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Abstract

The finite element method for the vibration and damping analyses of the thermal post-buckled cylindrical composite

shells with damping treatments was developed adopting the layerwise displacement field theory. The arc-length method

was used to trace the nonlinear post-buckling behavior of the composite shell induced by the thermal load, and the

complex modulus was adopted to consider the effects of the structural damping. The verification of the present results was

performed in comparison with previous results, and the dynamic characteristics of several composite shells with damping

treatments were investigated. The results show that the viscoelastic damping treatments could significantly affect the

thermal post-buckling behaviors and the dynamic characteristics of the composite shells.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that the dissipation of energy using viscoelastic damping materials within vibrating
structures can reduce noise and vibration. Due to their importance in the design of the vibrating structures and
systems, the vibrations of such damped systems have been investigated by many researchers [1–4]. Most early
studies of damping treatments dealt with simple beams and plates. However, studies on the responses
of cylindrical shells began to be undertaken as the demands of complex structures increased in various fields.
Irie et al. [5] investigated the axisymmetrical response of a circular cylindrical double-shell system with internal
damping by using a matrix analysis method based upon the Goldenveizer–Novozhilov theory. Lu et al. [6]
performed experimental tests and a simple analysis of the forced vibratory response of a cylindrical shell with a
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

sij Cauchy stress tensor
fi body forces
r density of structures
FJðzÞ piecewise interpolation function through

thickness direction
cI ðx; ZÞ finite element shape function

CJ
K ðzÞ linear shape function

g radius of cylindrical shell
ui displacements
UJ ;V J in-plane displacement at the J-th inter-

face
W transverse displacement

Qij elastic modulus

Qij reduced elastic modulus (Q ¼ RT QR)

M mass matrix
K

L linear stiffness matrix
KDT thermal geometric stiffness matrix
KN1 first order nonlinear stiffness matrix
KN2 second order nonlinear stiffness matrix
FDT thermal loading vector
u unknown displacement DOF vector
q out-of-balance vector
DT cr critical buckling temperature
on natural frequency of n-th mode
Zn loss factor of n-th mode
W0 normal mode vectors
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number of axial beams adhered to it using a viscoelastic material layer. Their work showed good correlations
between the test data and analytical solutions over a wide range of frequencies.

Sivadas and Ganesan [7,8] studied the effect of material damping on the dynamic stress response using the
first order shell theory with shear deformation. Singh and Gupta [9,10] investigated the free vibration
characteristics of a cylindrical tube by using the Timoshenko beam theory, thin shell theory, and first order
deformation theory, and compared the results obtained from beam and shell theories. Ramesh and Ganesan
[11–13] performed vibration and damping analyses of an orthotropic cylindrical shell with a constrained
viscoelastic core using a finite element based on the discrete layer theory, and performed parametric studies of
different core-to-facing thickness ratios, length-to-radius ratios, and boundary conditions. Okazaki et al. [14]
studied the damping properties of cylindrical shells with an unconstrained viscoelastic layer, and Koo and Lee
[15] developed the refined finite element model to describe the vibration and damping of anisotropic laminates
in cylindrical bending. Xia and Lukasiewicz [16] investigated the effects of curvature radius, material
properties, and layer thickness on the damping properties of sandwich cylindrical panels using the principle of
virtual work.

Horacek and Kruntcheva [17] performed the finite element modeling of the damping characteristics of the
cylindrical structure vibrating in a fluid and showed that the achieved agreement between the measured and
calculated dynamic characteristics was good. Ramasamy and Ganesan [18] developed a finite element code
based on the displacement field proposed by Wilkins [19] to observe the natural frequencies and loss factors of
fluid-filled cylindrical shells with a constrained viscoelastic layer in between two facings made from composite
material. Saravanan et al. [20] proposed a semianalytical finite element for doubly curved, multilayered shells
of revolution based on an extension of Wilkins’ displacement field. Ray et al. [21] investigated the effectiveness
of active constrained layer damping treatments in enhancing the damping characteristics of thin cylindrical
shells and performed experiments to verify their numerical predictions.

Chen and Huang [22] investigated the damping effects of a strip-type constrained layer damping treatment
on a cylindrical shell using the assumed mode method. Lee et al. [23] investigated the dynamic characteristics
of cylindrical composite panels with co-cured and constrained viscoelastic layers. Zheng et al. [24] optimized
the layout of a passive constrained layer damping treatment to minimize the vibration response of cylindrical
shells using the energy approach and assumed-mode method. They also studied the effects resulting from the
number of patches, aspect ratios, and total amount of added passive constrained layer damping weight.
Pradeep et al. [25] analyzed the buckling and vibration behavior of a viscoelastic sandwich cylinder in a
thermal environment using the semi-analytical finite element method and the decoupled thermomechanical
formulation.

The literature survey revealed that few papers were devoted to investigating the damping characteristics
of cylindrical composite shells with damping layers, and to date the study on the thermal post-buckling
of cylindrical composite panels with viscoelastic damping treatments has been not published. This paper
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investigates the thermal post-buckled characteristics of cylindrical composite shells with viscoelastic layers.
To fully consider the effects of viscoelastic damping and post-buckled behaviors subject to thermal loads, the
transverse shear and variable in-plane displacements through the thickness are accurately modeled. In this
study, the layerwise displacement theory and cylindrical arc-length method in the formulation of the finite
element method, which has been verified previously in our research of composite plates [26,27,34] and
cylindrical panels [23,28,31–33], are applied. This layerwise finite element model can provide accurate results
for thermoelastic deformations and loss factors for various damping treatments of cylindrical composite shells
with viscoelastic layers.
2. Layerwise finite element formulations

2.1. Description of layerwise displacement fields

Based on the layerwise laminate theory [23,28], the displacement fields (u, v, and w) on the x� f� z

coordinate system shown in Fig. 1 and temperature field can be expressed by introducing the following
piecewise continuous approximations. By introducing the piecewise interpolation function along the thickness
direction FJ ðzÞ and the finite element shape function cI ðx; ZÞ, the partial layerwise description of the
displacements and the temperature distribution is given as follows:

u1 ¼ uðx;f; z; tÞ ¼
XNID

J¼1

UJðx;f; tÞFJðzÞ ¼
XNID

J¼1

XNPE

I¼1

UJ
I ðxI ;fI ; tÞcI ðx; ZÞF

JðzÞ, (1)

u2 ¼ vðx;f; z; tÞ ¼
XNID

J¼1

VJ ðx;f; tÞFJ ðzÞ ¼
XNID

J¼1

XNPE

I¼1

V J
I ðxI ;fI ; tÞcI ðx; ZÞF

J ðzÞ, (2)

u3 ¼ wðx;f; z; tÞ ¼
XNPE

I¼1

W I ðxI ;fI ; tÞcI ðx; ZÞ, (3)
x-coordinate.

z-coordinate

φ

R

θ

a

g

A

B

C

D

h

Fig. 1. Geometry of a cylindrical composite panel.
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DTðx;f; z; tÞ ¼
XNID

J¼1

XNPE

I¼1

DTJ
I ðxI ;fI ; tÞcI ðx; ZÞF

JðzÞ (4)

where UJ, VJ and DTJ are the axial displacement, hoop displacement, and temperature increase at the J-th
interface, respectively; WI is the transverse displacement at the I-th node with the same value through the
thickness direction. NID is the number of degrees of freedom for the in-plane displacement along the thickness
direction for element i and NPE is the node number per element. The detailed interpolation function FJðzÞ is
defined with linear shape functions CJ

K ðzÞ as follows:

FJðzÞ ¼

0 for zozJ�1

CJ�1
2 ðzÞ ¼

z� zJ�1

zJ � zJ�1
for zJ�1ozozJ

CJ
1ðzÞ ¼ �

z� zJþ1

zJþ1 � zJ

for zJozozJþ1

0 for zJþ1oz

8>>>>>><
>>>>>>:

(5)

The sub-lamina concept of multi-layered structures with proper thickness discretization can be applied to
reduce the computational time and memory storage required in the layerwise mechanics.

The von Karman nonlinear strain–displacement relationships were adopted to consider a large deflection due
to thermomechanical loads. The relationships between strains and displacements can be written as follows:

�xx ¼
qu

qx
þ

1

2

qw

qx

� �2

¼
XNi

J¼1

qUJ

qx
FJ þ

1

2

qW

qx

� �2

, (6)

�ff ¼
qv

gqf
þ

w

g
þ

1

2

qw

gqf

� �2

¼
XNi

J¼1

qV J

gqf
FJ þ

w

g
þ

1

2

qW

gqf

� �2

, (7)

gxf ¼
qu

gqf
þ

qv

qx
þ

qw

qx

qw

gqf
¼
XNi

J¼1

qUJ

gqf
þ

qV J

gqf

� �
FJ þ

qW

qx

qW

gqf
, (8)

gfz ¼
qw

gqf
þ

qv

qz
�

v

g
¼

qw

gqf
þ
XNi

J¼1

V J dF
J

dz
�
XNi

J¼1

V J

g

� �
FJ , (9)

gxz ¼
qw

qx
þ

qu

qz
¼

qW

qx
þ
XNi

J¼1

UJ dF
J

dz
. (10)

where g means the radius of the cylindrical shell at an arbitrary interior position.
2.2. Constitutive equations of viscoelastic materials

The mechanical properties of the layered composite and viscoelastic materials are usually defined by a
complex modulus; Young’s modulus and the shear modulus can be expressed in the following forms:

Eii ¼ Eiið1þ iZiiÞ for i ¼ 1; 2; 3, (11)

G12 ¼ G12ð1þ iZ12Þ; G23 ¼ G23ð1þ iZ23Þ; G13 ¼ G13ð1þ iZ13Þ. (12)

In this study, all independent elastic and dissipative properties of the composite and viscoelastic plies are
considered. Including the thermal effects, the unified linear constitutive equations for the k-th lamina between
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the sinusoidal stresses and strains with respect to the material coordinate can be written as:

s1
s2
s3
s23
s13
s12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

k

¼

Q11 Q12 Q13 0 0 0

Q12 Q22 Q23 0 0 0

Q13 Q23 Q33 0 0 0

0 0 0 Q44 0 0

0 0 0 0 Q55 0

0 0 0 0 0 Q66

2
6666666664

3
7777777775

k

�1

�2

�3

�23

�13

�12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

�

a1
a2
a3
0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
DT

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

k

, (13)

where

Q11 ¼ ð1� v23v32Þ=E11=D; Q12 ¼ ðv12 þ v13v32ÞE22=D; Q13 ¼ ðv13 þ v12v23ÞE33=D,

Q23 ¼ ðv23 þ v21v13ÞE33=D; Q22 ¼ ð1� v13v31ÞE22=D; Q33 ¼ ð1� v12v21ÞE33=D,

Q44 ¼ G23; Q55 ¼ G13; Q66 ¼ G12; D ¼ 1� v12v21 � v23v32 � v13v31 � 2v12v23v31. (14)

The corresponding constitutive relation for an anisotropic lamina referring to the initial configuration,
x� f� z, can be obtained using the coordinate transformation with a fiber angle y:

sxx

sff
szz

sfz

sxz

sxf

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

k

¼

Q11 Q12 Q13 0 0 Q16

Q12 Q22 Q23 0 0 Q26

Q13 Q23 Q33 0 0 Q36

0 0 0 Q44 Q45 0

0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66

2
6666666664

3
7777777775

k

�xx

�ff

�zz

gfz

gxz

gxf

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

�

axx

aff
azz

0

0

axf

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

DT

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

k

(15)

where

Q11 ¼ Q11m4 þ 2m2n2ðQ12 þ 2Q66Þ þQ22n4; Q12 ¼ m2n2ðQ11 þQ22 � 4Q66Þ þQ12ðm
4 þ n4Þ,

Q13 ¼ Q13m2 þQ23n2; Q16 ¼ �2Q66mnðm2 � n2Þ þmnðQ12m2 þQ11n2Þ �mnðQ22m2 þQ12n2Þ,

Q22 ¼ Q11n4 þ 2m2n2ðQ12 þ 2Q66Þ þQ22m4; Q23 ¼ Q13n2 þQ23m2,

Q26 ¼ 2Q66mnðm2 � n2Þ þmnðQ12m2 þQ11n2Þ �mnðQ22m2 þQ12n2Þ; Q33 ¼ Q33,

Q36 ¼ ðQ13 �Q23Þmn; Q44 ¼ Q44m2 þQ55n2; Q45 ¼ ðQ55 �Q44Þmn,

Q55 ¼ Q55m2 þQ44n2; Q66 ¼ m2n2ðQ11 � 2Q12 þQ22Þ þQ66ðm
2 � n2Þ

2, (16)

where m ¼ cos y and n ¼ sin y. The reduced constitutive equation can be written with the vector form from
the assumption of zero transverse normal stress:

rk ¼ ðQR þ iQI Þkek � akDT , (17)
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where a subscript k indicates the layer number; QR and QI are the reduced real and imaginary stiffness
matrices; ak is the reduced coefficients of thermal expansion.
2.3. Derivation of governing equations

In order to derive the governing equation of motion for the cylindrical composite shells with viscoelastic
layers, Hamilton’s variational principle was applied in the following form:Z

V

ðr €uidui þ sijd�ij � f iduiÞdV ¼

Z
S

tidui dS, (18)

where an infinitesimal volume of a cylinder is given as dV ¼ gðzÞdfdxdz. Over each finite element, the
displacements were expressed as a linear combination of shape functions and nodal values on each finite
element as the following form:

ðW ;UJ ;VJÞ ¼
XNPE

k¼1

ðW k;U
J
k ;V

J
kÞck, (19)

where NPE is the number of nodes per element. The shape functions, ck, mean four, eight and nine nodes
Lagrange elements. The nodal displacement vector for an element i can be defined as:

ue ¼ fu
0 u1 v1 u2 v2 � � � uNID vNIDgT, (20)

and

u0 ¼ fW 1 W 2 � � � WNPEg
T,

uJ ¼ fUJ
1 UJ

2 � � � UJ
NPEg

T; J ¼ 1; 2; . . . ;Ni

vJ ¼ fV J
1 VJ

2 � � � V J
NPEg

T. (21)

Using variational formulations and finite elements, the nonlinear finite element equation of motion for the
composite panels can be obtained by:

Me €ue þ ðK
L
Re � KDT

Re þ
1
2
KN1

Re ðueÞ þ
1
3
KN2

Re ðueÞ þ iðKL
Ie � KDT

Ie þ
1
2
KN1

Ie ðueÞ þ
1
3
KN2

Ie ðueÞÞÞue ¼ FDT
e þ Fexternal

e , (22)

where Me, K
L
e , K

DT
e , KN1

e , KN2
e , FDT

e , and Fexternal
e are the mass matrix, linear stiffness, thermal geometric

stiffness, first order nonlinear stiffness, second order nonlinear stiffness, thermal loading, and external force
vectors, respectively. And the subscript R and I in the stiffness matrices mean real and imaginary in the
complex values, respectively. The detailed real components of Eq. (22) have been given for mass, stiffness, and
force vectors in our previous study [28]. Through the assembly procedure, the global finite element equation of
laminated shells subject to the thermal load and the external load can be obtained as:

M€uþ ðKL
R � lTK

DT
R0 þ

1
2
KN1

R ðuÞ þ
1
3
KN2

R ðuÞ þ iðKL
I � lTK

DT
I0 þ

1
2
KN1

I ðuÞ þ
1
3
KN2

I ðuÞÞÞu ¼ lTF
DT
0 þ Fexternal, (23)

where KDT
0 , FDT

0 , and lT are the unit thermal geometric stiffness, force vector under a unit load level of
temperature increase, and a load level, respectively. Also, Fexternal

0 is the force vector due to the external load.
The thermal Euler buckling analysis was performed to determine the reference buckling temperature:

ðKL
R � DT crK

DT
R0 ÞH ¼ 0, (24)

where DTcr is the critical buckling temperature and H is the buckling mode. The buckling mode shape is
properly scaled as an initial estimated deflection to construct the nonlinear stiffness matrix in the post-buckled
range. In order to analyze the thermoelastic post-buckling and small vibrations using the thermally buckled
deflections, the solution of Eq. (23) is assumed to be the sum of the time-dependent and time-independent
solutions such as u ¼ us þ ut, where us is the post-buckled large deflection and ut is the time-dependent
solution with a small amplitude. Substituting this assumed solution into Eq. (23), static and dynamic coupled
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equations can be obtained as follows:

qðus; lT Þ ¼ ðK
L
R þ

1
2K

N1
R ðuÞ þ

1
3K

N2
R ðuÞÞus � lT ðK

DT
R0 us þ FDT

0 Þ � Fexternal
0 ¼ 0 (25)

M€ut þ ðK
L
R � lTK

DT
R0 þ

1
2
KN1

R ðusÞ þ
1
3
KN2

R ðusÞ þ iðKL
I � lTK

DT
I0 þ

1
2
KN1

I ðusÞ þ
1
3
KN2

I ðusÞÞÞut ¼ FexternalðtÞ, (26)

where qðus; lT Þ is the out-of-balance vector. The static nonlinear governing Eq. (25) is solved by using the
cylindrical arc-length method [28] to trace post-limit equilibrium curves of nonlinear responses of the
cylindrical shells.

2.4. Free vibration including large deformation

The free vibration of the cylindrical composite panels with transverse large deflection can be obtained by
solving the dynamic Eq. (26). However, the complex Eq. (26) has a lot of degree-of-freedoms and needs very
long computational time. Therefore, the modal approach can be used to solve the complex eigen-value
equation. The fundamental basis of the finite modal vectors can be found by solving the following equation:

ðKL
R � o2

nMÞW0 ¼ 0 (27)

Consequently, the reduced complex eigen-value equations of motion with generalized modal coordinate
system can be obtained as follows (Fig. 2):

ððK� þ iK�DÞ � l�nM
�ÞU� ¼ 0 (28)
z

x

J = 5
J = 4
J = 3
J = 2
J = 1

Undeformed shape

Deformed shape

∂x

∂w

z

w(x, φ, z, t)

Interpolation functions

Fig. 2. Layerwise in-plane displacements and interpolation functions between layers of cylindrical shell.
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where the reduced system matrices and vectors are given as:

M� ¼ WT
0 MW0

K� ¼ WT
0 ðK

L
R � lTK

DT
R0 þ

1
2
KN1

R ðusÞ þ
1
3
KN2

R ðusÞÞÞW0 (29)

K�D ¼ WT
0 ðK

L
I � lTK

DT
I0 þ

1
2
KN1

I ðusÞ þ
1
3
KN2

I ðusÞÞW0

U ¼ W0U
�

From Eq. (28), the natural frequencies and loss factors for each mode are defined by real and imaginary
parts of complex eigen-value l�n in the following form

o2
n ¼ Re½l�n�; Zn ¼

Im½l�n�
Re½l�n�

. (30)

3. Results and discussion

3.1. Numerical validation of free vibration and thermal post-buckling analyses

3.1.1. Free vibration of a sandwich shell with a viscoelastic core

The numerical validation of a sandwich shell with a viscoelastic core was performed as shown in Fig. 3.
The free vibration analyses based on the layerwise shell theory were performed and the results were compared
with finite element solutions of Ramesh and Ganesan [11] using the discrete layer theory and high-order
theory. Graphite/epoxy and PCV were chosen as the facing materials (subscript f) and the core (subscript c),
respectively, and their properties are:

Facings ðgraphite=epoxyÞ : E1f ¼ 1:845� 1011ð1þ 0:000716iÞN=m2; rf ¼ 1600 kg=m3,

E2f ¼ 1:091� 1010ð1þ 0:00671iÞN=m2; E2f ¼ E3f ; v12f ¼ v23f ¼ v13f ¼ 0:28,

G12f ¼ G23f ¼ G13f ¼ 7:31� 109ð1þ 0:0112iÞN=m2

Core ðPCVÞ : Ec ¼ 2:3� 107ð1þ 0:3478iÞN=m2; vc ¼ 0:34; rc ¼ 1350 kg=m3

Generally, material properties are denoted as functions of environmental temperature and working
frequency, however, for the convenience of validation in the present analyses, the properties are assumed
clamped

clamped

P.C.V damping material

Graphite/Epoxy

100mm

10
m

m

R 100mm

Fig. 3. Geometry information of cylindrical sandwich shell with viscoelastic core.
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Fig. 4. Natural frequencies and loss factors of cylindrical sandwich shell with viscoelastic core: (a) natural frequency and (b) loss factor.
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to be independent on the working frequency and environmental temperature and maintain constant
values. The outer radius and length of the cylindrical shell, and the thickness of each layer are 100, 100,
and 10mm, respectively. The orientation angle of the fibers in the facings is 01 (longitudinal direction)
and the boundary conditions are clamps at both ends. For the finite element analysis, the model used consists
of 8� 8 mesh with nine-node shell elements for the in-plane-direction and three sub-layers through the
thickness.

In order to validate the code based on the layerwise field theory, the present results were compared with
those obtained using the discrete layer theory and high-order theory. Fig. 4 indicates the natural frequencies
and modal loss factors based on the layerwise shell theory and the results of Ramesh and Ganesan [11];
furthermore, these natural frequencies agree with the reference frequencies. The modal loss factors also follow
the tendency of the reference loss factor although they were observed to be slightly higher than results of
Ramesh and Ganesan’s results [11].

3.1.2. Thermal post-buckling of the composite shell

The validation of the free vibration analysis results has already been proved in the previous section and the
verification of the thermal post-buckling analysis results of the cylindrical composite shell are implemented in
this section through a comparison with the results of Huang and Tauchert [30]. The geometry information and
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material properties of the cylindrical laminated shell are given as follows:

Geometry information :
a

Rf
¼ 1;

a

h
¼ 200;

R

a
¼ 5

Material properties : E1 ¼ 138Gpa; E2 ¼ E3 ¼ 8:28Gpa; G12 ¼ G13 ¼ 6:9Gpa; n23 ¼ 0:373,

n12 ¼ n13 ¼ 0:33; r ¼ 1600 kg=m3; a1 ¼ 0:18� 10�6=�C; a2 ¼ a3 ¼ 27� 10�6=�C.

The lamination consists of four zero-ply-angle layers with 0.125mm thickness and all edges of shell are
simply supported as follows:

W ¼ VJ ¼ Um ¼ 0 for J ¼ 1;Ni at x ¼ 0; a, (31)

W ¼ V J ¼ Um ¼ 0 for J ¼ 1;Ni at Rf ¼ 0; a, (32)

where m denotes the middle interface of the in-plane degree of freedom.
Fig. 5 indicates that the present results based on the layerwise theory resemble those of Huang and Tauchert

[30], even though more flexible deflections in the highly nonlinear region were observed due to the in-plane
flexibility in the present layerwise theory model. The WCENTER in Fig. 5 means the transverse displacement of
the cylindrical panel at the center point.

The validation problem considering both thermal post-buckling and structural damping was not found in
the open literature. Therefore, in this study the verification of the present finite element code was
independently performed by solving both the thermal post-buckling and structural damping of the cylindrical
shells as compared in the Section 3.1.
3.2. Thermal post-buckling behaviors of a cylindrical shell with a viscoelastic layer

The thermal post-buckling behaviors of a cylindrical shell were investigated with various layer laminations,
as shown in Fig. 6, which consist of laminate1,2 and viscoelastic layers. Graphite/epoxy and 3M-ISD 112
were adopted for the face laminates (h1,h2) and viscoelastic layer (hc), respectively. The properties of the
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Fig. 6. Geometry and construction of cylindrical composite panels with viscoelastic layer.
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graphite/epoxy are:

E1 ¼ 119Gpa; E2 ¼ 8:67Gpa; G12 ¼ G13 ¼ 5:18Gpa; G23 ¼ 3:9Gpa; n12 ¼ 0:31,

r ¼ 1570 kg=m3; Z1 ¼ 0:118%; Z2 ¼ 0:620%; Z12 ¼ Z13 ¼ 0:812%; Z23 ¼ 0:846%.

The properties of 3M-ISD 112 are denoted as a function of the environmental temperature and exciting
frequency. The equations suggested by Drake [29] are given as:

log10 M ¼ log10 ML þ
2 log10 MROM=ML

1þ ðFQROM=FRÞSLOPE
, (33)

log10 ETA ¼ log10 ETAFROL þ
C

2
ððSH þ SLÞAþ ðSL � SH Þð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

p
ÞÞ, (34)

where M (stiffness) and ETA (loss factor) can be calculated from Eqs. (33) and (34) to predict the material
properties of 3M-ISD112. In this article, the environmental temperature and working frequency are assumed
to be constant and degradation of the properties was not considered according to the various thermal loads.

The 12� 12 meshes with nine node elements for the in-plane direction and five sub-laminates through
the thickness direction were adopted for the finite element models. All edges (AB, CD, AC, and BD) of the
cylindrical shell were clamped, and the clamps consisted of a 14-layered [04/903]s graphite/epoxy composite
laminate of 400� 400� 1.75mm and a viscoelastic layer of 400� 400� 0.25mm. Fig. 7 elucidates the thermal
post-buckling behaviors of several cylindrical shells as the sequences of the laminate with the damping layer
are changed. The deformation of the central point of the [04/903]s laminate without a viscoelastic layer
increased exponentially according to the increment of the thermal loads, and the shell structure had no
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resistance for thermal loads over 200 1C. The results of the cases with the damping layer attached at the
uppermost or lowermost graphite/epoxy layer have similar tendencies and show little improved thermal
deformations due to the thickness increment compared with those of [04/903]s. However, these cases also have
weak thermal stability at temperature over 200 1C.

The changes of the thermally deformed shapes, which were not observed in the previous cases, occurred in
the results of the laminates with an embedded damping layer when the thermal loading approached a specific
temperature. The deformation of the central point of the [04/903/903/d/04] laminate increased in the
temperature regime below 170 and over 200 1C: in addition, the snap-through phenomenon was observed
weakly between 170 and 200 1C. A region existed where the deformation of the central point decreased with
respect to the temperature increments due to the metamorphosis of the thermally deformed shape. The
structural endurance for the external thermal loading was improved substantially compared with the results of
the composite shell without the damping layer.

The results of the [04/d/903/903/04] laminate indicate different tendencies in the thermal deformation
compared with those of [04/903/903/d/04] in contrast to [04/903]s/d and d/[04/903]s. The deformation of the
central point of [04/d/903/903/04] increased exponentially by 155 1C and then dropped shapely after the
variation of the thermally deformed shape when the temperature rose. The static thermal trait was also
enhanced compared with [04/903]s. Finally, the deformation of the central point of the [04/903/d/903/04]
laminate, of which the damping layer was embedded into the central layer, is similar to the other results by
Fig. 8. Natural frequencies and loss factors of cylindrical shell [04/903]s according to thermal loading: (a) natural frequencies and (b) loss

factors.
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155 1C where the change of the thermally deformed shape occurred. The thermal deformation decreased more
rapidly than those of [04/d/903/903/04] with respect to temperature increments after the shape modification.

The present results show that the thermal deformation characteristics of several laminates with damping
treatments improved compared with those of the laminates without a damping layer, and the sequences
lamination of the viscoelastic layer may affect the thermal post-buckling behaviors. Unlike the base structural
model and the free layer damping models, the constrained layer damping models show the unstable post-
buckling behaviors.
3.3. Dynamic characteristics of cylindrical composite shell with a viscoelastic layer

Vibration analyses were implemented for the cylindrical composite shells with a viscoelastic layer, and the
changes in the dynamic traits according to the various thermal loadings were investigated for the adopted
schematic models in Section 3.2. The 12� 12 meshes with nine node elements for the in-plane direction and
five sub-laminates through the thickness were also used for the finite element models and all edges of
cylindrical shell were clamped.

Fig. 8 presents the natural frequencies and modal loss factors of the [04/903]s laminate without a damping
layer, d, when the thermal loading increased. The natural frequencies from the first to fifth modes declined
Fig. 9. Natural frequencies and loss factors of cylindrical shell [04/903]s/d according to thermal loading: (a) natural frequencies and (b) loss

factors.
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Fig. 10. Natural frequencies and loss factors of cylindrical shell d/[04/903]s according to thermal loading: (a) natural frequencies and

(b) loss factors.
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slightly when the temperature rose. M2N1, M3N1, M4N1, M3N2, and M2N2 are the mode shapes from the
first to fifth modes without thermal loading. (M and N are defined as the number of circumferential modes and
longitudinal modes, respectively.) The frequencies of the M3N2 and M2N2 modes decreased more rapidly
than those of the other modes as the thermal loading increased due to the static deformations induced by
thermal loading, as shown in Fig. 7, primarily occurring in the longitudinal direction and therefore weakening
the longitudinal stiffness. The mode change between M4N1 and M3N2 occurs nearly near DT ¼ 30 �C,
and the curve veering phenomena between M4N1 and M2N2 occurs at approximately DT ¼ 70 �C. In
addition, the modal loss factors have a negligible value and converge to zero with the thermal loading
increments. Figs. 9 and 10 show the natural frequencies and modal loss factors of the cylindrical composite
shells with damping layers attached to the uppermost layer or the lowermost layer. For the [04/903]s/d
laminate, the natural frequencies were reduced slightly in comparison with those of the [04/903]s laminate due
to the mass of the damping layer, and the mode changes among M4N1, M3N2, and M2N2 were also observed
at approximately DT ¼ 30; 70 �C. The increments of the modal loss factors induced by the damping layer were
negligible, and the magnitudes of the loss factors converged to zero with the temperature rise. The dynamic
characteristics of the d/[04/903]s laminate showed similar tendencies to those of the [04/903]s/d laminate.

Fig. 11 presents the natural frequencies and the modal loss factors of the [04/903/903/d/04] laminate: the
declines of the natural frequencies are shown compared with those of the previous cases. M3N2 and M2N2
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Fig. 11. Natural frequencies and loss factors of cylindrical shell [04/903/903/d/04] according to thermal loading: (a) natural frequencies and

(b) loss factors.
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which were the fourth and fifth modes in the previous cases are observed as the third and fourth modes, and
M4N1 is now the fifth mode. All natural frequencies decreased smoothly; furthermore, M3N2 and M2N2
diminished faster than the other modes with the increments of thermal loading. The mode change between
M4N1 and the higher modes was observed around DT ¼ 110 �C, and the complicated natural frequency
curves were entangled near DT ¼ 1502160 �C. This may be due to the static deformation shape changing as
the thermal loading changed above DT ¼ 150 �C, and the variation of the structural shape affects the dynamic
characteristics of the laminate shell as shown in Fig. 7. The modal loss factors induced by the damping layer
were remarkably improved, and the magnitudes of the loss factors increased with the temperature rise in
contrast to Figs. 8(b)–10(b).

The modal loss factors of M3N2 and M2N2 were larger than M2N1, M3N1 and M3N2, and the former
increased more rapidly than the latter according to the thermal loading. These results indicate that the thermal
loads affect the longitudinal dynamic characteristics more preferentially.

The dynamic traits of the [04/d/903/903/04] laminate, as shown in Fig. 12, are adapted to the tendencies of
the [04/903/903/d/04] laminate below the temperature where the shape change of the thermal static deformation
occurs, except the mode change temperature. However, in the realm above DT ¼ 150 �C, Fig. 12(a) shows that
the curves of the natural frequencies are more intricate than those of Fig. 11(a). This may be due to the
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Fig. 12. Natural frequencies and loss factors of cylindrical shell [04/d/903/903/04] according to thermal loading: (a) natural frequencies and

(b) loss factors.
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thermal deformation of the [04/903/903/d/04] laminate changing to another type from DT ¼ 150 to 180 �C, and
then it returns to its original shape above DT ¼ 180 �C, whereas those of the [04/d/903/903/04] laminate change
to a completely different shape above DT ¼ 150 �C. The modal loss factors of the [04/d/903/903/04] improve
slightly in comparison with those of the [04/903/903/d/04]. These results show that the effect of the thermally
deformed shape on the dynamic characteristics is significant.

Fig. 13 indicates the natural frequencies and modal loss factors of the [04/903/d/903/04] laminate, and the
natural frequencies have lower values than any other laminate previously mentioned here. M3N2, M4N1, and
M2N2 are observed as the third, fourth, and fifth modes, respectively. All natural frequencies decreased
smoothly; in addition, M3N2 and M2N2 diminished faster than the other modes with the increments of
thermal loading below DT ¼ 150 �C. The mode change between M4N1 and the higher modes was observed
near DT ¼ 120 �C, and the mode conversion between M3N1 and M3N2 modes was also observed at a similar
temperature.

The natural frequency curves showed similar tendencies to the graphs in Figs. 11(a) and 12(a) below
DT ¼ 150 �C. However, all natural frequencies dropped sharply above DT ¼ 150 �C, and more complicated
natural frequency curves entangled one another at DT ¼ 1502160 �C. This may be why the thermally
deformed shape was converted to another shape at DT ¼ 1502160 �C, and the conversion of the thermally
deformed shape influences the structural stiffness of the laminate shell. The modal loss factors induced by the
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Fig. 13. Natural frequencies and loss factors of cylindrical shell [04/903/d/903/04] according to thermal loading: (a) natural frequencies and

(b) loss factors.
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damping layer were the most improved among all laminates, and the magnitudes of the loss factors
considerably increased with temperature rises except M21. The modal loss factor of M21 increased smoothly
according to the thermal loading. The results show that the thermal loads can affect the dynamic
characteristics of the higher modes more significantly than those of the first mode. The constrained layer
damping models show much higher damping loss factors than that of the free layer damping models. Also, as
the temperature increases, the damping loss factor shows an increasing trend in the constrained and
sandwiched models. It means that the thermal stresses and deformations increase the shear deformation of the
constrained and sandwiched models, resulting in the increasing trend of the damping loss factor.

4. Conclusion

In present study, the dynamic characteristics of a cylindrical composite shell were investigated using a
layerwise finite element method when the structural damping treatments and thermal post-buckled behaviors
were coupled. The analysis code was developed adopting the layerwise displacement field theory, complex
modulus, and arc-length method; furthermore, the results were verified when compared with previous results.
The natural frequencies and modal loss factors of the composite shells were investigated according to the
laminating sequences as the thermal loading increased. The present results indicate that the damping
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treatments can significantly affect thermal post-buckling behaviors, and the thermally deformed shapes may
strongly influence the dynamic characteristics of the composite shells. In addition, the results show that the
modal loss factors can be improved through damping treatments but the natural frequencies and thermal post-
buckling characteristics may become worsen.
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