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Abstract

The control of the stationary random response of a two degree of freedom (dof) quarter car vehicle model with nonlinear

passive elements traversing a homogenous rough road with sky-hook damper control strategy is considered. The sky-hook

damper control strategy is realized through a feedback control scheme. The parameters of the sky-hook damper are

optimally determined by equating the control force of the feedback system to that obtained by linear quadratic regulator

(LQR) control in a mean square equivalence sense. The nonlinear suspension is of hysteretic type and modeled by the

Bouc–Wen model. The equivalent linearization method is used to linearize the system and the stochastic optimal control

LQR theory is applied to the equivalent linear system. Results show the enhanced performance of feedback control based

on sky-hook to levels of performance of LQR control which are also verified by Monte Carlo simulation.

r 2008 Published by Elsevier Ltd.
1. Introduction

In active vehicle suspension systems the external road excitation is countered with the generation of a
control force depending on the vehicle response through an actuator driven by an external energy source.
However, difficulties in control hardware implementation, high cost and relatively less robustness restrict the
use of active suspensions. The semi-active suspension system first proposed by Karnopp et al. [1] is an
alternative to the active suspension system and can combine the advantages of the active suspension system to
an extent while providing more robustness to the suspension performance. Usually, in a semi-active
suspension system, the actuator is replaced by a rapidly adjusted damper which acts in parallel with a spring.
Such semi-active suspensions have been used to control the vibration response of vehicles traversing rough
roads [2–7]. More recently, electrorheological (ER) and magnetorheological (MR) fluids which have the
property of changing their viscosity by orders of magnitude in quick time on application of electric and
magnetic fields, respectively, have been used as variable fluid damper devices in vehicle suspensions [8–11].
Choi and Han [12] designed a semi-active ER seat suspension system for commercial vehicle using sliding
ee front matter r 2008 Published by Elsevier Ltd.
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mode control strategy. Sun et al. [11] proposed a novel feed forward fuzzy control method, based on the
identification of the signals main frequency to control a two stage vibration isolation system with ER damper.

Semi-active suspensions of the sky-hook damper type have been extensively researched in the literature. The
idea of the sky-hook control was introduced by Crosby and Karnopp [13] and Karnopp and Crosby [14] in the
context of vehicle suspensions. The concept follows an ideal configuration of a passive damper connected
between the sprung mass and a fictional fixed point in inertial space with beneficial effects of decreased
resonant transmissibility and improved high frequency isolation with increase in the sky-hook damping ratio,
unlike in the case of a conventional passive suspension where an increase in the passive damping while
improving the resonant transmissibility reduces the high frequency isolation performance. Thus in the sky-
hook damper configuration, the damper is partitioned such that the damper force is a function of the absolute
velocity of the sprung mass and since it is not connected to the unsprung mass, the sky-hook damper provides
damping without transmitting the unsprung mass vibrations to the body. Since the sky-hook concept cannot
be realized in a moving vehicle, Karnopp at al. [1] have tried to realize the same by means of a variable rate
damper which applies the same force to the sprung mass as the sky-hook damper, except that when energy is
required to be added to the system, rather than dissipated, the damping is set to almost zero. The necessary
control force is obtained by the feed back of absolute velocity of the mass to a controller where the control
force corresponding to the sky-hook damper is calculated and applied to the mass. Liu et al. [15] studied the
performance of semi-active damper using five control applications based on, on–off sky-hook, continuous sky-
hook, on–off balance, continuous and adaptive damping control. Roebuck et al. [16] developed a vehicle
model with semi-active tri-axle air suspension with nonlinear damping element to improve the performance of
the vehicle using modified sky-hook damping and optimal full state feedback control strategies and compared
these performances with the performance of vehicles with passive suspension. Choi et al. [17] used the sky-
hook control strategy to achieve the desired damping force in an ER damper by controlling the electric field
appropriately. Holdmann and Holle [6] modeled the sky-hook damper control scheme and analyzed the
performance of a delivery truck model using the multi-body simulation tool SIMPACK. It was shown that at
higher frequencies the sky-hook control system did not have much influence over the performance. Yao et al.
[8] showed that a semi-active MR suspension based on sky-hook control improved performance of a quarter
car model with respect to sprung mass acceleration, suspension travel and tire deflection.

Sammier et al. [18] proposed a continuous feedback control strategy to approximately realize the sky-hook
damper control. Ahmadian et al. [19] suggested two types of sky-hook control strategies, the sky-hook
function which is an analytical continuous function used to avoid the damping force discontinuity and no-jerk
sky-hook to reduce the dynamic jerk. Valasek and Sveda [20] introduced off-road vehicle suspensions based on
the concept of extended ground-hook control strategy which adapt to the local terrain conditions. Li and
Nagai [21] presented two nonlinear control strategies for applying the sky-hook control laws in railway
secondary active suspensions to improve the ride quality of railway vehicles. Gopalarao and Narayanan [22]
considered the vibration control of a quarter-car vehicle model to random road excitation with the sky-hook
damper control realized by an approximate continuous feedback control strategy. The sky-hook damper
parameters based on feedback control are optimally determined by equating in a mean square sense the semi-
active control force to the control force of a fully active linear quadratic regulator (LQR) control thereby
trying to match the performance of the semi-active control to that of a fully active control.

Generally in the vibration analysis of vehicle systems, the suspension elements are modeled as linear springs
and dampers to reduce the complexity of analysis. In reality, the deformation characteristics of springs exhibit
nonlinear behavior especially of hysteresis type. Similarly, damping characteristics of suspension and the
stiffness characteristics of the tyres also exhibit nonlinear behavior. Hence for a realistic vehicle dynamic
model it is necessary to consider the nonlinearities in the passive suspension systems.

The response of vehicle models with nonlinear passive suspension elements can be obtained using either
simulation or analytical techniques. The simulation technique like the Monte Carlo simulation requires more
computational effort due to the necessity of simulating time series of excitation processes and applying
numerical methods to integrate the equations of motion of the system to compute the response statistics.
Yadav and Nigam [23] have used the simulation technique to study the response behavior of nonlinear vehicle
models. Analytical methods are preferred wherever possible, due to the large computational time involved in
simulation techniques. The analytical methods include the perturbation, equivalent linearization and various
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closure techniques. The equivalent linearization technique is one of the most widely used techniques in the
analysis of nonlinear systems subjected to random excitation [24,25]. Solutions obtained by the equivalent
linearization technique have been shown to compare favorably with Monte Carlo simulation results. Caughey
[26] was the first one to introduce the equivalent linearization technique for single degree of freedom (dof)
nonlinear random vibration problems which was extended to multi-dof systems by Iwan and Yang [27], Atalik
and Utku [28] and Spanos [29]. The advantages of the method and various developments are given in the book
by Roberts and Spanos [30].

In vehicular vibration systems, nonlinearities in the suspension have been taken into consideration in the
vibration analysis by Kirk and Perry [31] and Kirk [32] in the context of landing gear response to runway
unevenness and by Yadav and Nigam [23], Harrison and Hammond [33], Narayanan [34] and Elmadany [35]
in the context of response of road vehicles to random road undulations and by Narayanan and Raju [36] and
Narayanan and Senthil [37] in the context of active control of nonstationary response of road vehicles.

Most of the works in the literature concerning sky-hook control suspensions have dealt with vehicle models
consisting of linear passive suspension elements. The problem of response of vehicle models with nonlinear
passive elements with sky-hook control has not been considered in the stochastic framework so far. In this
paper, we consider sky-hook control concepts in the nonlinear passive suspension elements in the context of
the vibration control of a two dof quarter car vehicle model.

Specifically, the control of the stationary random response of a two dof quarter car vehicle model with
nonlinear passive elements traversing a homogenous rough road with sky-hook damper control strategy is
considered. The nonlinear passive suspension spring is assumed to be of hysteretic nature which is modeled by
the Bouc–Wen model [38–40] in which the restoring force of the spring is assumed to be a combination of a
pre-yielding component and a hysteretic component. The sky-hook damper control is assumed to be
approximately realized by a continuous feedback control scheme [18]. The performance of the semi-active
control scheme is sought to be enhanced to the levels of a fully active control scheme like the LQR by a mean
square equivalence of the control forces in both cases as considered by Gopalarao and Narayanan [22] in the
case of a linear vehicle model.

The sky-hook damper parameters based on the feedback control scheme are optimally determined from a
combination of values by minimizing the rms difference with respect to the overall vehicle performance
between the LQR control and the feedback control. The nonlinear system is linearized using the equivalent
linearization method and the LQR control and the feedback control are applied to the equivalent linear system
and the response and the control of the equivalent linear system are obtained by an iterative procedure. The
results of the equivalent linearization are verified by Monte Carlo simulation.

The random road profile is modeled as the response of a first-order linear shaping filter to white noise
excitation. The average behavior of the system is described by the zero-lag covariance matrix of the response
state vector. In the LQR control the vehicle suspension is realized by minimizing a performance index which is
a weighted integral of the mean square acceleration, suspension stroke, road holding and control force to
improve the overall vehicle performance.

This paper is organized in the following manner. Section 2 gives the equations of motion of the vehicle with
the nonlinear suspension, the LQR control scheme and the equivalent linearization relations for the
Bouc–Wen model. Section 3 gives the sky-hook damper model based on feedback control and the method of
estimating the optimum sky-hook damper parameters. Section 4 gives the results including Monte Carlo
simulation and Section 5 gives the important conclusions of the paper.

2. Mathematical modeling

2.1. Vehicle model with LQR control

The quarter car vehicle model with nonlinear hysteretic suspension and with LQR control is shown in
Fig. 1. The hysteretic nature of the nonlinear spring is modeled by the Bouc–Wen hysteretic model [38–40]. In
the Bouc–Wen model the restoring force of the spring is assumed to be a combination of a preyielding
component and a hysteretic component. The preyielding component of the restoring force is proportional to
the relative displacement between the sprung mass and the unsprung mass with the proportionality constant
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Fig. 1. Quarter car model with LQR control.
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equal to a1k1. The restoring force corresponding to the hysteretic component is given by ð1� a1Þk1zq, where zq

is the hysteretic displacement. For a1 ¼ 1, the restoring force corresponds to a linear system. Hence, the
equations of motion of the quarter car vehicle model given in Fig. 1 are given by

m1 €y1 þ a1k1ðy1 � y2Þ þ ð1� a1Þk1zq þ cð _y1 � _y2Þ �U ¼ 0 (1)

m2 €y2 þ cð _y2 � _y1Þ þ a1k1ðy2 � y1Þ � ð1� a1Þk1zq þ k2ðy2 � hÞ þU ¼ 0 (2)

where m1 and m2 are sprung and unsprung masses, respectively, c is the damping coefficient of the linear
viscous damper connecting the sprung and unsprung masses. The suspension spring is of hysteresis type given
by the Bouc–Wen model, whose restoring force consists of a hysteretic component with parameters k1 and a1
and k2 is the tyre stiffnesses. U is the control force and h is the random road input. The hysteretic displacement
zq is governed by the following equations as per the Bouc–Wen model [38–40]:

_zq ¼ �gqj _y1 � _y2jzqjzqj
n�1 � bqjzqj

nð _y1 � _y2Þ þ Aqð _y1 � _y2Þ (3)

where gq, bq and Aq are the parameters of the hysteretic suspension. These parameters control the shape of the
hysteresis loop. The parameter n determines the smoothness of the force–displacement curve. In this paper the
hysteretic parameters are chosen as given in Refs. [36,37], which are Aq ¼ 1:5, gq ¼ 0:5, bq ¼ 0:5, a1 ¼ 0:2. For
these parameters the force-deflection characteristics are given in Fig. 2.

2.2. Equivalent linear system

The equations of motion of a multi-dof nonlinear system (Eqs. (1)–(3)) can be written in matrix form as

M €X þ C _X þ KX þ gðX ; _X Þ ¼ f ðtÞ (4)

where X is the state vector which includes zq, the hysteretic displacement given by Eq. (3), gðX ; _X Þ is the vector
containing the nonlinear terms and f ðtÞ is the excitation vector. The system of equations (1) and (2) can be
converted to an equivalent linear system of equations represented by

M €X þ C� _X þ K�X ¼ f ðtÞ (5)

where C� ¼ C þ C0 and K� ¼ K þ K 0 where C and K are the linear part of damping and stiffness matrices,
respectively, and C0 and K 0 are obtained by minimizing the mean square equation error E½eTe�, where e is
defined by

e ¼ gðX ; _X Þ � C0 _X � K 0X (6)

The excitation vector f ðtÞ is assumed to be a zero mean Gaussian random vector. Since the system of equation
(5) is linear, the response of the equivalent linear system can also be assumed to be Gaussian as an
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Fig. 2. Force deformation characteristics of a hysteretic system for Aq ¼ 1:5, gq ¼ 0:5, bq ¼ 0:5, a1 ¼ 0:2.
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approximation. Under this condition, using the results from Refs. [27,28], the elements of the matrices C0 and
K 0 are given by

C0ij ¼ E
qgi

q _X j

" #
(7)

K 0ij ¼ E
qgi

qX j

� �
(8)

where gi is the ith element of the nonlinear vector g, X j is the jth response and _X j is the derivative of X jðtÞ with
respect to time.

Using the above results, Eq. (3) can be represented in equivalent linear form as [40]

_zq ¼ Chð _y2 � _y1Þ þ Khzq (9)

where Ch and Kh are the equivalent damping coefficient and stiffness, which are obtained by minimizing the
mean square error between Eqs. (3) and (9). These values are given by Hurdato and Barbat [41]

Ch ¼ �gqg1f � bqg2f þ Ah (10)

Kh ¼ �gqg3f � bqg4f (11)

g1f ¼ sn
zf
G

nþ 2

2

� �
2n=2F s (12)

g2f ¼
sn

zfffiffiffi
p
p G

nþ 1

2

� �
2n=2 (13)

g3f ¼
nsð _y2� _y1Þs

n�1
zf

p
G

nþ 1

2

� �
2n=2 2ð1� r2ð _y2� _y1Þzf

Þ
ðnþ1Þ=2

þ rð _y2� _y1Þzf
Fs

h i
(14)

g4f ¼
nrð _y2� _y1Þzf

sð _y2� _y1Þs
n�1
zfffiffiffi

p
p G

nþ 1

2

� �
2n=2 (15)
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where

Fs ¼ 2

Z p=2

l

sinnydy

l ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

ð _y2� _y1Þzf

q
rð _y2� _y1Þzf

0
@

1
A

rð _y2� _y1Þzf
¼

E½ð _y2 � _y1Þzf �

sð _y2� _y1Þszf

where sð _y2� _y1Þ is the standard deviation of the front suspension relative velocity. szf
is the standard deviation of

the Bouc–Wen model hysteretic displacement, rð _y2� _y1Þzf
is the correlation coefficient between relative velocity

and hysteretic displacement and Gð:Þ is the gamma function.
The power spectral density of the random road roughness is assumed to be in the form

ShðoÞ ¼
s2

p
arV

ðo2 þ ðarV Þ
2

(16)

where s2 is the variance of the road irregularities, V is the vehicle forward velocity, o is circular frequency and
ar is a coefficient depending on the type of road surface with hðtÞ being the output of a linear first-order filter to
white noise excitation expressed by

_hðtÞ þ arVhðtÞ ¼ wðtÞ (17)

where wðtÞ is a zero-mean stationary Gaussian white noise process with covariance function E½wðtÞwTðtþ tÞ� ¼
2s2VardðtÞ where dð:Þ is the Dirac delta function. Defining the state variables x1 ¼ y1; x2 ¼ _y1; x3 ¼ y2;
x4 ¼ _y2; x5 ¼ zq; x6 ¼ h, Eqs. (1), (2), (9) and (17) can be combined in matrix form as

_x ¼ Fxþ GU ðtÞ þDwðtÞ (18)

where F , G, U , D, x are system matrix, control distribution vector, control vector, excitation distribution
vector and state vector, respectively, given by

F ¼

0 1 0 0 0 0

�
a1k1

m1
�

c

m1

a1k1

m1

c

m1

ða1 � 1Þk1

m1
0

0 0 0 1 0 0
a1k1

m2

c

m2
�
a1k1 þ k2

m2
�

c

m2

ð1� a1Þk1

m2

k2

m2

0 ch 0 �ch kh 0

0 0 0 0 0 �arV

2
666666666664

3
777777777775

(19)

G ¼ 0
1

m1
0
�1

m2
0 0

� �T
; D ¼ ½0 0 0 0 0 1�T (20)

2.3. Performance criterion

Stochastic optimal control theory is applied to the equivalent linear system to obtain a fully active optimal
control strategy. Defining the different performance measures, the sprung mass acceleration, suspension
stroke, road holding and the control effort in terms of the mean square values given, respectively, by

J1 ¼ E½ €y1
2� (21)

J2 ¼ E½ðy1 � y2Þ
2
�; J3 ¼ E½ðy2 � hÞ2�; J4 ¼ E½U2� (22)
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the overall performance index J can be written as

J ¼ r1J1 þ r2J2 þ r3J3 þ r4J4 (23)

where ri, i ¼ 1; . . . ; 4 are the weighting factors. These weighting factors may be chosen depending on the
relative importance given to ride comfort and handling characteristics of the vehicle.

Eq. (23) can be expressed in the standard form as

J ¼ E ½xT UT�
A N

NT B

� �
x

U

� �� �
(24)

where matrices A and B are symmetric positive semi-definite and positive definite matrices, respectively.
Assuming that all the system states are measurable, the optimal control force minimizing the overall

performance index is given by

UðtÞ ¼ �CxðtÞ (25)

where C ¼ B�1½NT þ GTS� and S is the positive definite matrix, given by the solution of the following Riccati
equation

S½F � GB�1NT� þ ½F � GB�1NT�S � SGB�1GTS þ ½A�NB�1NT� ¼ 0 (26)

Since, U is a linear function of state vector and since xðtÞ is assumed to be approximately Gaussian as per the
equivalent linearization scheme the control vector U is also approximately Gaussian.

The system response described by the zero-lag covariance matrix PðtÞ ¼ E½xðtÞxðtÞT� is obtained as the
solution of the following Lyapunov equation:

½F � GC�PðtÞ þ PðtÞ½F � GC�T þDQDT ¼ 0 (27)
2.4. Evaluation of performance index terms

The performance index terms J1, J2, J3 and J4 can be calculated in terms of the elements of the covariance
matrix as follows [37]:

J1 ¼ E½ €y2
1� ¼ E

X6
i¼1

ðF ð2; iÞ � CðiÞ=m1Þyi

" #2
(28)

J2 ¼ Pð1; 1Þ � Pð1; 3Þ þ Pð3; 3Þ (29)

J3 ¼ Pð3; 3Þ � Pð3; 6Þ þ Pð6; 6Þ (30)

J4 ¼
X6
i¼1

X6
i¼1

CðiÞCðjÞPij (31)

Since the equivalent linear parameters of the system given by Eqs. (10) and (11) are functions of the response
statistics the control given by Eq. (25) and the solutions of the Riccati equation (26) and the Lyapunov
equation (27) and the response statistics given by Eqs. (28)–(31) have to be obtained in an iterative manner. In
the iterative scheme the control gains corresponding to the linear vehicle model are first computed. These
control gains are used in obtaining the response statistics of the nonlinear vehicle model. Using the current
response statistics of the nonlinear vehicle model the control gains are again computed. This iterative
procedure is repeated until the values of the control gain and the response statistics converge to a specified
degree of accuracy of the order of 10�4. It has been observed that the convergence is achieved within four to
five iterations.
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3. Sky-hook control

3.1. Equations of motion with sky-hook damper

The equations of motion of the quarter car model with sky-hook damper as shown in Fig. 3 are given by

m1 €y1 þ a1k1ðy1 � y2Þ þ ð1� a1Þk1zq þ cð _y1 � _y2Þ þ cs _y1 � ascs _y2 ¼ 0 (32)

m2 €y2 þ a1k1ðy2 � y1Þ � ð1� a1Þk1zq þ cð _y2 � _y1Þ þ ascsð _y2 � _y1Þ þ k2ðy2 � hÞ ¼ 0 (33)

where as and cs are parameters of the sky-hook damper. For as ¼ 1, Eqs. (32) and (33) reduce to that of the
equations of motion with passive suspension.

In Eqs. (32) and (33), cs _y1 � ascs _y2 and ascsð _y2 � _y1Þ, respectively, are the control force terms which are
different. But as per the system equations (1) and (2) with active control the control force term U is the same in
both the equations with opposite sign representing the proper feedback. Since in this paper, the performance
of the semi-active sky-hook damper is sought to be enhanced to that of a fully active system by a mean square
equivalence of the control forces, it is necessary that the control force terms in the sprung mass and unsprung
mass equations of motion are the same implying proper feedback. Hence the sky-hook damper is
approximated by a feedback control scheme suggested by Sammier et al. [18] with the following control law:

Us ¼ ascsð _y2 � _y1Þ þ v (34)

where v ¼ �ð1� asÞcs _y2.
Eqs. (32) and (33) can be written in state space form as after equivalent linearization as

_x ¼ FxðtÞ þDwðtÞ (35)

where x ¼ ½x1 x2 x3 x4 x5 x6 �
T and x1 ¼ y1; x2 ¼ _y1; x3 ¼ y2; x4 ¼ _y2; x5 ¼ zq; x6 ¼ h

F ¼

0 1 0 0 0 0
�a1k1

m1

�ðcs þ cÞ

m1

a1k1

m1

ascs þ c

m1

ð1� a1Þk1

m1
0

0 0 0 1 0 0
a1k1

m2

ascs þ c

m2

�ða1k1 þ k2Þ

m2

�ðascs þ cÞ

m2

ð1� a1Þk1

m2

k2

m2

0 Ch 0 �Ch Kh 0

0 0 0 0 0 �arV

2
666666666664

3
777777777775
; d ¼

0

0

0

0

0

1

2
666666664

3
777777775

(36)
m1

m2

y1

k1

y2

hk2

(1−�s)cs

c
�scs

Fig. 3. Quarter car model with sky-hook suspension.
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with Ch and Kh as before are given in Eqs. (10) and (11). The system response described by the zero-lag
covariance matrix PðtÞ ¼ E½xðtÞxðtÞT� is obtained as the solution of the following Lyapunov equation:

_PðtÞ ¼ FPðtÞ þ PðtÞFT þDQDT (37)

For obtaining the stationary response we set _PðtÞ ¼ 0.
As in the case of the LQR control, the response statistics in the case of the vehicle with feedback control

based on sky-hook are obtained iteratively as the equivalent linear parameters are functions of the response
statistics.

3.2. Optimal sky-hook damper parameters

Given the sky-hook damper parameters as and cs the mean square value of the feedback control force as per
Eq. (34) and the response statistics of the vehicle can be obtained for a particular velocity.

Since the aim is to find optimal values for parameters as and cs of the feedback control based on sky-hook
damper which will match the performance of the fully active suspension, the following method is adopted. The
value of as is varied in the admissible range (0–1) and a corresponding value of cs is obtained for a particular
velocity equating the mean square value of the control force corresponding to the feedback control based on
sky-hook damper as per Eq. (34) to the mean square value of the control force obtained using the LQR
control as per Eq. (25). This is given by

cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½U2�

E½ð _y1 � as _y2Þ
2
�

s
(38)

Thus for a given velocity, a set of as and cs values are obtained which ensures the mean square equivalence of
the control force corresponding to the feedback control based on sky-hook damper and the LQR control.
However, these values may not be optimal, in that the response statistics of the vehicle using the feedback
control with these parameters may not be as good as those obtained by the LQR control. Thus there is a need
to choose one combination of as and cs which not only is equivalent in terms of the control force generated by
the LQR control theory but will also match the vehicle performance of the LQR. This can be effected by
minimizing the rms difference between the vehicle performance of the feedback control based on sky-hook
damper and LQR control with respect to the overall vehicle response, including sprung mass acceleration,
suspension stroke, road holding, etc. Thus the as and cs values obtained correspond to the minimum rms
difference between the overall performance of the vehicle given by

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ððJiÞSH � ðJiÞLQRÞ

vuut (39)

where the subscripts SH and LQR refer to sky-hook control and LQR control, respectively, and the Ji’s are
given by Eq. (22). Thus one combination of optimal values of as and cs for a particular velocity of the vehicle is
obtained from the point view of equivalent control force and equivalent vehicle performance of the feedback
control based on sky-hook with that of LQR control.

The optimal values of as and cs for a particular velocity obtained as described above may not be optimum
for different velocities in the normal range of operation of the vehicle. An average of the optimal as and cs

values over a velocity range above a specific value is considered to be adequate for the sky-hook damper to
match the performance of the active suspension over this velocity range as these values tend to reach almost
constant values beyond a velocity which is around 15m/s.

4. Results and discussion

Typical results of the response statistics of the nonlinear quarter car vehicle model of the semi-active
suspensions with optimal sky-hook damper parameters and active suspensions using LQR control are
presented here. The parameters of the vehicle model, the road profile and the weighting factors are
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m1 ¼ 1000 kg, m2 ¼ 100 kg, k1 ¼ 36 000N=m, k2 ¼ 360 000N=m, c ¼ 1000N s=m, ar ¼ 0:15 rad=m, s2 ¼
9 � 10�6 m2, r1 ¼ 1, r2 ¼ 104, r3 ¼ 104, r4 ¼ 10�6. These values are similar to that adopted in Refs. [22,37,42].

The Bouc–Wen model parameters for the nonlinear suspension are assumed to be Aq ¼ 1:5, gq ¼ 0:5,
bq ¼ 0:5, a1 ¼ 0:2.

The optimal values of the sky-hook damper parameters matching the parameters of the LQR control as per
the procedure described in Section 3.2 are as ¼ 0:194, cs ¼ 5804:9N s=m.

The overall performance, rms sprung mass acceleration, suspension stroke and road holding of the
nonlinear quarter car vehicle model with LQR control and equivalent semi-active sky-hook damper control
are presented in Figs. (4)–(7), respectively. From Figs. (4)–(6) it can be observed that the overall performance
of the vehicle, the sprung mass acceleration response and the suspension stroke response for the LQR control
and for the feedback control based on sky-hook damper are significantly better than the vehicle performance
with the passive suspension. It is further observed that the performance of the vehicle with the optimal feed
back control parameters based on the sky-hook damper are almost as good as that of the active suspension
with LQR control with respect to these responses.

From Fig. 7 it can be observed that the vehicle performance with respect to road holding using LQR control
is much better than that of the passive suspension while the road holding response using the feedback control
based on sky-hook damper with optimal parameters performs marginally better than even that of the active
suspension with LQR.

It is seen from Fig. 8 that the rms control force for the feedback control based on sky-hook strategy is
almost the same as for the LQR control as it should be since the feedback control parameters are obtained
through a mean square equivalence of the two control forces. While for lower velocities the rms control force
for the sky-hook control is almost the same as the rms control force for LQR control, at higher velocities the
rms control force for the feedback control based on sky-hook is marginally higher than that of the LQR
control. This is due to the fact that the optimum sky-hook damper parameters are obtained by averaging the
optimum values of the parameters obtained for different velocities of the vehicle as explained in Section 3.2.

4.1. Monte Carlo simulation

To verify the response statistics obtained for the nonlinear quarter car vehicle model with LQR control and
feedback control based on sky-hook damper control for the random road excitation by the equivalent
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linearization technique, Monte Carlo simulation studies are carried out. Time histories of the road input hðtÞ

corresponding to the power spectral density function given in Eq. (17) are generated using the method given by
Shinozuka and Jan [43]. The time histories are generated by the following series:

hðtÞ ¼
ffiffiffi
2
p XN

k¼1

½GhðokÞDo�1=2 cosðo0k þ fkÞ (40)

where GhðokÞ ¼ 2ShðokÞ is the one sided power spectral density function at frequency ok, with
ok ¼ ol þ ðk �

1
2
ÞDo, k ¼ 1; 2; . . . ;N; o0k ¼ ok þ do, k ¼ 2; :::;N and Do ¼ ðou � olÞ=N with N being the
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number of equal intervals in which the frequency interval is divided. do is a small random frequency uniformly
distributed between �Do0=2 and Do0=2 with Do05Do introduced to avoid the periodicity of the process
which is simulated. fk’s are independent random phase angles uniformly distributed in the interval 0 to 2p. ol

and ou are, respectively, the lower and upper cut-off frequencies. The time history hf ðtÞ is generated with
N ¼ 1000, ol ¼ 0, ou ¼ 2p � 100 rad=s, Do0 ¼ 0:05Do.

From the generated time history hðtÞ the power spectral density function of the road input is obtained by
using the MATLAB function ‘psd’ and is compared with the target power spectral density corresponding to
Eq. (16) in Fig. 9 showing good agreement between the target psd and the simulated psd. The equations of
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motion (1), (2) and (17) with the nonlinear equations of the Bouc–Wen model equations (3) are numerically
integrated with the control input given by Eq. (25) in the case of LQR control and by Eq. (34) in the case of
feed back control based on sky-hook control. The control input UðtÞ is obtained as explained in Sections 2.3
and 3.1 for the equivalent linear model. The response statistics, rms sprung mass acceleration, rms stroke and
rms roadholding are obtained from the generated time histories with LQR control and the feedback control
based on sky-hook damper with optimum parameters and for the passive system. These are plotted by the
symbols ‘%’, ‘�’ and ‘m’, respectively, in Figs. 5–7 along with the results obtained by the equivalent
linearization method. The agreement between the Monte Carlo simulated results and the results of the
equivalent linearization method are very good validating that the equivalent linearization technique can be
used not only for obtaining the response statistics of the nonlinear passive system but can also be effectively
used for the control problem so that linear optimal control theories can be applied to the equivalent linear
system.

5. Conclusions

In this paper, the control of the stationary response of a quarter car vehicle model with nonlinear stiffness
traversing a rough road by use of feedback control based on sky-hook damper strategy is considered. The
sky-hook damper control is realized through a feed back control scheme. A new method as explained in
Section 3.2 is proposed to choose optimal parameters of the feedback control based on sky-hook damper.
Optimal parameters are obtained by matching the control force of the feedback control based on sky-hook
damper with that of the fully active suspension using LQR in a mean square equivalence sense. The optimal
parameters are also chosen on the basis of reduction in the rms error in comparison with the fully active
control effort based on the rms acceleration, rms stroke and rms road holding respectively. The performance
of the feedback control based on sky-hook damper suspension is sought to be enhanced to the levels of
performance of the fully active suspension with LQR control. The results corroborate the expectation of the
enhanced performance of the feedback control based on sky-hook damper with optimal parameters almost to
the levels of the fully active suspension.

From the results, it can be concluded that the quarter car vehicle model with the nonlinear suspension of the
hysteretic type modeled by the Bouc–Wen model can be linearized using the equivalent linearization method
and optimal control strategies such as the LQR and the feedback control based on sky-hook damper control
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can be successfully applied to the equivalent linear model. It can also be concluded that the performance of the
semi-active suspension such as the sky-hook control can be improved to the levels of performance of a fully
active suspension by a suitable choice of the semi-active suspension parameters such that the control forces in
both the cases are mean square equivalent.
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