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Abstract

A study is carried out into the philosophy and performance of different approaches for the determination of linear

viscous damping in elasto-mechanical systems. The methods studied include a closed-form solution, identification methods

based on inverting the matrix of receptances, energy expressions developed from single-frequency excitation and responses

as well as first-order perturbation methods. The work is concentrated particularly upon modal truncation and how this

affects the distribution of matrix terms and the ability of the identified damping (together with known mass and stiffness

terms) to reproduce the complex eigenvalues and eigenvectors of the full-order system. A simulated example is used to

illustrate various points covered in the theoretical discussion of the methods considered.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The oscillation of elasto-mechanical systems involves the exchange of kinetic and potential energies as well
as the dissipation of energy by damping. Methods are generally well established for modelling the inertial and
stiffness properties of most systems but often there remains very considerable doubt on how the damping
behaviour should be represented. The most common method is to assume viscous damping, which is attractive
computationally because it results in systems of second-order differential equations with solutions that are
readily available by well-understood techniques. A regular approach is to simplify the assumption of viscous
damping still further by selecting a damping matrix, C, diagonalisable by the classical normal modes of the
system, uT

j Cuk ¼ djk. This form of damping, usually known as classical damping, includes proportional
damping, C ¼ aMþ bK, as a special case. Necessary and sufficient conditions for classical damping,
KM�1C ¼ CM�1K, were established by Caughey [1,2].

The damping loss factor, defined by Crandall [3] to be the ratio of the energy dissipated in a cycle of single-
frequency vibration to the peak potential energy stored in the system during the cycle, is a widely applied measure
of the damping effect. Crandall [3] considered not only the classical viscous dashpot, but also the frequency
dependent-dashpot, which includes as a special case the linear hysteretic damper, a well-known complication of
which is the so-called ‘non-equation’ of mixed time and frequency domains resulting in non-causal behaviour in
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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cases of impulsive or transient excitation. A very significant aspect of damping research has been the development
of a range of mathematical models to represent a variety of damping mechanisms. A good appreciation of
research into the damping behaviour of viscoelastic materials may be obtained from the survey carried out by
Gaul [4], including (i) the use of fractional time derivatives to overcome problems of non-causality, (ii) wave
propagation and transient vibration using integral transformation, and (iii) boundary element methods for
solving damped 2D and 3D boundary value problems. Damping may also be significant in the joints of built-up
structures, and often in such cases introduces nonlinearity into the system dynamics. In a recent study Jalali et al.
[5] describe the identification of nonlinear damping (and stiffness) in a bolted joint and cite some 30 papers on the
subject.

In this paper we are concerned with the performance of various damping identification methods. We
concentrate solely upon general linear viscous damping and avoid the complications that might otherwise arise
were we to consider other types of linear (and nonlinear) damping mechanisms. Therefore we choose not to
use the damping loss factor, but instead to describe the dynamical system by using the symmetric state–space
equation, usually attributed to Duncan (Fraser et al. [6]), and its behaviour in terms the resulting complex
eigenvalues and eigenvectors. We mention as an aside that Staszewski [7] and Slavic et al. [8] describe a
number of loss-factor identification procedures based on the continuous wavelet transform.

In non-classical viscous damping the eigenvectors are complex and the scaling of these modes generally
causes a transfer of information between the real and imaginary parts. Ibrahim and Sestieri [9] introduced a
normalisation that maximised the real parts and minimised the imaginary parts of the eigenvectors, thereby
producing a modal mass matrix closest to the identity matrix. This result led to a measure of the difference
between classical and general viscous damping models by Prells and Friswell [10] using an orthonormal matrix
representing the phase between different degrees of freedom of the model. The matrix becomes the identity
matrix when the damping is classical.

A closed-form solution for the damping matrix, as well as for the inverse mass and stiffness matrices and
many other useful relationships was developed by Lancaster [11] using the theory of inverse lambda matrices
[12]. Pilkey et al. [13] developed two methods, iterative and direct, based on Lancaster’s closed-form solution
for use with experimental modal data. Other methods for determining the damping matrix by identification
include inversion of the matrix of frequency response functions (Chen et al. [14] and Lee and Kim [15]), energy
methods involving integration over a period of single-frequency vibration (Liang [16]) and first-order
perturbation as described by Adhikari and Woodhouse [17]. The latter paper was part of a series of papers by
Adhikari and Woodhouse [17] on damping identification including linear viscous damping, non-viscous
damping [18], symmetry preserving methods [19] and error analysis [20]. In a precursor to his papers with
Adhikari, Woodhouse [21] had generalised the representation linear damping by a convolution integral, which
reduces to linear viscous damping when the kernel functions are all delta functions multiplied by a symmetric
matrix of coefficients.

A survey of damping identification methods has been carried out recently by Srikantha Phani and
Woodhouse [22]. They studied the performance of a number of specific identification routines. Particular
attention was paid to effect of contamination of frequency response function data by Gaussian random noise,
the level of damping present (modal overlap), modal truncation of the data and spatial incompleteness.

In this paper we revisit the issue of determining damping models from experimental data. However, our
study differs from the previous study [22] in a number of significant respects. (1) We concern ourselves mainly
with the philosophy of the methods used and not so much with the performance of particular implementations
and routines. (2) We do not repeat the previous work on noise contamination, the main reason for this being
that noise contamination in frequency response functions is not Gaussian, indeed it is not entirely random. (3)
Neither do we study the effect of an incomplete set of sensors. Rather than using model reduction or
eigenvector expansion methods we consider the use of methods for the spatial location of the most significant
damping terms to be a more fruitful approach and will report on this in a subsequent article.

The comparison of methods to be presented here will be focussed upon the effects of modal truncation. This
is an inevitable consequence of modal testing over a limited frequency range and therefore worthy of further
attention. Modal truncation was considered by Srikantha Phani and Woodhouse in their study [22], but a
different method from the one presented here was used. In Ref. [22] a full-order damping matrix was identified
and then transformed to modal coordinates, chosen modes were retained and others truncated, and finally the
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transformation was reversed. It appears from their results that this procedure favoured the method of
Adhikari and Woodhouse [17]. In the method presented here the truncation is applied directly and different
results are obtained.

2. Preliminary calculations

We begin with the general second-order matrix differential equation

M €xðtÞ þ C _xðtÞ þ KxðtÞ ¼ fðtÞ (1)

M;C;K 2 Rn�n, M ¼MT, C ¼ CT, K ¼ KT; vTMv40, vTCvX0, vTKvX0 for arbitrary va0, v 2 Rn�1; and x,
f 2 Rn�1.

The dynamics of this system is governed by the second-order matrix pencil

PðsÞ ¼ s2Mþ sCþ K (2)

the eigenvalues and eigenvectors of which satisfy the following equation:

PðlkÞwk ¼ 0 (3)

These eigenvalues and eigenvectors, forming self-conjugate sets, may be arranged to form the spectral and
modal matrices

K 0

0 Kn

� �
¼

diagðlkÞ 0

0 diagðlnkÞ

" #
2 C2n�2n (4)

½W Wn
� ¼ ½w1 . . .wn wn

1 . . .w
n

n � 2 Cn�2n (5)

Using the symmetric state–space arrangement [6] it is readily shown that

KWT WT

KnWnT WnT

" #
s

0 M

M C

� �
þ
�M 0

0 K

� �� �
WK WnKn

W Wn

" #
¼

sI� K 0

0 sI� Kn

� �
(6)

where W is normalised so that

KWT WT

KnWnT WnT

" #
0 M

M C

� �
WK WnKn

W Wn

" #
¼ I2n�2n (7)

KWT WT

KnWnT WnT

" #
�M 0

0 K

� �
WK WnKn

W Wn

" #
¼ �

K 0

0 Kn

� �
(8)

Expanding Eqs. (7) and (8) leads to the orthogonality relationships given by Lancaster [11]

WT

WnT

" #
M½W Wn

�
K

Kn

� �
þ

K

Kn

� �
WT

WnT

" #
M½W Wn

� þ
WT

WnT

" #
C½W Wn

� ¼ I2n�2n (9)

�
K

Kn

� �
WT

WnT

" #
M½W Wn

�
K

Kn

� �
þ

WT

WnT

" #
K½W Wn

� ¼ �
K

Kn

� �
(10)
3. Lancaster’s formula

Lancaster’s formula [11] appeared in 1961 without proof, although a proof was given recently by Lancaster
and Prells [23] using the theory of matrix polynomials. Alternatively, the formula can be developed from
Eq. (7) in a few simple steps as will now be demonstrated.
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By inverting Eq. (7) we find

KWT WT

KnWnT WnT

" #
0 M

M C

� �
WK WnKn

W Wn

" # !�1
¼ I2n�2n (11)

Expanding the inverse on the l.h.s. and rearranging leads to

0 M

M C

� ��1
¼

WK WnKn

W Wn

" #
KWT WT

KnWnT WnT

" #
(12)

or

0 M

M C

� ��1
¼

WK2WT WKWT

WKWT 0

" #
þ

WnKn2WnT WnKnWnT

WnKnWnT 0

" #
(13)

It can be proven by application that the lhs matrix inverse is

0 M

M C

� ��1
¼
�M�1CM�1 M�1

M�1 0

" #
(14)

By comparing the r.h.s matrices in Eqs. (13) and (14) it is seen that

�M�1CM�1 ¼ WK2WT
þWnKn2WnT (15)

or

C ¼ �ðMWK2WTMþMWnKn2WnTMÞ (16)

which is Lancaster’s formula. Expanding Eq. (16) leads to

C ¼ �M
X

k

ðukl
2
ku

T
k þ un

kl
n2
k unT

k ÞM (17)

or

C ¼ �2M
X

k

<ðukl
2
ku

T
k ÞM (18)

Clearly the mass matrix must be known, but this may be an acceptable restriction, and we see that the
damping matrix is constructed mode-by-mode. This means that if we know an incomplete set of eigenvalues
and eigenvector corresponding to the limited frequency range of a vibration test and no others, then the same
eigenvalues and eigenvectors will be returned exactly from Eq. (3) when C is computed using the truncated
series in Eq. (18). The same equation ensures that the identified damping matrix is strictly real. Therefore the
damping matrix C appears to be computed correctly by the truncated series for the frequency range in
question and for example will reproduce exactly the modal damping ratios obtained in the test.

4. Damping matrix from the inverse receptance matrix

Lee and Kim [15] suggested that the viscous damping matrix might be obtained by inverting a measured
receptance matrix and extracting the imaginary part. We write the receptance matrix in the form

HðsÞ ¼
Xn

k¼1

wkw
T
k

ðs� lkÞ
þ

wn

kw
nT
k

ðs� lnkÞ

� �
(19)

and when s ¼ io

HðioÞ ¼
Xn

k¼1

wkw
T
k

io� lkð Þ
þ

wn

kw
nT
k

ðio� lnkÞ

� �
(20)
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or

HðioÞ ¼ WT
ðioI� KÞ�1WþWnT

ðioI� K�Þ�1Wn (21)

where

ðioI� KÞ ¼ diagðio� lkÞ (22)

We see that the receptance HðioÞ is dominated by the eigenvalues closest to the frequency o.
Now consider the dynamic stiffness, expressed in state–space form

Z0ðioÞ ¼
Z011ðioÞ Z012ðioÞ

Z021ðioÞ Z022ðioÞ

" #
¼ io

0 M

M C

� �
þ
�M 0

0 K

� �� �
(23)

and in terms of the modal and spectral matrices

Z0ðioÞ ¼
KWT WT

KnWnT WnT

" #�1
ioI� K 0

0 ioI� Kn

� �
WK WnKn

W Wn

" #�1
(24)

By combining Eqs. (24) and (7)

Z0ðioÞ ¼
0 M

M C

� �
WK WnKn

W Wn

" #
ioI� K 0

0 ioI� Kn

� �
KWT WT

KnWnT WnT

" #
0 M
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� �
(25)

so that

ZðioÞ ¼ �o2Mþ ioCþ K ¼ o2Z011ðioÞ þ Z022ðioÞ (26)

By expanding the product of the three central matrix terms of the right-hand side of Eq. (25) we find that

WK WnKn
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" #
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kl
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nT
k Þ
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k

ðwklkðio� lkÞw
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kl
n
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k Þ

P
k
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2
664

3
775 (27)

We see that the contribution of the kth mode vanishes as io approaches lk and the high-frequency poles
become very significant through squaring in the upper right-hand sub-matrix. Thus the low-frequency ZðioÞ is
dominated by the high-frequency eigenvalues far away from the frequency o. Berman [24,25] explained the
meaning of this result, that it is impossible to invert a receptance matrix of a practical structure with many
modes, measured over a limited frequency range, in order to estimate the matrices M, C, K. Consequently, a
damping matrix identified by extracting the imaginary part of an inverted matrix of measured receptances will
only be correct if all the modes are present in the measurements. This is possible in simulation but never
happens in the practical case of mechanical systems with distributed mass and stiffness.

In the case when fewer than a full complement of modes are present, the matrix product

KWT WT

KnWnT WnT

" #
0 M

M C

� �

is precisely the pseudo inverse of

WK WnKn

W Wn

" #
.

It is convenient here to express the pseudo inverse in terms of M and C only because it enables us to draw
conclusions on the contributions of the modes, as in the previous paragraph. In practice the measured
receptance matrix would be ill-conditioned (close to singularity except for the presence of noise) and should be
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inverted directly, typically using singular value decomposition and omitting the contributions of the smallest
singular values. It is seen from Eqs. (25)–(27) that the dynamic stiffness matrix is built up mode-by-mode and
therefore it is to be expected that the identified damping C, when combined with M and K, will accurately
reproduce the complex eigenvalues of the system. The damping matrix, C, is obtained together with M and K

when the matrix of receptances is inverted, then C is assumed to be given from the imaginary part, but there is
no constraint that prevents C (or for that matter M or K) from being complex.
5. Energy dissipation using single-frequency time-domain responses

An energy equation may be obtained by pre-multiplying the equation of motion by _xT, applying a single-
frequency input and integrating over one period. Using an approach that differs slightly from Liang [16], we
write Z tþT

t

_xTðM €xþ Kxþ Fðx; _xÞÞdt ¼

Z tþT

t

_xTfðtÞdt (28)

where it is seen that the damping Fðx; _xÞ offers no limitation to viscous, or indeed to any linear or nonlinear
form of damping. For the purposes of discussion we will restrict ourselves to linear viscous damping.

By integrating over a single period (or an integer multiple of the period) it is found that the conservative
terms vanish, leaving the expression, Z tþT

t

_xTC _xdt ¼

Z tþT

t

_xTf dt (29)

where

fðtÞ ¼

f 1

f 2

..

.

f n

0
BBBBB@

1
CCCCCA cos ot (30)

and

_xðtÞ ¼ �o

<ðx1Þ

<ðx2Þ

..

.

<ðxnÞ

0
BBBBB@

1
CCCCCA sin otþ o

Iðx1Þ

Iðx2Þ

..

.

IðxnÞ

0
BBBBB@

1
CCCCCA cos ot (31)

or in condensed form

_xðtÞ ¼ �o

a1

a2

..

.

an

0
BBBB@

1
CCCCA sin otþ o

b1

b2

..

.

bn

0
BBBB@

1
CCCCA cos ot ¼ �oa sin otþ ob cos ot (32)

Now

_xTC _x ¼ aTo2Ca sin2ðotÞ � aTo2Cb sinðotÞ cosðotÞ � bTo2Ca sinðotÞ cosðotÞ þ bTo2Cb cos2ðotÞ (33)

_xTf ¼ �oaTf sinðotÞ cosðotÞ þ obTf cos2ðotÞ (34)
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and since Z 2p

0

cos2ðotÞdðotÞ ¼

Z 2p

0

sin2ðotÞdðotÞ ¼ p (35)

Z 2p

0

cosðotÞ sinðotÞdðotÞ ¼ 0 (36)

then Eq. (29) may be cast in the simplified form

aTðoCÞaþ bTðoCÞb ¼ bTf (37)

In principle the solution of Eq. (37) for C using different force configurations at the same frequency—to give
an overdetermined system—provides exactly the same solution as inverting HðioÞ in the previous section. In
Appendix A we show how the energy Eq. (37) may be obtained directly from the receptance matrix and its
inverse.

For the good performance of the energy method the modes of the structure must be present in the data over
a sufficiently wide range of frequencies as described exactly in the previous section. The energy method, as
described above, does not operate using the modes of the system and therefore knowledge of the mass matrix
is not a requirement.

Of course the overdetermined system of equations developed from Eq. (37) may include many different
single-frequency responses, which would be beneficial in practical application. Equally, in the previous section C

may be estimated from an overdetermined system of equations formed from receptance matrices at many
different frequencies as described by Lee and Kim [15].

6. Damping by first-order perturbation analysis

The following expressions were originally developed by Lord Rayleigh [26] and have been re-iterated in
recent times by Lees [27] and Adhikari and Woodhouse [17]:

lk; l
n

k ¼ �
uT

kCuk

2
� iok (38)

wk;w
n

k ¼ uk � iok

X
j

uT
kCuj

o2
k � o2

j

uj (39)

In these equations the undamped eigenvalues and eigenvectors are denoted ok and uk, the latter normalised
using the undamped orthogonality condition uT

kMuj ¼ dkj . The damping is such that the damped eigenvalues
and eigenvectors lk and wk differ from ok and uk by a small amount.

Adhikari and Woodhouse develop their method as follows:
(1)
 Define <ðWÞ ¼ U ¼ U, IðWÞ ¼ V and assume the columns of V to be given by a linear combination of the
columns of U, so that

V ¼ UB (40)

and

B ¼ ðUTUÞ�1UTV (41)

for an incomplete set of frequencies and modes. The terms in U and V are directly the measured real and
imaginary parts of the complex eigenvectors.
(2)
 It can be seen from Eqs. (39) and (40) that

c0jk ¼ uT
kCuj ¼

ðo2
k � o2

j Þbjk

ok

; jak (42)
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and from Eq. (38)

c0kk ¼ uT
kCuk ¼ 2<ðlkÞ (43)

Eqs. (42) and (43) complete the matrix C0, which is the fully populated damping matrix in the modal
coordinates of the undamped system.
(3)
 The matrix C is now computed as

C ¼ UðUTUÞ�1C0ðUTUÞ�1UT (44)
It is seen that the matrices C and C0 are generally not symmetric. Adhikari and Woodhouse [19] modified their
formulation by placing a constraint on the solution of B that ensured a symmetric solution for C0 and hence
for C.

The method depends upon pseudo inversions of the undamped eigenvectors U in Eqs. (41) and (44). By
combining Eqs. (35) and (36) we obtain the projection of V onto the columns of U. Thus,

UðUTUÞ�1UTV ¼ V0aV (45)

This means that the matrix B obtained from Eq. (41) results in the projection V0 when substituted into
Eq. (40). The error E ¼ ðV� V0Þ is therefore carried into Eq. (41) which in turn produces erroneous values for
C0. The Frobenius norm of this error jjEjjF=jjVjjF � 100% may be used as an indicator to assess whether or
not enough modes have been included in U and V.

In Eq. (44) pseudo inverses are used in the transformation from modal to physical coordinates, of C0 to C.
If we pre- and post-multiply Eq. (44) by UT and U, thereby reversing the transformation, then

UTUðUTUÞ�1C0ðUTUÞ�1UTU ¼ C0 (46)

We see at once that if the damping matrix in modal coordinates C0 is known exactly it is converted to physical
coordinates with perfect accuracy by Eq. (44). Thus it is the pseudo inverse in Eq. (41) that introduces errors
into the damping estimate and not the pseudo inversions in Eq. (44).

Since Eqs. (38) and (39) are developed using the undamped orthogonality equation, it is clear that the first-
order perturbation method requires a known mass matrix, as indeed does Lancaster’s method.

7. Numerical example: cantilever beam with three dashpots

We use the numerical example of the cantilever beam shown in Fig. 1 to illustrate the various points made in
the analysis above. The beam, of length 0.56m and cross section 0.04m (breadth)� 0.004m (depth) has the
standard material properties of aluminium. In-plane bending vibrations are considered. Grounded dashpots
are connected at coordinates 3, 13 and 17 with damping coefficients of 0.2, 0.5 and 0.15Ns/m respectively. The
beam model consists of ten Euler–Bernoulli beams, having twenty coordinates and the same number of
damped modes of vibration.
Fig. 1. Finite element cantilever beam with three dashpots.
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7.1. Accuracy of eigenvalue and eigenvector calculations

One way of assessing the effectiveness of the identified damping matrix is to compute the eigenvalues of the
system, using the known M and K and the identified C. Natural frequencies and modal damping ratios
determined for the computed eigenvalues are listed in Tables 1 and 2 using the identified damping matrix
from data consisting of five measured modes. All three methods (Lancaster’s formula, inverting HðioÞ and
Table 1

Natural frequencies (rad/s) (five measured modes).

Mode Exact Lancaster Inverse of HðioÞ Perturbation

1 65.45 65.45 65.45 65.45

2 410.16 410.16 410.16 410.16

3 1148.71 1148.71 1148.71 1148.71

4 2252.59 2252.59 2252.59 2252.60

5 3729.53 3729.53 3729.53 3729.53

6 5587.26 5587.26 5587.26 5587.31

7 7839.20 7839.20 7839.20 7839.24

8 10,502.37 10,502.37 10,502.37 10,502.46

9 13,579.43 13,579.43 13,579.43 13,579.51

10 16,881.19 16,881.19 16,881.19 16,881.35

11 22,468.11 22,468.12 22,468.11 22,468.32

12 27,144.31 27,144.30 27,144.31 27,145.03

13 32,905.22 32,905.22 32,905.22 32,906.51

14 39,714.40 39,714.40 39,714.40 39,718.82

15 47722.70 47,722.70 47,722.70 47,743.74

16 57,076.72 57,076.73 57,076.73 57,189.76

17 67,741.22 67,741.23 67,741.22 67,789.80

18 79084.58 79,084.65 79,084.63 79,272.22

19 89,058.18 89,058.08 89,058.11 88,698.73

20 111,455.14 111,455.07 111,455.15 111,265.52

Table 2

Damping ratios (five measured modes).

Mode Exact Lancaster Inverse of HðioÞ Perturbation

1 0.036247 0.036247 0.036247 0.036247

2 0.002208 0.002208 0.002208 0.002208

3 0.002140 0.002140 0.002140 0.002140

4 0.000711 0.000711 0.000711 0.000711

5 0.000281 0.000281 0.000281 0.000281

6 0.000433 0.000000 0.000000 0.000553

7 0.000243 0.000000 0.000000 0.000292

8 0.000097 0.000000 0.000000 0.000301

9 0.000224 0.000000 0.000000 0.000201

10 0.000186 0.000000 0.000000 0.000195

11 0.000022 0.000000 0.000000 0.000171

12 0.000027 0.000000 0.000000 0.000304

13 0.000066 0.000000 0.000000 0.000428

14 0.000031 0.000000 0.000000 0.000729

15 0.000027 0.000000 0.000000 0.002977

16 0.000040 0.000000 0.000000 0.009675

17 0.000015 0.000000 0.000000 0.004627

18 0.000004 0.000000 0.000000 0.004859

19 0.000004 0.000000 0.000000 0.134941

20 0.000006 0.000000 0.000000 0.007014
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first-order perturbation) produce estimates very close to the exact natural frequencies. In Table 2 all three
methods return estimated damping ratios that exactly reproduce the exact damping ratios for the first five
modes. Since the data is restricted to the first five modes, the remaining modes should be undamped. It is seen
that Lancaster’s formula and inverse HðioÞ do indeed correctly reproduce the undamped modes. The
perturbation method identifies damping in modes 6–20 that should not be present.

The modes determined from the identified C and those with exact damping are compared using a
generalised MAC correlation

MACðj; kÞ ¼

lkwk

wk

" #T
Wj

ljwj

wj

" #
ljwj
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" #T
Wk

lkwk

wk
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" #������
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(47)
Fig. 2. g-array—Lancaster’s formula using: (a) 5 modes, (b) 10 modes and (c) 15 modes.

Fig. 3. g-array—inversion of HðioÞ using: (a) 5 modes, (b) 10 modes and (c) 15 modes.

Fig. 4. g-array—first-order perturbation using: (a) 5 modes, (b) 10 modes and (c) 15 modes.
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where the modal weight is given by

Wi ¼ jlij
0 M

M C̃

� �
þ
�M 0

0 K

� �
(48)

and C̃ is the identified damping matrix. The modal properties for the identified C̃ and the exact C are denoted
by the subscripts j and k, respectively. This generalised MAC returns an identity matrix when C̃ ¼ C. We take
the array given by

g ¼ jI�MACj (49)

which results in the null matrix for exact damping identification.
The g arrays computed with different numbers of measured modes are shown in Figs. 2–4. The inverse

HðioÞ consistently returns the most accurate eigenvectors and the least accurate are those given by first-order
perturbation. It is seen that inverting HðioÞ returns the first five eigenvectors with excellent accuracy even
when only five modes are measured.
Fig. 5. Identified damping coefficients—Lancaster’s formula using: (a) 5 modes, (b) 10 modes and (c) 15 modes.

Fig. 6. Identified damping coefficients—inversion of HðioÞ using: (a) 5 modes, (b) 10 modes and (c) 15 modes.

Fig. 7. Identified damping coefficients—first-order perturbation using: (a) 5 modes, (b) 10 modes and (c) 15 modes.
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7.2. Accuracy of the identified matrix of damping coefficients C

The contents of the identified damping matrix determined by the three methods using different numbers of
measured modes are shown in Figs. 5–7. It is seen that inverting HðioÞ produces three prominent peaks at the
correct locations of the grounded dampers, coordinates 3, 13 and 17, even when only five modes are measured.
Very accurate representation of the damping matrix is obtained using 10 modes. Lancaster’s formula also
produces a good estimate of C, but not quite as good as the inverseHðioÞmethod. The first-order perturbation
method results in a fully populated damping matrix with the damping distributed over almost all of the system
coordinates. It is seen in Fig. 7 that the identified damping terms are very small for the cases of 5 and 10
measured modes. Figs. 5–7 are all shown with the same scale on the vertical axis. When 15 modes are
measured prominent peaks begin to appear at coordinates 3 and 13.

The error in the damping matrix is assessed in Fig. 8 using the formula �C ¼ jjC� C̃jjF=jjCjjF � 100%. It is
seen that the inverseHðioÞmethod converges most rapidly. All three methods converge to the correct damping
matrix when all the modes are available for measurement. The first-order perturbation approach is
investigated further in Fig. 9 where the projection error, jjEjjF=jjVjjF � 100%, described in Section 6, is shown
Fig. 8. Error �C for the three methods.

Fig. 9. Error by first-order perturbation.
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together with �C . Even when the projection error is reduced to a very small amount, when 10 or more
modes are measured, a significant error persists in the terms of the damping matrix and their distribution on
the beam.

In Section 4 we referred to the problem of inverting HðioÞ to determine the dynamic stiffness matrix ZðioÞ.
This problem is illustrated in Figs. 10 and 11, which show the receptances and dynamic stiffnesses obtained
from Eqs. (20) and (25)–(27), respectively, for the cases of 5, 10, 15 and 20 measured modes. As expected the
low-frequency receptances are accurately represented even when only a small sub-set of modes are measured.
Conversely, reasonably accurate low-frequency dynamic stiffnesses are only available when fifteen or more
modes are measured. Despite this limitation the best estimate of the damping matrix is consistently obtained
by inverting HðioÞ. We note that by Lancaster’s formula the damping matrix is strictly real and determined
separately from the other system matrices M and K. On the other hand, by inverting HðioÞ, the dynamic
stiffness, ZðioÞ, is determined which includes M, C and K together. When the measured modes are incomplete
no constraint is placed on the method to ensure that the system matrices are strictly real. Thus, taking the
Fig. 10. Receptances determined from an incomplete set of modes.

Fig. 11. Dynamic stiffnesses determined from an incomplete set of modes.
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imaginary part of H�1ðioÞ allows greater freedom than is available by Lancaster’s formula. This additional
freedom accounts for the superior performance of the inverse HðioÞ method over the other two methods.

8. Conclusions

Of the methods studied there are essentially three fundamentally different approaches; the closed-form
solution developed by Lancaster [11], methods based on inverting the measured matrix of receptances,
typically Lee and Kim [15] (which are equivalent, in the case of linear viscous damping, to single-frequency
energy methods, typically Liang [16]) and first-order perturbation as described by Adhikari and Woodhouse
[17]. All three approaches are found to be capable of closely reproducing the complex eigenvalues within the
frequency range of data obtained by modal truncation. Lancaster’s formula and the inverse HðioÞ method
correctly return eigenvalues with zero modal damping corresponding to the truncated modes. However, first-
order perturbation includes some erroneous residual damping seen in the truncated modes that should
correctly be undamped. This turns out to be a significant indicator of the poorer performance of the
perturbation method in locating the damping terms correctly in the matrix. It is also the least accurate method
for determining the complex eigenvectors. The best performing method is inverse HðioÞ and its superiority
over the closed-form solution is attributed to the extra flexibility of the method—whereas Lancaster’s solution
restricts the damping matrix to real solutions, the inverse HðioÞ method places no such restriction on the
system matrices M, C, K but simply takes the imaginary part of the complex dynamic stiffness ZðioÞ.
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Appendix A. Energy equation from the receptance matrix

We begin with Eq. (37) and suppose now that, f ¼ ei where ei is the ith column of the identity matrix.
The response to this ith force input may then be expressed as

xi ¼

h1i

h2i

..

.

hni

0
BBBB@

1
CCCCA; ai ¼ <

h1i

h2i

..

.

hni

0
BBBB@

1
CCCCA; bi ¼ I

h1i

h2i

..

.

hni

0
BBBB@

1
CCCCA (A.1)

Now we may re-write Eq. (37) as

aTi ðoCÞai þ bTi ðoCÞbi ¼ bTi ei (A.2)

Also from the receptance matrix, by definition

ð<ðH�1Þ þ iIðH�1ÞÞ<ðHÞ þ iIðHÞÞ ¼ I (A.3)

so that

<ðH�1Þai � IðH�1Þbi ¼ ei (A.4)

<ðH�1Þbi þ IðH�1Þai ¼ 0 (A.5)

and

�o2Mþ K ¼ <ðH�1ðioÞÞ (A.6)

oC ¼ IðH�1ðioÞÞ (A.7)
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Eqs. (A.4) and (A.5) may be cast as

ð�o2Mþ KÞai � ðoCÞbi ¼ ei (A.8)

ðoCÞai þ ð�o2Mþ KÞbi ¼ 0 (A.9)

From Eq. (A.9)

bi ¼ �ð�o2Mþ KÞ�1ðoCÞai (A.10)

and by premultiplying Eq. (A.8) by bTi and combining with (A.10), we finally obtain from the receptance
matrix

aTi ðoCÞai þ bTi ðoCÞbi ¼ bTi ei (A.11)

which is the same as Eq. (A.2) from energy considerations.
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