.434 3.485

(2) 4.472 4.775 5.016 5.391 5.683

(3) 4.479 5.249 5.575 5.916 6.078

f ¼ 1.0/2.0

(1) 3.524 3.588 3.643 3.736 3.814

(2) 5.627 5.938 6.112 6.283 6.377

(3) 5.872 6.192 6.466 6.939 7.327
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Accurate results were not found available in the literature for the purposes of comparison. A number of
tests and procedures were therefore employed to help verify the present results. First, extensive maps of
eigenvalues vs. input stiffness ratios, Ey/Ex, were generated. Even though results were tabulated for only a
limited number of discrete points on these maps, continuity of eigenvalue curves was thereby demonstrated for
each plate aspect ratio and this helped assure that no eigenvalues were missed.

Another demanding test was imposed on the computational scheme for various combinations
of plate aspect ratios and stiffness ratios, Ey/Ex. Consider, for example, the first fully symmetric
mode eigenvalue for a plate with both aspect ratio and ratio Ey/Ex greater than one. If we next conduct
the same analysis with both of these parameters taking on their inverse ratios it will be appreciated that
we must obtain identical free vibration frequencies, though not necessarily the same eigenvalue. This same
test was applied to fully anti-symmetric mode studies. In every case studied exact frequency agreement was
obtained.
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Table 3

Symmetric–anti-symmetric mode eigenvalues with stiffness ratio Ey/ExX1.0.

Mode Ey/Ex

1.0 1.25 1.5 2.0 2.5

f ¼ 1.0

(1) 1.778 1.957 2.118 2.399 2.643

(2) 2.947 3.100 3.222 3.405 3.544

(3) 3.557 3.713 3.856 4.119 4.358

f ¼ 1.25

(1) 1.526 1.672 1.802 2.032 2.231

(2) 2.850 2.982 3.081 3.220 3.320

(3) 3.245 3.417 3.562 3.814 4.036

f ¼ 1.5

(1) 1.371 1.994 1.605 1.800 1.969

(2) 2.786 2.910 2.999 3.116 3.195

(3) 2.968 3.173 3.332 3.583 3.782

f ¼ 2.0

(1) 1.197 1.295 1.382 1.535 1.667

(2) 2.379 2.592 2.752 2.940 3.034

(3) 2.799 2.939 3.054 3.341 3.380

f ¼ 1.0/1.25

(1) 2.113 2.335 2.533 2.880 3.174

(2) 3.107 3.293 3.447 3.692 3.890

(3) 3.889 4.056 4.211 4.499 4.761

f ¼ 1.0/1.5

(1) 2.463 2.727 2.964 3.372 3.710

(2) 3.308 3.531 3.721 4.035 4.300

(3) 4.214 4.401 4.574 4.892 5.178

f ¼ 1.0/2.0

(1) 3.189 3.540 3.850 4.371 4.778

(2) 3.804 4.111 4.379 4.845 5.266

(3) 4.858 5.100 5.315 5.699 6.035
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3.3. Some mode shape studies

A limited number of mode shape studies were conducted. The objectives were to illustrate the effects of plate
orthotropy on these mode shapes as well as to confirm that the expected trends in these shapes, away from
shapes related to isotropic plates, were exhibited.

The first fully symmetric mode of a square plate with stiffness ratio Ey/Ex equal 1.0 (the isotropic case) is
depicted in Fig. 7. In all mode shapes depicted here displacements within the quarter plate, only, are shown.

It is seen that conditions of zero displacement both parallel and normal to the plate outer edges are satisfied.
These conditions will be seen to be satisfied in all mode shapes presented here. Conditions of zero displacement
along the plate central axes are also noted. This is a requirement for fully symmetric modes. We note that
displacements normal to these axes are equal along each axis. This is to be expected for the isotropic plate.

The first fully symmetric mode of a square plate with Young’s moduli ratio equal to 2.0 is depicted in Fig. 8.
Displacements along the outer plate edges and plate central axes are seen to be similar to those of Fig. 7 except
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Table 4

Symmetric–anti-symmetric mode eigenvalues with stiffness ratio Ey/Exp1.0.

Mode Ex/Ey

1.0 1.25 1.5 2.0 2.5

f ¼ 1.0

(1) 1.778 1.612 1.388 1.237 1.131

(2) 2.947 2.791 2.663 2.471 2.329

(3) 3.557 3.406 3.278 2.970 2.731

f ¼ 1.25

(1) 1.526 1.390 1.293 1.076 0.9923

(2) 2.850 2.710 2.594 2.378 2.195

(3) 3.245 3.061 2.891 2.595 2.297

f ¼ 1.5

(1) 1.371 1.254 1.171 0.9846 0.9133

(2) 2.786 2.642 2.494 2.222 2.015

(3) 2.968 2.753 2.594 2.399 2.265

f ¼ 2.0

(1) 1.197 1.102 1.036 0.9411 0.8750

(2) 2.379 2.165 1.990 1.755 1.591

(3) 2.799 2.658 2.544 2.370 2.201

f ¼ 1.0/1.25

(1) 2.113 1.909 1.657 1.464 1.330

(2) 3.107 2.923 2.780 2.565 2.409

(3) 3.889 3.737 3.620 3.431 3.257

f ¼ 1.0/1.5

(1) 2.463 2.221 1.946 1.710 1.547

(2) 3.308 3.092 2.927 2.684 2.510

(3) 4.214 4.047 3.918 3.729 3.578

f ¼ 1.0/2.0

(1) 3.189 2.870 2.555 2.232 2.009

(2) 3.804 3.815 3.300 2.952 2.739

(3) 4.858 4.633 4.456 3.961 3.378
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for one consideration. It will be noted that displacements normal to the x axis are significantly lower than
those normal to the Z axis. This is to be anticipated since, with the Young’s modulus ratio equal to 2.0, the
plate is much stiffer in the Z direction than in the x direction. This is visual evidence of the role orthotropy
plays in determining the plate in-plane free vibration mode shapes. It also attests to the validity of the
theoretical model.

Corresponding mode shapes for the first fully anti-symmetric mode vibration of a square plate are presented
in Figs. 9 and 10. In Fig. 9 it is seen that displacements normal to the axes and normal to the quarter plate
outer edges are everywhere zero, as required. While displacements parallel to the plate outer edges are
everywhere zero, displacements parallel to the axes, at points located along these axes, are seen to be non-zero.
This is why horizontal and vertical lines in the figure, with the exception of those lying along the above
mentioned axes or plate outer edges, exhibit a distinct curvature, the degree of curvature being approximately
equal for corresponding horizontal and vertical lines.
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Fig. 7. First fully symmetric mode for square plate: stiffness ratio ¼ 1.0.

Fig. 8. First fully symmetric mode for square plate: stiffness ratio ¼ 2.0.

D.J. Gorman / Journal of Sound and Vibration 323 (2009) 426–443 441
Turning to Fig. 10 it is observed that similar conditions prevail, however, vertical lines in the figure have
much higher curvature than corresponding horizontal lines. This is because with a stiffness ratio equal to 2.0
there is less stiffness in the x direction than in the Z direction. There is thus less resistance to horizontal
movement along the x axis than there is to vertical movement along the Z axis. This results in the higher degree
of curvature observed along the vertical lines as noted above.

In Figs. 11 and 12 first symmetric–anti-symmetric modes are depicted for the square plate. Conditions of
symmetry, as described earlier, are imposed along the x axis. It will be noted that approximately equal
amplitude of displacement normal to the x axis are observed in each figure. The degree of curvature observed
in corresponding vertical lines of each figure are, however, considerably different. Examining the seventh
vertical line from the edge, x ¼ 1, of each figure, we note that the vertical line of Fig. 12 has almost twice as
high a degree of curvature as that of Fig. 11. Again, this is a result of the lower plate stiffness in the x direction
in Fig. 12 (stiffness ratio Ey/Ex ¼ 2.), thereby making horizontal movement for this latter plate more easily
achieved.
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Fig. 10. First fully anti-symmetric mode for square plate: stiffness ratio ¼ 2.0.

Fig. 9. First fully anti-symmetric mode for square plate: stiffness ratio ¼ 1.0.

Fig. 11. First symmetric–anti-symmetric mode for square plate: stiffness ratio ¼ 1.0.
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Fig. 12. First symmetric–anti-symmetric mode for square plate: stiffness ratio ¼ 2.0.

D.J. Gorman / Journal of Sound and Vibration 323 (2009) 426–443 443
4. Summary and conclusions

Accurate analytical type solutions have been obtained for the free in-plane vibration eigenvalues and mode
shapes of rectangular orthotropic plates. The work is essentially a continuation of earlier work related to
isotropic plates.

The dimensionless differential equations governing the in-plane vibratory behavior of orthotropic plates are
formulated and the superposition method is again employed. Computed eigenvalues are tabulated for fully
clamped plates over a range of plate aspect ratios and ratios of Youngs moduli. This appears to be the first
analytical study of this practical engineering problem. Tabulated results provide other researchers with
reference values against which their findings may be compared.
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