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Abstract

In this paper, a simplified mathematical model is proposed to describe the mechanisms leading to modulation sidebands

of planetary gear sets. The model includes key system parameters such as number of planets, planet position angles, and

planet phasing relationships defined by the position angles and the number of teeth of the gears. The model is used to

simulate a wide range of gear sets to show that they can be classified in five distinct groups based on their sideband

behavior in terms of their frequencies and amplitudes. A special experimental planetary gear set-up is developed and

planetary gear sets from of three of these five groups are procured. A methodology is developed to demonstrate

modulation sidebands from the ring (internal) gear radial acceleration measurements. For each case, sets of ring gear

acceleration measurements at various speed and torque conditions are presented to demonstrate rich sideband activity that

agrees well with the model predictions. At the end, based on results of the parametric studies and experiments, general rules

on modulation sidebands of planetary gear sets are proposed.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Planetary gear sets are commonly used in many automotive, aerospace and industrial gearbox applications.
As they employ N number of identical planet branches, they allow the power transmitted to be split into
N parallel paths to achieve maximum power density (power to weight ratio). In addition, different input-
to-output speed (torque) ratios can be achieved with the same planetary gear set by simply changing the input,
output and reaction (fixed) members. This feature makes them desirable for several applications such
as automotive automatic transmissions. They are also typically quieter than their fixed-center, lay-shaft
counterparts as the self-centering capability of central members provide more tolerance to manufacturing
errors associated with gears and the carrier.

With these proven advantages in place, planetary gear sets are also known to exhibit several unique
behaviors, which cannot be found in other fixed-center gear trains. Some of these behavior such as planet load
sharing as a function of manufacturing errors [1,2] and planet mesh phasing for cancellation or neutralization
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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of the gear mesh excitations [3,4] have been studied extensively. On the other hand, another unique behavior
that most measured vibration and noise data from planetary gear transmissions exhibit, namely modulation
sidebands, needs to be studied in a more general and systematic way. They can be recognized as harmonic
orders other than the pure tones defined by the gear mesh harmonics in vibration and noise spectra of geared
systems. This paper focuses on a detailed investigation the mechanisms of these sideband harmonics that
appear in the vicinity of the gear mesh harmonic orders at the gear mesh frequency and its integer multiples.

Fig. 1 illustrates a simple planetary gear set that is formed by a sun gear (s), an internal or ring gear (r) and
N number of identical planet gears (pinions) located around the sun gear at angles ci ði 2 ½1;N�Þ. In this
example, N ¼ 4. The planets are held by a common rigid structure, called planet carrier (c) through planet
bearings. In this arrangement, planets act as idler gears with no connections to the outside structures of the
gearbox, while the central members s, r, and c are either connected to input or output, or fixed with respect to
transmission housing. In cases when the sun or ring gear is fixed (stationary), the carrier must rotate with its
planets. For instance, in Fig. 1, the ring gear is fixed and a transducer mounted on it or on the housing near the
ring gear–housing interface experiences a periodic variation in vibration amplitudes as planets pass through
this fixed transducer location. This is known to cause an amplitude modulation (AM) of vibration and noise
time histories to result in modulation sidebands in the frequency domain. This is one of the main mechanisms
causing planetary gear sidebands.

In addition to sidebands caused by a rotating carrier, a large number of gear manufacturing errors can also
cause variations to modulate the dynamic gear mesh forces in three different forms of wave modulations,
namely AM, frequency modulations (FM), and phase modulations (PM). These types of modulations were
reported to occur frequently in mechanical systems [5,6]. Typical errors of a planetary gear set that might
cause modulations include eccentricities and run-out errors of the gears and the carrier, and tooth-to-tooth
spacing, tooth thickness and indexing errors [1]. There are other variations due to relative motion of the
rotating components of the gear set with respect to the other components that might result in sidebands as
well. Among them, radial floating motion of central members such as the sun gear induces instantaneous
center distance variations and modulates the gear mesh forces [7]. Likewise, changes in deformations of the
components with planet pass, tooth pass or ring gear spline pass as observed from the gears might provide
additional mechanisms for sidebands. Finally, the planet load sharing characteristics impact the AM as well as
dynamic gear mesh forces, potentially influencing the sidebands of planetary gear sets.
Fig. 1. A schematic showing the components of a 4-planet planetary gear set and an accelerometer mounted on the ring gear.



ARTICLE IN PRESS
M. Inalpolat, A. Kahraman / Journal of Sound and Vibration 323 (2009) 677–696 679
There are only a few published studies on planetary gear sidebands with significant contributions to the
understanding to this subject matter. In one such study, McFadden and Smith [8] predicted the vibration
produced at a fixed transducer location on the ring gear of a simple planetary gear set. Their study was the first
to explain the underlying reasons for the asymmetric distribution of the modulation sidebands about the tooth
meshing frequency. Their model was able to predict the frequency content of the dominant vibration peaks of
an example planetary gear set, but not the relative amplitude content. McFadden [9] also developed a
technique to calculate the time domain averages of the tooth meshing vibration of the individual planet gears
and the sun gear in an epicyclic gearbox. Later, McNames [10] employed continuous-time Fourier series to
explore the relative amplitudes of the dominant peaks that can possibly show up in the spectra along with their
corresponding frequencies. His model is based on time-domain model of McFadden and Smith [8], with the
discrete Fourier series analysis included. McNames reported that the total vibration spectra (sum of the
vibrations from each individual planet gear as they pass through a fixed transducer location) will have
dominant components only at frequencies that are integer multiples of number of planets in the system. This
conclusion was presented for a class of planetary gear sets (equally spaced planets with sequential planet mesh
phasing) and its validity was not tested for other planetary gear sets. Besides these two studies, there are a
variety of works that deal with sidebands in the wider context of planetary gear vibrations [11–19]. The same is
true for studies on planetary vibration condition monitoring for diagnostics purposes [19–23]. While providing
a reasonable foundation for amplitude modulated sidebands of planetary gear sets, above studies fall short of
providing a general formulation that can be used to classify planetary gear sets based on their sideband
behavior and describe the sideband behavior of any arbitrary planetary gear set. Also missing from the
literature, besides very limited data provided in Refs. [8,10] from actual field tests of planetary transmissions,
is a detailed and dedicated experimental study of modulation sidebands of planetary gear sets for validation of
any of these models.

Accordingly, this study first focuses on developing a simplified analytical model to describe AM of
planetary gear sets. This model is intended to be general so that any simple planetary gear set having any
planet spacing condition (equally or unequally spaced), any number of planets, any number of gear teeth as
well as any planet mesh phasing condition (in-phase, sequentially phased or arbitrarily phased) can be
analyzed. The model will be used to show that there are various classes of planetary gear sets that exhibit
different sideband behavior. Trends observed from each class of gear set will be documented. The second
objective of this study is to demonstrate the validity of these trends through an experimental study. For this
purpose, an experimental set-up and measurement system will be developed to perform sideband
measurements by using gear sets that are qualitatively different in terms of their predicted sideband outcome.
At the end, these measured acceleration frequency spectra will be compared to the predictions to assess the
fidelity of the proposed analytical model.
2. Analytical model

For a planetary gear set with N planets, consider the kinematic configuration when the sun gear s and the
planet carrier c act as the input and output members and the ring gear r is held stationary (its rotational
velocity or ¼ 0). In this kinematic configuration, the fundamental gear mesh (tooth passing) frequency is
defined as

om ¼ Zroc, (1)

where oc is the absolute angular velocity of the planet carrier and Zr the number of teeth of the ring gear. In
case of the fixed sun gear, Zr is replaced by the number of teeth of the sun gear Zs. The planets are positioned
at angles ci ði 2 ½1;N�Þ within the planet carrier. Setting c1 ¼ 0 without any loss of generality, other planets
can be assembled in any set of discrete angles as long as they are integer multiples of the least mesh angle
which can be defined as

l ¼
2p

Zs þ Zr

. (2)
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Planet i cannot be assembled at a position angle unless ci ¼ ml (m: integer). Further, a gear set with equally
spaced planets at planet position angles ci ¼ 2pði � 1Þ=N is possible only if ðZs þ ZrÞ=N ¼ integer. For
instance, for a gear pair with Zr ¼ 125 and Zs ¼ 73, l ¼ 1.81821 and a 3-planet carrier can be assembled in
equal spacing ððZs þ ZrÞ=N ¼ 1

3
ð73þ 125Þ ¼ 66 ¼ integerÞ while equally spaced 4- and 5-planet carriers

cannot be assembled with these gears (1
4
ð73þ 125Þ ¼ 49:5 and 1

5
ð73þ 125Þ ¼ 39:6).

Here, each mesh of the ring gear with each planet i transmits a static (mean) mesh force F̄ i as well as a
dynamic force Fi(t) about F̄ i induced by vibratory behavior of the gear pair [4,24]. This dynamic mesh force
component is periodic at the gear mesh frequency and can be written in Fourier series for the fixed ring gear
case as

F iðtÞ ¼
XJ

j¼1

Fij cosðjZroctþ fj þ jZrciÞ, (3)

where Fij is the Fourier coefficient of j-th harmonic of the dynamic force of ring-planet i mesh, fj the phase
angle of the j-th harmonic component and Zrci is the phase angle between the ring gear meshes of planet i and
planet 1 [3,4,25].

In Fig. 1, the measured acceleration for the transducer mounted on the outer surface of the ring gear will be
modulated as F iðtÞ ði 2 ½1;N�Þ that applies along the line of action of the ring/planet-i mesh rotates with the
carrier at a velocity oc. For a complete revolution of the carrier, the transducer will experience the
disturbances from all N planets in sequence. As the force transmission path between the ring-planet i mesh is
rather complex (and can be described quantitatively only by dynamic deformable-body analysis), individual
influence of planet-i on the transducer will be assumed to last for a duration of Tc/N where Tc ¼ 2p/oc is the
rotational period of the carrier. With this assumption, as planet i approaches to the transducer location, its
influence will increase for the first Tc/2N time period, reaching its maximum when planet i is at the transducer
location and the diminishing to zero at the end of the next Tc/2N time period. This will be followed by planet
(i+1) that is assumed to dominate the response of the transducer for the next Tc/N time period, and so on. We
conveniently use a Hanning function to represent this phenomenon:

wðtÞ ¼
1

2
�

1

2
cos

2pNt

Tc

� �� �
. (4a)

With this, for a planet positioned at angle ci, a weighting function is defined as

wiðtÞ ¼W iw t�
ci

2p
Tc

� �
UiðtÞ, (4b)

where Ui(t) is defined as

UiðtÞ ¼
X1
n¼1

u t�
ðn� 1ÞN þ i � 1

N

� �
Tc

� ��
� u t�

ðn� 1ÞN þ i

N

� �
Tc

� ��
. (4c)

In this equation, terms u(t�a) are unit step functions (u(t�a) ¼ 1 for t4a and u(t�a) ¼ 0 for toa) that ensure
the influence of planet i on the transducer lasts only for a period of Tc/N. The summation over n is needed to
maintain the same periodicity for each carrier rotation. In Eq. (4b), the multiplier W i ¼ NF̄ i=

PN
j¼1F̄ j is

intended to account for any unequal load sharing amongst the planets due to the carrier and gear
manufacturing errors [1,2]. If all F̄ i are the same (i.e. perfect load sharing), then all Wi ¼ 1 in addition to
having identical Fourier harmonic amplitudes Fij for i 2 ½1;N� in Eq. (3). However, if all the N planets do not
carry equal share of the load, then F̄ i (and Wi) will be different in addition to Fij that must be determined at
this F̄ i value [24].

Eq. (4) represents a major simplification employed by the model. The assumption that the influence of
planet i on the transducer lasts only for a period of Tc/N might not be true for certain systems, especially if the
ring gear is very flexible. The same formulation can easily be modified to increase the duration in which a
planet is effective. The weighting function w(t) defined in Eq. (4a) was also chosen rather arbitrarily to
represent the continuously increasing and then diminishing effect of a planet mesh on the observed vibration
amplitude. A more accurate and realistic shape for w(t) should be specific to each gear set considered,
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depending on its size, ring gear–housing interface and ring gear flexibility. A proper accounting of these effects
would require a deformable-body dynamic model that can represent the transfer path between a given gear
mesh and the point of measurement accurately.

The acceleration signal caused by dynamic force Fi(t) of the ring/planet-i mesh is assumed to be
proportional to the product of wi(t) and Fi(t) so that

aiðtÞ ¼ CwiðtÞFiðtÞ ¼ W̄ iw t�
ci

2p
Tc

� �
UiðtÞ

XJ

j¼1

Fij cosðjZroctþ fj þ jZrciÞ, (5a)

where W̄ i ¼ CW i and C is a constant. Fig. 2 illustrates Fi(t), wi(t) and the total acceleration signal a(t) that is
given as

aðtÞ ¼
XN

i¼1

aiðtÞ (5b)

for a 3-planet (N ¼ 3) gear set having equal spacing (c1 ¼ 0, c2 ¼ 2p=3 and c3 ¼ 4p=3), assuming harmonic
Fi(t) (J ¼ 1 in Eq. (5a)) with W̄ i ¼ 1 and Zr ¼ 25. Since the overall time signal a(t) shown in Fig. 2 is heavily
modulated, the corresponding frequency spectrum

AðoÞ ¼
Z 1
�1

jaðtÞe�iotjdt (6)

would reveal significant sideband activity around the gear mesh harmonic frequency om ¼ Zroc.
Eq. (5a) should work for planetary gear sets that act in a linear time-varying fashion as it is the case for most

planetary gear sets formed by helical gears. The time-varying coefficients are due to periodic fluctuations of the
gear mesh stiffnesses that act as parametric excitations for the predicted periodic dynamic gear mesh forces
Fi(t) [24,26]. In spur planetary gear sets, however, it is possible to have nonlinear behavior within the primary
and parametric resonance regimes [26] limiting the use of Eq. (5a) at operating speeds within the off-resonance
regions.
Fig. 2. A schematic illustration of Fi(t), wi(t) and a(t) for a gear set having N ¼ 3 and Zr ¼ 25.
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In the presence of manufacturing errors that are periodic over a complete carrier (ring gear) revolution as
described in Section 1, one would be required to define another function in the form

RðyÞ ¼ R̄þ
XK

k¼1

Rk sinðkyþ fkÞ; (7)

where, R̄ is the average over complete rotation. Here, k is the harmonic index, and Rk and fk are the
amplitude and the phase angle of that particular Fourier component. Each planet i is subjected to this
variation with yi ¼ octþ ci so that

RiðtÞ ¼ R̄þ
XK

k¼1

Rk sinðkoctþ kci þ fkÞ. (8)

With this additional variation,

aiðtÞ ¼ wiðtÞFiðtÞRiðtÞ (9)

and Eq. (5b) is still valid, now with this form of ai(t). Similar variations can be introduced at the sun gear
rotational frequency to account for the errors associated with it, while they should be less important as path
between each sun mesh and the transducer is longer and sun is commonly allowed to float radially to
compensate for some of these errors.

Assuming that RiðtÞ ¼ R̄, Eq. (5) indicates that there are N+2 main parameters (N, Zr, c1; c2; . . . ;cN)
dictating any sideband activity observed in frequency domain. With the restrictions induced by Eq. (2) in
terms of where planets can be positioned for suitable assembly conditions, five different conditions are
possible, each causing a different form of modulation sidebands.

Case (i): Equally spaced planets and in-phase gear meshes. This condition is defined mathematically as

ci ¼
2pði � 1Þ

N
and

Zrci

2p
¼ n ðn : integerÞ. (10)

The first condition indicates that the planets are equally spaced while the second condition ensures all Fi(t) in
Eq. (3) are in phase. For this case with equally spaced planets, a simpler form of the second condition is that
Zr must divisible by N (i.e. Zr/N ¼ integer) for all ring gear meshes to be in phase. Assuming equal load
sharing (Wi ¼ 1, Fij ¼ Fj, iA[1,N]) and considering a single harmonic term (J ¼ 1) in Eq. (3) as the mesh forces
that are in phase, F iðtÞ ¼ F ðtÞ ¼ F 1 cos Zroct, further ignoring the once-per revolution errors in Eq. (8),
Eq. (5b) is written as

aðtÞ ¼ F ðtÞ
XN

i¼1

wiðtÞ ¼ F ðtÞ
XN

i¼1

w t�
ci

2p
Tc

� �
UiðtÞ. (11a)

Under the conditions assumed in this case, w(t) becomes periodic at Tc/N, reducing Eq. (11a) to

aðtÞ ¼ CF ðtÞwðtÞ ¼ CF 1 cosðZroctÞ½1
2
� 1

2
cosðNoctÞ�, (11b)

which can be written as

aðtÞ ¼ CF 1f
1
2
cosðZroctÞ � 1

4
cos½ðZr þNÞoct� �

1
4
cos½ðZr �NÞoct�g. (11c)

This indicates that the corresponding frequency spectrum will have gear mesh component at frequency
Zroc and two symmetric sidebands at half-amplitude as the mesh harmonic at frequencies (Zr+N)oc and
(Zr�N)oc.

Fig. 3 illustrates A(o) spectra (with CF1 ¼ 1) for four different planetary gear sets, satisfying conditions
given in Eq. (10). The first gear set represented by Fig. 3(a) has N ¼ 3 with Zr ¼ 123 and Zs ¼ 72. The second
gear set in Fig. 3(b) is a 4-planet system (N ¼ 4) with Zr ¼ 124 and Zs ¼ 72, while a 5-planet gear set with
Zr ¼ 125 and Zs ¼ 70 is represented by the spectrum of Fig. 3(c). Finally, a gear set having N ¼ 6, Zr ¼ 126
and Zs ¼ 72 results in the spectrum shown in Fig. 3(d). All four spectra correspond to Eq. (11c).
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Fig. 3. Theoretical A(o) spectra for four different in-phase and equally spaced planetary gear sets: (a) N ¼ 3, Zr ¼ 123 and Zs ¼ 72,

(b) N ¼ 4, Zr ¼ 124 and Zs ¼ 72, (c) N ¼ 5, Zr ¼ 125 and Zs ¼ 70, and (d) N ¼ 6, Zr ¼ 126 and Zs ¼ 72.
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It can be concluded from the formulation presented above and Fig. 3 that this case exhibits the
largest harmonic amplitude Am ¼ Amax at the gear mesh order (Hm ¼ om/oc ¼ Zr). Two sideband orders of
H ¼ ðom �NocÞ=oc ¼ Hm �N and equal amplitude 1

2
Am are the only significant sidebands in this case.

Case (ii): Equally spaced planets and sequentially phased gear meshes. This case is defined as

ci ¼
2pði � 1Þ

N
;

Zrci

2p
an and

XN

i¼1

Zrci ¼ mp ðm; n ¼ integersÞ. (12)

Here, the second condition indicates that the planets are not in phase (Zr/Nainteger for equally spaced
planets). Meanwhile, the third condition states that Fi(t) in Eq. (3) are sequentially phased, i.e. sum of the
phase angles is an integer multiple of p. This is indeed one of the most common conditions used in product
applications since it was shown to result in lower vibration and noise levels [4,24]. It can also be stated that this
is the only other possible phasing condition for equally spaced systems other than in-phase condition.

Figs. 4(a–d) illustrate A(o) spectra of four different planetary gear sets (again with CF1 ¼ 1), respectively,
each satisfying conditions defined by Eq. (12): (a) N ¼ 3, Zr ¼ 125 and Zs ¼ 73, (b) N ¼ 4, Zr ¼ 126 and
Zs ¼ 74, (c) N ¼ 5, Zr ¼ 126 and Zs ¼ 74, and (d) N ¼ 6, Zr ¼ 122 and Zs ¼ 70. For instance, for gear set (a),

Zr=3 ¼ 125=3 ¼ 41:6̄, Zrc1 ¼ 0, Zrc2 ¼ ð125Þ
2p
3
� 4p

3
and Zrc3 ¼ ð125Þ

4p
3
� 2p

3
such that the third condition in

Eq. (12) is also satisfied, i.e.
P3

i¼1Zrci ¼ 0þ 4p
3
þ 2p

3
¼ 2p.
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Fig. 4. Theoretical A(o) spectra for four different sequentially phased and equally spaced planetary gear sets: (a) N ¼ 3, Zr ¼ 125 and

Zs ¼ 73, (b) N ¼ 4, Zr ¼ 126 and Zs ¼ 74, (c) N ¼ 5, Zr ¼ 126 and Zs ¼ 74, and (d) N ¼ 6, Zr ¼ 122 and Zs ¼ 70.
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In this case, it is not possible mathematically to reduce a(t) to a sum of harmonic terms as it was done for
Case (i) since each Tc/N time segment associated with each planet has a different phase angle. Yet, the
behavior presented by Fig. 4 has several well-defined traits:
(1)
 In direct contrast to Case (i), gear sets in this group exhibit nearly zero amplitude (AmE0) at the mesh
harmonic order Hm. This is evident from all four cases considered in Fig. 4.
(2)
 All significant harmonic orders with sizable amplitudes are at orders H ¼ nN (n: integer) in the vicinity of
mesh harmonic order Hm, i.e. they all appear at integer multiples of the number of planets N. In Fig. 4(a),
for instance, for N ¼ 3, Zr ¼ 125 and Zs ¼ 73, there are four harmonics with large amplitudes at orders of
120, 123, 126 and 129, corresponding to H ¼ 40N, 41N, 42N and 43N. The same is true for the other three
cases as well.
(3)
 Sidebands are mostly not symmetric about Hm. The harmonic order with the largest amplitude is the
order H ¼ nN that is closest to Hm, i.e. AEAmax for the order satisfying the condition jHmax �Hmjo1

2
N.

In Fig. 4(a), order Hmax ¼ 42N ¼ 126 satisfy this condition, while it is Hmax ¼ 25N ¼ 125 for the third
example in Fig. 4(c) where Hm ¼ 126.
(4)
 A special condition rises when the remainder of the ratio Zr/N is equal to 1
2
. Even numbers for N and Zr are

necessary (but not sufficient) conditions for this situation. As an example of this, Fig. 4(b) exhibits
harmonic orders that are symmetric about Hm and AEAmax at two orders where jHmax �Hmj ¼

1
2
N.
Planetary gear sets satisfying Case (ii) conditions seems to be the only ones considered in the previous
planetary sideband studies including those by McFadden and Smith [8] and McNames [10]. These earlier
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studies reported that the dominant harmonic orders in the vicinity of the mesh are distributed apart by
N orders at integer multiples of N in agreement with the second observation above.

Case (iii): Unequally spaced planets and in-phase gear meshes. This condition satisfies the following:

cia
2pði � 1Þ

N
and

Zrci

2p
¼ n ðn ¼ integersÞ: (13)

Here Fi(t) are in phase in spite of the fact that planet spacing is not equal (but still meets the assembly
requirements, i.e. all ci are integer multiples of l). Four examples meeting these conditions are analyzed in
Fig. 5: (a) N ¼ 3, Zr ¼ 126 and Zs ¼ 72 with ci ¼ 0; 2p

3
and 1:2̄p (ci ¼ 0; 120� and 220�) where planet-3

moved 201 from its equal spacing position, (b) N ¼ 4, Zr ¼ 120 and Zs ¼ 72 with ci ¼

0; 0:4167p; p and 1:4167p ðci ¼ 0; 75�; 180� and 255�Þ corresponding to an in-phase ‘‘X-shaped’’ arrange-
ment where there are two diametrically opposed planet pairs, (c) N ¼ 5, Zr ¼ 145 and Zs ¼ 75 with ci ¼

0; 0:4276p; 0:8276p; 1:2p and 1.6p (0, 76.971, 148.971, 2161 and 2881) where planets 2 and 3 are positioned
away from their equal spacing angles, and (4) N ¼ 6, Zr ¼ 130, Zs ¼ 70, ci ¼ 0, 0.4p, 0.74p, p, 1.37p and
1.74p (0, 721, 133.21, 1801, 246.61 and 313.21). All of these cases satisfy conditions given by Eq. (13).
The frequency spectra of gear sets having this design condition have the following common features:
(1)
Fig.

with

ci ¼
The harmonic order with the largest amplitude is the gear mesh harmonic Hm with Amax ¼ Am as in
Case (i). In all four spectra shown in Fig. 5, order H ¼ Hm ¼ Zr has Amax ¼ Am �

1
2
.

5. Theoretical A(o) spectra for four different in-phase and unequally spaced planetary gear sets: (a) N ¼ 3, Zr ¼ 126 and Zs ¼ 72

ci ¼ 0; 2p
3
and 1:2̄p, (b) N ¼ 4, Zr ¼ 120 and Zs ¼ 72 with ci ¼ 0; 0:4167p; p and 1:4167p, (c) N ¼ 5, Zr ¼ 145 and Zs ¼ 75 with

0; 0:4276p; 0:8276p; 1:2p; 1:6p; and (d) N ¼ 6, Zr ¼ 130, Zs ¼ 70, ci ¼ 0; 0:4p; 0:74p; p; 1:37p and 1:74p.
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(2)
Fig.

Zs ¼

and
The harmonic orders at Hm7N are always the most significant sidebands that are nearly symmetric about
Hm. For instance, orders 140 and 150 in Fig. 5(c) are such sidebands that are symmetric about the mesh
order Hm ¼ 145.
(3)
 If both N and Zr are even numbers, then several even orders at Hm72n dominate the spectrum as shown in
Figs. 5(b) and (d). On the other hand, if N is odd, then sidebands appear at many of orders Hm7n, as in
Figs. 5(a) and (c).
(4)
 As a special condition for this case, if the planets are positioned in diametrically opposed pairs (N ¼ even
and the spacing between each planet in the pair is 1801), then the sideband orders exist at even multiples of
the carrier order at orders Hm72n (n: integer), as it the case in Fig. 5(b).
Case (iv): Unequally spaced planets and sequentially phased gear meshes. This case is defined by

cia
2pði � 1Þ

N
;

Zrci

2p
an and

XN

i¼1

Zrci ¼ mp ðm; n ¼ integersÞ. (14)

A(o) spectra for four different examples of this case are shown in Fig. 6. Fig. 6(a) is for a system having N ¼ 3,
Zr ¼ 125, Zs ¼ 73, ci ¼ 0; 0:5̄p and 1:4̄p (ci ¼ 0, 1001 and 2601). Second example is a 5-planet gear set with
Zr ¼ 125, Zs ¼ 73, ci ¼ 0; 0:404p; 0:798p; 1:202p and 1:596p (ci ¼ 0, 72.7271, 143.6361, 216.3641 and 287.2731)
and has the spectra shown in Fig. 6(b). Third example is a 4-planet gear set with Zr ¼ 126, Zs ¼ 74, and
ci ¼ 0; 0:54p; 0:97p; and 1:57p ðci ¼ 0; 97:2�; 174:6�; 282:6�Þ whose predicted spectrum is shown in Fig. 6(c).
6. Theoretical A(o) spectra for four different sequentially phased and unequally spaced planetary gear sets: (a) N ¼ 3, Zr ¼ 125,

73, ci ¼ 0; 0:5̄p and 1:4̄p, (b) N ¼ 5, Zr ¼ 125, Zs ¼ 73, ci ¼ 0; 0:404p; 0:798p; 1:202p and 1:596p, (c) N ¼ 4, Zr ¼ 126, Zs ¼ 74,

ci ¼ 0; 0:54p; 0:97p; and 1:57p, and (d) N ¼ 6, Zr ¼ 176, Zs ¼ 74, and ci ¼ 0; 0:376p; 0:704p; p; 1:376p and 1:68p.
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The last example represented in Fig. 6(d) is a 6-planet gear set with Zr ¼ 176, Zs ¼ 74, and ci ¼

0; 0:376p; 0:704p; p; 1:376p and 1:68p ðci ¼ 0; 67:68�; 126:72�; 180�; 247:68�; 302:4�Þ .
The spectra corresponding to such gear sets are more complex, with the following common features:
(1)
Fig.

Zs ¼

ci ¼
In general, sideband harmonics appear at several integer multiples of the carrier order at Hm7n

(n: integer) in an asymmetric way around Hm. The number of sidebands with non-zero amplitudes is quite
high in each case considered in Fig. 6. For instance, there are about 15 sidebands with sizable amplitude in
the spectrum of the third gear set.
(2)
 In regards to the mesh harmonic order, Amax ¼ Am when both Zr and N are even numbers, as exemplified
by Figs. 6(c) and (d) where Hmax ¼ Hm ¼ Zr. For such systems, if there is at least one diametrically
opposed planet pair, then the sidebands at even numbered orders are dominant.
(3)
 If both Zr and N are odd numbers, then the gear mesh harmonic order, while non-zero, does not represent
the largest amplitude.
Case (v): Unequally spaced planets and arbitrarily phased gear meshes. The last and perhaps the most
arbitrary case is obtained when the planets are positioned unequally at multiples of l and planet phasing is
arbitrary (neither in-phase nor sequentially phased) such that

cia
2pði � 1Þ

N
;

Zrci

2p
an and

XN

i¼1

Zrciamp ðm; n ¼ integersÞ. (15)
7. Theoretical A(o) spectra for four different arbitrarily phased and unequally spaced planetary gear sets: (a) N ¼ 3, Zr ¼ 125,

73 and ci ¼ 0; 0:55p and 1:384p, (b) N ¼ 4, Zr ¼ 125, Zs ¼ 73 and ci ¼ 0; 0:505p; p and 1:505p, (c) N ¼ 5, Zr ¼ 127, Zs ¼ 73 and

0; 0:42p; 0:83p; 1:24p and 1:65p, and (d) N ¼ 6, Zr ¼ 125, Zs ¼ 73, and ci ¼ 0; 0:34p; 0:68p; 1:03p; 1:34p; 1:66p.
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Similar to the previous cases, four examples are chosen here to illustrate this case in Fig. 7. The first example is
a 3-planet system with Zr ¼ 125, Zs ¼ 73 and ci ¼ 0; 0:55p and 1:384p ðci ¼ 0; 100� and 249:13�Þ and
exhibiting a spectrum as shown in Fig. 7(a). The second example is a ‘‘X-shaped’’ 4-planet gear set having
Zr ¼ 125, Zs ¼ 73 and ci ¼ 0; 0:505p; p and 1:505p ðci ¼ 0; 90:909�; 180� and 270:909�Þ. In this case, phase
angles Zrci ¼ 0; 1:1325p; p and 0:1312p and the sum of the phase angles is obviously not an integer multiple
of p. The corresponding spectrum for this gear set is given in Fig. 7(b). The other example corresponding to
the spectrum shown in Fig. 7(c) is a gear set having N ¼ 5, Zr ¼ 127, Zs ¼ 73 and ci ¼ 0;
0:42p; 0:83p; 1:24p and 1:65p ðci ¼ 0; 75:6�; 149:4�; 223:2� and 297�Þ. As a last example for this case, a
6-planet gear set is chosen with Zr ¼ 125, Zs ¼ 73, and ci ¼ 0; 0:34p; 0:68p; 1:03p; 1:34p; and 1:66p
(0, 61.81811, 123.63621, 185.45431, 241.81811, and 3001) is chosen. This irregularly-spaced system exhibits a
frequency spectrum as shown in Fig. 7(d).

The spectra shown in Fig. 7 illustrate a very rich sideband activity for gear sets satisfying the conditions for
this case, with sideband orders at Hm7n that are asymmetric about Hm. It is not possible to draw many
conclusions from Fig. 7, except to say that even numbered sideband orders are stronger for an even N.
Meanwhile, if N is an odd number, then sidebands appear at almost every order neighboring Hm.

3. An experimental study of planetary modulation sidebands

3.1. Experimental test set-up

In order to check the validity of the analytical formulation described in Section 2, a set of tightly controlled
planetary gear set experiments were performed. An experimental set-up from a recent study on planet load
sharing [1,27] was used with some modifications to study the sidebands of planetary gear sets. We refer to
Fig. 8. (a) Cross-section of the back-to-back planetary test fixtures and (b) a view of the test set-up on a transmission dynamometer.
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these references in regards to the details of the test set-up and provide here only the aspects that are directly
related to this study.

The test set-up uses a ‘‘back-to-back’’ power circulation type arrangement whose cross-section is shown in
Fig. 8(a). In this arrangement, the sun gears of two identical planetary gear sets (a test gear set and a reaction
gear set) are connected to each other through splines on a common shaft. Likewise, the carrier of the test gear
set is connected to the carrier of the reaction gear set via a rigid hollow shaft. The ring gear of the test gear set
is held stationary while an external torque is applied mechanically to the ring gear of the reaction gear set
forming a closed power loop. In this fixed-ring configuration, a sun gear torque Ts is achieved conveniently by
applying a torque of Tr ¼ ZrTs/Zs to the reaction ring gear via a torque arm and calibrated weights. Fig. 8(b)
shows a picture of the fixtures mounted on a dynamometer. Here, a DC motor is connected to the shaft of the
sun gears to rotate both gear sets while the gear meshes carry the load imposed by the torque trapped in the
closed loop through the external torque Tr applied to the reaction ring gear.
3.2. Test gear sets and test matrix

A medium-size planetary gear set design used earlier in Refs. [1,27] was adapted here as the test planetary
gear set. All of the gears shown in Fig. 9(a) were hard ground to tight tolerances in order to achieve very
accurate profiles while minimizing errors associated with planet tooth thickness and planet pitch line run-out
in an attempt to minimize the once-per-revolution errors captured in Eq. (7). The same level of accuracy was
applied to the fabrication of the carriers shown in Fig. 9(b) as well, so that an ideal planet load sharing can be
achieved [1]. This allows all Wi to be the same ði 2 ½1;N�Þ in Eq. (4b). Under these conditions, most of the
sideband should originate from the kinematic motions of the planet meshes with respect to a fixed transducer
location. The test ring gear shown in Fig. 9(a) has a wall thickness of 10.4mm that is the difference between
outside radius and the root circle radius, Rout�Rroot. With this, the ring gear thickness parameter is calculated
as G ¼ ðRout � RrootÞ=Rroot ¼ 0:083, that was shown to exhibit limited hoop deflections under load values up
to Ts ¼ 1000Nm [28].

The five distinct cases identified in Section 2 would require design and procurement of five different
planetary gear sets with appropriate values for the N+2 parameters (N, Zr, c1;c2; . . . ;cN) so that each gear
Fig. 9. (a) A set of test gears and (b) 3, 4 and 5 planet carriers used in this study. The 3-planet carrier was designed to accommodate

6 planets as well.
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set satisfies the conditions defined by one of the Eqs. (10) and (12)–(15). Since this is very time consuming and
costly, this study considered the same baseline gear set design with Zs ¼ 73 and Zr ¼ 125. The remaining
parameters ðN;c1;c2; . . . ;cNÞ were varied to obtain three different gear sets, each representing a different case
defined in Section 2.

Gear set A. With Zs ¼ 73 and Zr ¼ 125, this 3-planet gear set (N ¼ 3) has planets at ci ¼ 0; 2p
3
; 4p

3

since equally spaced planet condition is met, i.e. ðZr þ ZsÞ=N ¼ ð73þ 125Þ=3 ¼ 66 ¼ integer ¼ 1:8182�.
In addition, planet gear meshes are sequentially phased since Zr=3 ¼ 125=3 ¼ 41:6̄, Zrc1 ¼ 0, Zrc2 ¼

ð125Þ2p
3
� 4p

3
and Zrc3 ¼ ð125Þ

4p
3
� 2p

3
. Therefore, Eq. (12) is satisfied and this gear set represents Case (ii) in the

previous section in terms of its sideband activity. This gear set is indeed the example gear set (a) for this case
whose predicted spectrum is shown in Fig. 4(a).

Gear set B. Again with Zs ¼ 73 and Zr ¼ 125 (the same gears), this 5-planet gear set (N ¼ 5) was obtained by
designing a 5-planet carrier shown in Fig. 9(b) with planet spacing angles of ci ¼ 0; 0:404p;
0:798p; 1:202p and 1:596p ðci ¼ 0; 72:727�; 143:636�; 216:364� and 287:273�Þ. Here, the equal spacing condi-
tion is not satisfied since (73+125)/5 ¼ 39.6 (not an integer) while assembly condition is met since all ci are
integer multiples of the least mesh angle of l ¼ 1.81821. In addition,

P5
i¼1Zrci � 0þ 0:505pþ

1:747pþ 0:253pþ 1:495p ¼ 4p, indicating that the gear meshes are sequentially phased. Accordingly, this
gear set satisfies Eq. (14) and represents an unequally spaced and sequentially phased gear set of Case (iv) type.
Fig. 6(b) illustrates the predicted acceleration spectra for this planetary gear set.

Gear set C. The last experimental planetary gear set was obtained with the same gears (Zs ¼ 73 and
Zr ¼ 125), and an X-shaped 4-planet carrier (N ¼ 4) shown in Fig. 9(b). In this arrangement, the planets are at
angles of ci ¼ 0; 0:505p; p and 1:505p ðci ¼ 0; 90:909�; 180� and 270:909�Þ. Here, the planet pairs 1–3 and
2–4 are diametrically opposed while the equal spacing and special (in-phase or sequentially phased) phasing
conditions are not met as Zrci ¼ 0; 1:131p; p; 0:131p. Accordingly, this case represents an unequally spaced
and arbitrarily phased gear set of Case (v) type, satisfying the mathematical conditions of Eq. (15). The
predicted sideband activity for this gear set was given in Fig. 7(b).

Various tests for each of gear sets A, B and C were performed within the sun gear speed and torque ranges
of Os ¼ 200�3200 rev/min and Ts ¼ 200�1000Nm (corresponding to a reaction ring gear torque range of
Tr ¼ 342–1712Nm). Several of these tests were repeated more than once to ensure that the repeatability of the
data is maintained throughout the entire test procedure.

3.3. Instrumentation, data collection and data analysis

The ring gear of the test side gear set was held stationary through 11 equally spaced external spline teeth as
shown in Fig. 10. Eleven miniature accelerometers (PCB-353B15) were mounted on the ring gear outside
Fig. 10. A view of the accelerometers mounted radially on the outside surface of the test ring gear.
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surface radially at an equal spacing of 32.721. Each accelerometer was at a location representing the mid-point
between the adjacent spline teeth. The accelerometer signals were conditioned before being recorded by a
16-channel digital data recorder. The data was processed off-line to obtain the acceleration spectra measured
by all 11 transducers. As the sideband activities detected by all accelerometers were nearly identical, data from
only one of the accelerometers will be provided in the next section. In addition, a photoelectric sensor was used
to generate a once-per-revolution signal of the sun gear shaft. Using the gear reduction ratio, this was scaled to
obtain a once-per-revolution signal for the rotation of the carrier, which was analyzed simultaneously with all
of the acceleration signals to allow proper averaging of the collected data.

For each particular test, 5 s segments of acceleration time histories were collected together with the sun shaft
reference signal. They were next averaged synchronously and a fast Fourier transform (FFT) routine was used
to obtain frequency spectra corresponding to each averaged time history. The frequency scales of the resultant
spectra were normalized by the carrier rotation frequency to obtain the corresponding order spectra with
H ¼ o/oc.
3.4. Experimental results

Fig. 11 shows example measured a(t) time histories for gear sets A, B and C at certain load and speed
conditions. In these figures, the time axis is normalized by the mesh cycle period Tc/Zr and a data segment
covering a complete carrier rotation is presented. In Fig. 11(a) for gear set A (N ¼ 3), an apparent AM is
observed that repeats three times. Similar modulation patterns are observed in Figs. 11(b) and (c) for gear sets
B and C with 4 and 5 planets, respectively. As a result, the FFT spectra A(o) of these time histories exhibit
significant number of sidebands around the gear mesh harmonic order Hm as well as around the higher gear
mesh harmonics (2Hm, 3Hm, 4Hm and so on). Fig. 12 illustrates such sidebands on the order spectrum
corresponding to the time history given in Fig. 11(a). Here, while the amplitudes are different, the same trends
are observed around each mesh harmonic order.
Fig. 11. Examples of measured a(t) in m/s2 at Os ¼ 3200 rev/min from: (a) gear set A (N ¼ 3) at Ts ¼ 800Nm, (b) gear set C (N ¼ 4) at

Ts ¼ 1000Nm, and (c) gear set B (N ¼ 5) at Ts ¼ 1000Nm.
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Fig. 12. An example measured acceleration frequency spectrum for the gear set A at Ts ¼ 800Nm and Os ¼ 3200 rev/min.

Fig. 13. Examples of measured A(o) order spectra for the gear set A at different torque and speed conditions: (a) Ts ¼ 500Nm,

Os ¼ 400 rev/min, (b) Ts ¼ 600Nm, Os ¼ 500 rev/min, (c) Ts ¼ 200Nm, Os ¼ 200 rev/min, and (d) Ts ¼ 1000Nm, Os ¼ 500 rev/min.

M. Inalpolat, A. Kahraman / Journal of Sound and Vibration 323 (2009) 677–696692
Fig. 13 shows order spectra from gear set A (Case (ii) type with equally spaced and sequentially phased
planets) at various Ts and Os values, focusing on the activity around Hm. The first major observation from
these spectra is that no harmonic order is apparent at Hm ¼ 125, i.e. AmE0. All significant harmonic orders
with sizable amplitudes are at orders H ¼ nN ¼ . . . ; 117; 120; 123; 126; 129; 132; . . . in the vicinity of mesh
harmonic order Hm. Sidebands are not symmetric about Hm. All these observations agree with the predicted
spectra of Fig. 4(a) and the sideband behavior established in Section. 2 for Case (ii) gear sets. One difference is
that predicted harmonic order with the largest amplitude was the order H ¼ nN ¼ 126 that is closest to
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Fig. 14. Examples of measured A(o) order spectra for the gear set B at different torque and speed conditions: (a) Ts ¼ 400Nm,

Os ¼ 500 rev/min, (b) Ts ¼ 500Nm, Os ¼ 500 rev/min, (c) Ts ¼ 800Nm, Os ¼ 400 rev/min, and (d) Ts ¼ 1000Nm, Os ¼ 500 rev/min.
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Hm ¼ 125 while Amax is observed at H ¼ 123 in the measured spectra shown in Fig. 13. It is also noted that
relative amplitudes of the sideband orders vary with Ts and Os due to dynamic effects that were not included in
this model.

Similarly, Fig. 14 shows the spectra from gear set B at four different Ts and Os combinations. For this Case
(iv) type gear set (unequally spaced and sequentially phased), the measured sideband activity carries the most
of the common features drawn from the analytical study. Specifically, sideband harmonics appear at several
integer multiples of the carrier order at Hm7n (n: integer) in an asymmetric way around Hm. The number of
sidebands with tangible amplitudes is rather high (10–15). In addition, as both Zr and N are odd numbers, the
gear mesh harmonic order Hm ¼ 125, while non-zero, does not represent the largest amplitude.

Finally in Fig. 15, four measured A(o) spectra are shown for gear set C (Case (v) type with unequally spaced
and arbitrarily phased planets). In line with Fig. 7(b), these measured spectra exhibit a rich sideband activity
with sideband orders at Hm7n that are asymmetric about Hm. The gear mesh harmonic order has small
amplitudes as in predictions of Fig. 7(b). Only main difference between these measurements and the
predictions from the simplified model is that experiments provide a full sideband spectrum with components at
Hm7n while the predicted spectrum for this X-shaped 4-planet gear set (N: even) reveals more dominant even
sideband orders. This suggests that there might be other mechanisms that are not included in the simplified
analysis such as FM and unequal planet load sharing characteristics.

It is consistently observed in Figs. 13–15 that the most dominant harmonic order with the maximum
amplitude is H ¼ 123 while the model predicts the order H ¼ 126 (order that is closest to Hm ¼ 125) as the
dominant one. The factors that were not included in the proposed simplified model such as unequal planet
load sharing, ring gear deflections as well as manufacturing errors of gears (especially roundness error of the
ring gear) could be a reason for this discrepancy. Our ongoing modeling effort attempts to include these
factors through more detailed discrete and deformable-body dynamic models.
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Fig. 15. Examples of measured A(o) order spectra for the gear set C at different torque and speed conditions: (a) Ts ¼ 200Nm,

Os ¼ 800 rev/min, (b) Ts ¼ 400Nm, Os ¼ 500 rev/min, (c) Ts ¼ 600Nm, Os ¼ 500 rev/min, and (d) Ts ¼ 1000Nm, Os ¼ 200 rev/min.
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4. Conclusions and future work

In this study, modulation sidebands of planetary gear sets were investigated analytically and experimentally.
First, a simplified analytical model was proposed to predict the modulation sideband orders as well as relative
amplitude distributions in the vicinity of the mesh frequency harmonic orders. The model considered the
number of planets, planet position angles and the number of teeth of the stationary gear (sun or ring) as the
sole parameters defining the resultant sideband activity. The model was used to simulate a wide range of gear
sets to show that any planetary gear set can be classified in one of five distinct groups: (i) equally spaced and
in-phase planets, (ii) equally spaced and sequentially phased planets, (iii) unequally spaced and in-phase
planets, (iv) unequally spaced and sequentially phased planets, and (v) unequally spaced and arbitrarily
phased planets. General sideband behavior unique to each of these cases were characterized and demonstrated
through simulation of various gear sets. Based on this behavior, other general conclusions can be made as
follows:
(1)
 In a sequentially phased planetary gear set, sidebands are always asymmetrically distributed about the
mesh orders.
(2)
 A dominant (and maximum) mesh harmonic amplitude is achieved only when the planet meshes are in
phase (Zr/N ¼ integer).
(3)
 Symmetric sidebands in both frequencies and amplitudes about the mesh frequency are possible only when
the gear set is in-phase and equally spaced.
A special-purpose experimental set-up was developed to check the validity of the conclusions of the model.
The experimental study included gear sets from three of the five distinct cases identified by the model.
Comparison of the measured spectra to the predictions and general behavior presented in Section 2 indicated
that the model, while simple in many aspects, is capable of capturing the bulk of the sideband behavior.
Measurements also revealed qualitatively different behavior for the three gear sets considered in support of the
classification of planetary gear set arrived at based on this model. With this, the general trends unique to each
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of the five cases of gear sets can be deemed valid, as they were observed in the experimental data as well. They
also point to other influences caused by the dynamic effects at different speeds as well as the changes in gear
mesh excitations with the torque transmitted. Accordingly, our current work focuses incorporating this
analytical model with a discrete parameter, nonlinear time-varying dynamic model similar to the one proposed
by Kahraman [24] to predict the gear mesh dynamic forces and sidebands associated with manufacturing
errors specified in Section 1. An experimental and analytical study is also underway to investigate sideband
behavior of gear sets having unequal planet load sharing. Finally, a finite elements based deformable-body
model of a planetary gear set is being developed for prediction of sideband amplitudes quantitatively for
various ring gear rim thickness values.
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