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Abstract

An experimental and numerical study of a non-uniform impact excitation of a circular bar is reported. In experiments,

nine strikers with different contact area were accelerated against a circular bar. Axial surface strain of the impacted bar was

measured at several distances from the impinged end to include the near and the far fields. The same experimental

conditions were solved numerically using a commercial finite element code. It was demonstrated that the far-field response

is insensitive to both the size and the form of the striker’s colliding end. The distance at which such insensitivity is set is

estimated to be approximately one and a half bar diameters.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The question of sensitivity of a waveguide’s response to the form of an end excitation has attracted much
attention for already several decades. Asymptotical and numerical studies of response of a bar to an impact
suggested that ‘‘if any truly significant effects due to non-uniform end loading of the bar are present, they must
occur at propagation distances which, as an upper bound, are less than 20 bar diameters’’ (Ref. [1], p. 473).
That statement has extended previous asymptotic results reported by Fox and Curtis [2], Jones and Norwood
[3], and Curtis [4] in the context of sensitivity to mixed or pure nature of the end excitation. That bound of
20 bar diameters was set due to the limits of validity of the asymptotic method used rather than from any
result showing that the distance cannot be smaller than that.

A similar result is obtained for a transient response of a plate in plane strain by Sinclair and Miklowitz [5].
More recent works investigate wave propagation in a waveguide subjected to non-uniform end excitation (e.g.,
Refs. [6,7]), however these did not present explicit data enabling one to deduce on the extent of the region
beyond which various forms of excitation generate the same dynamic response.

Using finite element analysis, Meng and Li [8] suggested that for a split Hopkinson pressure bar setup
(SHPB), the upper bound on the sensitivity to non-uniformity of the striker form can be as small as 1.5
diameters from the excited end, provided the average pressure in the bar’s cross-section is the criterion for
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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presence of non-uniformity effect. That estimation is profoundly lower than the standard upper bound of
10–20 diameters.

Sparse experimental studies bring further evidence for negligible effect of non-uniform excitation at
distances which are lower than 10 bar diameters. Flynn and Frocht [9] used the photoelastic method to
compare the effect of uniform, circular and concentrated loading. Bell [10] compared the effect of excitation
generated by projectiles having various contact forms with the same contact area concluding with ‘‘y impacts
of small hollow cylinders of the same area as the solid rod demonstrated that beyond the first half-diameter the
experimental results were insensitive to the major changes in the spatial distribution of loading at the impact
face.’’ (p. 351). Miles [11], putting emphasis on the experimental aspects of end excitation, provide another
example for conditions under which the effect of non-uniform excitation is limited to a region much smaller
than 20 widths of the plate.

Bell’s comment inspired repetition of experimental and numerical investigation of the effect of non-
uniformity of the striker at the School of Civil and Environmental Engineering, Nanyang Technological
University, Singapore. That investigation was limited to four strikers, which have an identical contact area but
different form as pointed by Bell. The results of that investigation are not yet reported.

In the present communication a further experimental investigation of the effect of non-uniform excitations is
reported with an emphasis on the estimation of the size of the near field region where the form of the excitation
does have a significant effect. Here, the effect of both the form and the contact area at the impinged end were
examined. Particularly, we wish to demonstrate the insensitivity of the surface strain far from the excited end to
those two properties of the excitation and to estimate the distance which can be considered as ‘‘far enough’’.

The experimental setup consisted of a basic SHPB with an incident bar (the impacted bar) specially
instrumented to record surface axial strain at several distances along the bar. The variability of the form of
excitation of the incident bar was achieved by nine different strikers (one flat, four bore type, and four pin
type) having different contact areas (ratio of up to two). The strain signals were analyzed on the basis of one-
dimensional theory of wave propagation in a bar, according to which the form of the signal is trapezoidal with
height related to the striker velocity V by the relation

� ¼
s
E
¼

V

2C
(1)

where e and s are the axial strain and stress, E is Young’s modulus, and C the velocity of longitudinal waves in
a bar. That trapezoidal form of the signal is referred to as first-order response.

The purpose of the experiments was to estimate the distance from the impinged end at which the response of
the incident bar is not sensitive to the form and to the magnitude of the contact area of the striker—the
excitation. An attempt has been made to keep the temporal properties of the repetitive experiments as similar
as possible, with the spatial form of the exciting load as a controlled variable. Finite element analysis was used
to simulate the experiments from which the interior strains were extracted. These results were used to further
explore the sensitivity of the interior regions of the incident bar to the striker’s form.

The main result emerging from this study is that the distance at which the first-order response of the bar is
insensitive to both, the contact area and its form, is about 1.5 times the bar diameters. That result for nine
strikers was found to be in good agreement with previous results for the four different strikers examined on
different systems (bars having 2.5 times larger diameter). These results are also consistent with analytical
predictions based on evanescent waves in bars and with a similar experimental finding in a beam-like
waveguide [12].

In Section 2 the experimental setup, procedure, and numerical scheme are detailed. Results are given in
Section 3 followed by discussion in Section 4 where a well-known analytical solution to a waveguide problem
is used to interpret the experimental results. Section 5 is devoted to the summary of the conclusions obtained.

2. Experimental details and modeling

In the design of the experimental setup the immediate aim was to examine the differences in surface strains
along the bar due to impacting strikers having different contact area shapes. That dictated a system which is
able to measure and to record the surface strain response in the near and far fields of the incident bar.
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2.1. The setup

The experimental equipment is based on a standard SHPB system (Fig. 1) located at the Dynamic Fracture
laboratory at the Faculty of Mechanical Engineering at the Technion. The setup consisted of an incident bar
made of PH-17 Steel (static yield at 900MPa, Poisson’s ratio n ¼ 0.27, mass density r ¼ 7655 kg/m3,
C ¼ 5190m/s), with diameter D ¼ 19.05mm and length 1000mm and a striker made of the same material and
diameter with length 242mm. Seven couples of diametrically cemented collinear strain gauges were attached to
the incident bar at distances of 4.7, 14.1, 28.6, 76.1, 152.7, 311, and 550mm from the excited end, x ¼ 0
(corresponding to non-dimensional distances x0�x/D of 0.247, 0.74, 1.5, 4.0, 8.0, 16.3, and 28.9), and
designated as stations 1–7, respectively. Stations 1–6 were equipped with strain gauges having gauge length of
0.2mm while the gauge length at station 7 was of 2mm. The strain gauges were sampled simultaneously at the
rate of 2MHz/16-bit with a gain of 200. The reading of each strain gauge couple was averaged to cancel out
any possible bending of the incident bar.

Three basic striker configurations which differ only in their contact area and end shape were used (Fig. 2);
one standard flat striker (denoted by F), a bore configuration consisted of four strikers (denoted by B1–B4),
and a pin configuration consisted of four strikers (denoted by P1–P4). The dimensions of all nine strikers’
contact area are detailed in Table 1. The eight-shaped strikers’ heads were designed to make four couples to
have the same contact area. Each striker was accelerated by an air pressure gun with velocity measured
through a slot at the gun exit by a four-diode arrangement.

It is worth noting that several previous papers report on evolution of a signal as it propagates along the bar
(e.g., Ref. [13]). Nevertheless, these works are dedicated to the investigation of the dispersion phenomena, thus
the measurements are taken only at stations remote from the impinged end.
Fig. 1. Schematic view of the experimental setup used in the experiments.

Fig. 2. Configuration of the three types of striker heads. d ¼ 19.05mm, h ¼ 3mm. Bore diameter din, pin diameter dout, and contact area

of each are detailed in Table 1.
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Table 1

The pin and bore diameters and contact area for the nine strikers.

Flat striker Pin striker Contact area dout (mm) Bore striker Contact area din (mm)

F (area ¼ 285) P1 250 17.84 B1 250 6.68

P2 220 16.75 B2 220 9.10

P3 190 15.55 B3 190 11.00

P4 160 14.26 B4 162 12.50

Area is in units of mm2.

Fig. 3. Typical mesh configuration of CAX4R axisymmetric elements of size �0.25mm at the contact areas between the striker and the

incident bar. Pin striker is shown. Note that the left side is the radial symmetry line.
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2.2. Experiments

The experiments consisted of few repetitive firings of each striker with two target velocities of 7 and 18m/s.
Three firings were made with each striker to verify repeatability. The maximal velocity is expected to generate
stress of magnitude of 610MPa in the striker with the smallest contact area. This assures the material to
remain within the elastic limit.

2.3. Finite Element Model

The above experiments were simulated with the commercial finite element code ABAQUS Explicit version
6.7. A transient linear elastic simulation was performed. Due to the radial symmetry an axisymmetric model
was used. The model uses a 4-node bilinear axisymmetric quadrilateral element (CAX4R). A fine mesh of
element size 0.25mm which exhibits a numerical convergence was used for all simulations. The mesh of the
impinged bar consists of 152,000 elements while the mesh of the striker P4 (for example) consists of 36,484
elements. The mesh at the contact region between the striker and the bar for striker P4 is shown in Fig. 3. In
the simulation the striker was given an initial velocity of 17.8m/s and frictionless contact was applied between
the striker and the bar. The simulation lasted for 250 micro-seconds, allowing time for the arrival of the pulse
head to the distance of 1.3m. The pulse itself lasts about 120 micro-seconds.

3. Results

Fig. 4 shows typical recordings at stations 1, 2, and 7 for the case of a flat striker given a velocity of 16.5m/s.
The strain values are left in voltage units as measured. Recordings at the same stations induced by strikers P4
and B4 with a slightly higher velocity are shown in Figs. 5 and 6, respectively. The first-order trapezoidal
signal characterizes the strain-time response at all stations. The agreement between the average amplitude of
the signal at station 7 and the prediction of the one-dimensional theory in Eq. (1) can be judged from Fig. 7. In
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Fig. 7 the averaged amplitude at station 7 for 27 experiments is shown as a function of striker’s velocity. From
Eq. (1) the relation between the strain and the impact velocity should be linear with a slope equal to 1/2C. The
linear best-fit for the experimental results leads to C ¼ 5242m/s, which is within 2% off the nominal data of
5190m/s.

The deviation of average strain at station 1 from the prediction of Eq. (1) for the non-uniform strikers, as
shown in Figs. 5 and 6, is expected in view of several previous results (e.g., Refs. [8–10]). Similar deviation,
though smaller in its magnitude, for a flat striker is notable in Fig. 4 and was not expected. A flat striker
ideally should generate a uniform wave from the very end of the bar (for frequencies low enough, of course).
That deviation of strain at station 1 from the strain at station 7 occurred in all experiments with a flat striker
(15 experiments). In some experiments the amplitude at station 1 is higher than at station 7 though in most of
them it is lower. That deviation is attributed to some not yet identified imperfection in the bars’ geometry or
alignment affecting only the extremely sensitive region of the near field.
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Further examination of these plots reveals that the amplitudes of the recordings at stations 2 and 7 for all
three strikers are essentially the same. That result is common to all strikers and considered as the central
observation in our context. Additional demonstration of an almost identical signal at stations 2–6 is shown in
Fig. 8 reproducing signals recorded for a striker B1 impinged at a velocity of 7.6m/s.

The last observation to be noted in Figs. 4–6 relates to second-order effects that distinguish the various
strikers. It is evident from Figs. 6 and 8 that bore strikers have two noticeable characteristics different from the
flat and the pin strikers. One is a trailing edge of the trapezoidal signal of bore strikers having a turn at the end
of the signal. That change in slope is identical at all stations, occurs for all bore strikers (Figs. 6 and 8), and
can be noticed also in other experimental instances (e.g., Ref. [13], Figs. 3–7). The second observation relates
to the absence of the regular sinusoidal variation of the signal at the head of the trapezoidal form in the bore
strikers at station 7. That sinusoidal response, interrupted after a particular time, is typical to flat and pin
strikers, Figs. 4 and 5, and is thoroughly explained by Fox and Curtis [2] for a uniform step excitation. These
two second-order features of the dynamic response are out of the scope of the present study.
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For a more convenient comparison of the first-order response we draw strain recordings for all nine strikers
at stations 1 and 5 (station 5 is typical for the far-field response) on the same chart in Fig. 9a and b,
respectively. The signals are shifted arbitrarily along the time axis to provide a clearer view of each signal on
the same graph. It can be observed from Fig. 9b that there is only a minor difference in amplitude between all
nine results for station 5. This small deviation is found to result from the slightly different striker velocities
(771m/s) scaling of which according to Eq. (1) gives identical first-order response (to within a few percent)
for all nine strikers at that particular station 5 and stations 3, 4, 6, and 7 as well. It is apparent that the
recordings at station 1 (Fig. 9a) differ markedly, way beyond the possible correction for the actual velocity of
the strikers. A comparison of the signals at station 2 with the signals at station 7 in Figs. 4–6 suggests that
beyond station 2 all the signals would be identical to that predicted by the first-order theory (Eq. (1)). That
may lead to the conclusion that station 1 lies well within the affected zone (affected by the form of the striker)
while station 2 lies outside of that zone.

From Fig. 9a it can be concluded that the bore strikers induce higher strain at the surface close to the
impinged end. Pin strikers, on the other hand, generate lower strains. That different response dies out showing
only negligible effect ‘‘far enough’’ from the impinged end. The distance at which the effect can be considered
as negligible is examined in the next section.

Numerical simulation for the same experiments has been performed to further investigate the interior
response of the impinged bar. The close agreement between the experimental and numerical results for a
striker velocity of 17m/s is exemplified in Fig. 10. Here the time and strains are scaled to the time required for
a wave to cross one diameter of the bar, D, and to the strain at infinity, according to the relations

t0 ¼
t

D=C
�0 ¼

�

�1
¼ �

2C

V
(2)

where e0 is the scaled strain. Fig. 10 shows the numerical and the experimental results for the surface response
at station 1 for three strikers—flat, P4, and B4. The observed 5–10% discrepancy can be attributed to
experimental and numerical errors, especially due to extreme sensitivity to the exact location of the strain
gauge within the near field (as can also be seen from Figs. 12 and 13).

In Figs. 11a, b the relative strains e0 (according to Eq. (2)) within the cross-section at stations 1 and 2 are
plotted for strikers B1, B4 and P1, P4, respectively. The curves generated from an average of approximately 60
readings at times during which the signal is passing through the particular point. Due to typical fluctuation of
the signal, as seen in Figs. 4–6 and 8–10, it is not expected that the accuracy of the average will be better that
5%. Up to that value of error, it turns out that the internal distribution of strain at station 2 is close to uniform
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agreeing well with surface recordings (Figs. 4–6) according to which the response at station 2 is almost
identical to the response at infinity.

4. Discussion

The experimental results for the surface strains obtained with the various strikers give a rough estimation
for the extent of the effect of different striker forms as judged based on the first-order response. That distance
is between station 1 (x0 ¼ 0.25) and station 2 (x0 ¼ 0.74). However, the numerical result at the interior
regions of the rod, shown in Fig. 11b, suggest that that distance is between station 2 (x0 ¼ 0.74) and
station 3 (x0 ¼ 1.5). For a more conclusive estimation of the extension of the affected zone, further analysis of
the numerical results was performed.

To more accurately estimate the extent of the affected zone numerical results for the surface strain were
plotted versus the distance from the impinged end. To emphasize the deviation from the first-order response
given by Eq. (1), the average amplitudes of the relative strains e0, defined in Eq. (2), are plotted in Fig. 12
versus the normalized distance x0. Results for only four strikers B1, B4, P1, and P4, are shown. Due to
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averaging process of the fluctuating signals the accuracy of these curves is not expected to be better than 5%,
which is the same as for the curves in Fig. 11 and in Fig. 13. Apparently, beyond the distance of x0E0.8 all
strikers produce the same response. The distance beyond x0 ¼ 0.8 is thus designated on the graph as an
unaffected zone, meaning that up to the first-order response that zone is unaffected by the form and the size of
the contact surface at the impinged end. That value of x0 ¼ 0.8 agrees well with the experimental result of
strain at station 2 which is almost indistinguishable from the strain at more distant stations. The near zone,
estimated to be limited to x0o0.8, is extremely sensitive to the details of the excitation thus referred to as an
affected zone.

Experimental results of the relative strain at station 1 are shown in Fig. 12 as well. It is evident that the
experimental and the numerical results for pin strikers lie within a reasonable error range. The bore strikers,
on the other hand, exhibit extremely large departure between the numerical and the experimental results.
Large discrepancy between the numerical and the experimental results found to exist also for a flat striker
where the deviation at station 1 from the theoretical result of 1.0 scatters between 0.7 and 1.1. The exact
explanation of that apparent discrepancy remains to be explored. It is estimated here that its origin lies in
some experimental inaccuracy (misalignment, curvature of the surfaces), and numerical inaccuracy (especially
the averaging process of a non-uniform response) which, for some reason, are more prominent in flat and bore
strikers.

Fig. 13 traces the relative axial strain at the axis of the bar, r ¼ 0, as calculated numerically from the FE
simulations for the same four strikers, recordings of which are shown in Fig. 12. As expected, the magnitude
of the signals for bore and pin strikers are inverted between r ¼ 0 and a, where a is the bar radius.
The convergence of all signals to within |e0–1.0|E0.04 at x0E1 can be observed, though convergence to
e0 ¼ 1.0 occurs only at x0E1.5. That distance is larger than the convergence distance of x0E0.8 obtained above
in Fig. 12, judged upon the surface strain. Due to inherent inaccuracy of about 5% in deriving the curves
themselves (as mentioned above), there is no point in making much more accurate estimation. This is
especially valid given these estimations are based on a limited sample of the cross-section field (r ¼ 0, r ¼ a)
and for only four types of strikers in Figs. 11–13 and eight strikers in Fig. 9.

The result emerging from the experiments and from the numerical simulations shown here, according
to which the extent of the affected zone is only one and a half bar diameters, stands much shorter to
the one commonly used in practice (see recent review in Ref. [14]). Yet it agrees well with experimental
results as hinted in a note by Bell [10] and with the results obtained in recent investigation at Nanyang
Technological University (to be reported). It is of interest here to examine whether that result could
be expected from the theory of waveguides and to what degree it agrees with the experiments. The examination
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will be based on general properties of waveguide dynamics without actually solving for the exact conditions
encountered in the experiments. In particular, the questions raised are what is the origin of the observed
different response within the affected zone and whether it is possible, based on waveguide dynamics, to
estimate its size.

Analytical solution of elastic wave propagation in a waveguide is commonly written in the form of
separation of variables given for the displacement field u by (e.g., Ref. [15])

uðx; r; tÞ ¼
XN

n¼1

AnUnðrÞ e
iðxnx�otÞ þ

X1

n¼Nþ1

AnUnðrÞ e
ixnxe�iot (3)

where o is the circular frequency, n stands for the wave modes with complex valued amplitude An, real,
complex, or imaginary wavenumber xn, and Un(r) is the associated cross-sectional profile for both velocity
components in the axial and radial directions (x, r), respectively. The separation into two sums made here to
emphasize the distinction between the finite number of N propagating modes having real valued wavenumbers
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Fig. 13. Numerical results for the axial strain at the bar axis (normalized to the strain at infinity) for the P1, P4, B1, and B4 strikers at

various distances from the end of the input bar.
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(the first sum) and the evanescent waves characterized by complex and imaginary wavenumbers. It is evident
from Eq. (3) that for complex and imaginary wavenumbers the amplitude decays exponentially along the axial
direction x (the wavenumbers leading to exponential growth are excluded on a physical ground). The largest
attenuation distance is dictated by the wavenumber having the smallest imaginary part. The distance at which
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only 1% of the original amplitude is remained is given

l0:01 ¼
j lnð0:01Þj

MinfjIm½x�jg
(4)

and can be considered as a typical upper bound for the attenuation distance. Here, Min{|Im[x]|} is the
attenuation constant.

Harmonic steady-state analysis of a waveguide response, in a form of Eq. (3), together with the aid of
Fourier’s theory provides a powerful tool for understanding a transient response in waveguides. Frequency
maps derived from the Pochhammer–Chree equations for bars (and Rayleigh–Lamb equations for plates, e.g.
Ref. [15]), assigning the valid wavenumbers xn for each frequency o, predict that sensitivity of the waveguide
response to the form of the excitation can be attributed to two phenomena. One is the different partition of
energy among the N propagating modes generated in the case when the frequency range allows for more than
one propagating mode [16]. The second origin for different responses of differently distributed end excitation
is attributed to evanescent waves [17].

More than one propagating wave mode can exist at frequencies above the first cutoff frequency. Assuming
only axisymmetric modes generated, any load with frequency lower than that cutoff frequency will generate
only the fundamental mode, i.e., N ¼ 1. For a bar with a Poisson’s ratio of 0.27, the non-dimensional cutoff
frequency is approximately Ocutoff ¼ 3.7 (Ref. [18], p. 327), with the non-dimensional frequency defined as

O �
a

CT

o (5)

where a is the radius of the bar, CT the transversal wave velocity, and o the angular frequency. If the
excitation contains frequencies above that cutoff frequency, and the energy is partitioned differently among
the possible modes for different strikers, the resulting displacement field will be different all the way down the
waveguide due to the nature of wave propagation (due to various combinations of the first sum in Eq. (3)). In
a resent study by Karp [19] it was found that the same energy partition takes place for different moderately

non-uniform, harmonic excitations, resulting in a similar far-field response for this family of different spatial
forms of excitations even in the high-frequency regime. That means that form variation of the excitation
within some limits does not alter the energy partition among the available wave modes. For material
properties and geometry of the bar used in the experiment, the first cutoff frequency obtained from Eq. (5) is

f cutoff ¼
ocutoff

2p
¼

CT

2ap
Ocutoff � 200 kHz (6)

Transient response of colliding bars cannot be generally limited to low frequencies below that first cutoff
frequency. Follansbee and Frantz [20] and Tyas and Watson [21] have shown that typical impact in a SHPB
system consists mainly of the fundamental first mode of the waveguide. Fox and Curtis [2], on the other hand,
confirm experimentally that traces of second mode in pressure-induced excitation do exist.

To estimate the frequency content in a strain signal a Fourier analysis (FFT) of typical results is performed
on recordings at stations 7 and 1 for three experiments with strikers F, B4, and P4. Fig. 14 shows the FFT of
the signals at station 7 of the three experiments while Fig. 15 shows FFT of a signal at station 1 of the same
experiments. It can be observed that the signals at station 7 for all three strikers (F, B4, and P4) have the same
frequency spectrum with negligible frequencies beyond 150 kHz. The frequency spectrum at station 1, as
shown in Fig. 15, is different for the three strikers in two ways. At low frequencies the amplitudes are different,
reflecting the different amplitude of the trapezoidal response. At high frequencies, between 100 and 200 kHz,
the difference is noticeable as well, though limited to amplitudes much smaller than the height of the
trapezoid. Yet, at both stations the frequencies conveying most of the energy are below 100 kHz. That
frequency is below the first cutoff frequency given in Eq. (6) and hence, most of the energy is conveyed by
frequencies in the region where only one propagating mode can be generated at each frequency. Therefore, it is
expected that if any propagating mode other than the first is excited, its contribution to the signal will be at
least 10 times smaller than the contribution of the first mode at low frequencies. Indeed, the amplitude of the
oscillations at the head of the trapezoidal signal is about 10 times smaller than the height of the signal itself.
Yet, these small amplitude waves cannot explain the large deviation in strain at the first station. Moreover,
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Fig. 15. Typical frequency spectrum of a strain signal for strikers F, B4, and P4 at station 1.
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propagating modes are not attenuated at such a high rate to die out at the second or the third stations as
turned out to be the case for all strikers and experiments.

We turn now to examine the possible contribution of the evanescent waves to the deviation of the strain at
the first station from the strain at further stations. Generation of the evanescent waves depends on the exact
boundary condition and is said to be excited to compensate for the difference between the form of the
propagating modes and the form of excitation itself. It is natural, therefore, to expect generation of different
evanescent waves for differently distributed loads over the excited bar end.

Due to the decaying nature of these waves, the different response should be limited to the close vicinity of
the excited end, usually termed the near field. No strict and general upper bound on the size of the near field
could be established due to the possibility of inducing evanescent waves with very large decay distances at high
frequencies close to cutoff frequencies (Ref. [22] for plates and Ref. [23] for bars).

To estimate the bounds on decay distance in our system we use the Pochhammer–Chree solution for the
steady-state response of a semi-infinite bar with Poisson’s ratio of 1/3 given by Zemanek [23]. Typical upper
frequencies in the signal (as seen in Figs. 14 and 15) of f ¼ 100, 150 kHz correspond to non-dimensional
frequencies O ¼ 1.9, 2.8, respectively. These in turn, from Zemanek [23], give the smallest attenuation
constants of axE2.5, 1.7, respectively. By Eq. (4), for the value of ax ¼ 1.7, the attenuation of any field to 1%
of its original value at x ¼ 0 is at a distance of 1.35 times the bar diameter. Some minor variation on that
estimation is expected for materials with different Poisson’s ratios (Ref. [24]). This shows a very close match
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between the distances at which the strain signal converges to the strain at infinity as found from experiments,
numerical simulations, and analytical solution of the attenuation range of the evanescent waves.

We may conclude that the evanescent waves are the origin for the different amplitudes at the first station for
different strikers. Given that, the upper bound for decay of these waves is dictated by the evanescent mode
having the smallest imaginary part in the wavenumber. In the region of frequencies below 150 kHz, that value
is approximately 1.7 giving a decay distance of about 1.4 times the bar diameter. That analytical bound agrees
well with the numerical and the experimental results obtained here. That result is comparable to a similar
estimation of the transient response of a beam with rectangular cross-section [12] where the affected zone for a
transient wave reflection from a built-in end was found to extend up to one width of the beam.

5. Concluding remarks

The effect of various shapes of the contact area of the striker on the transient response of a bar has been
examined experimentally and numerically. Axial strains were measured by standard gauges located at various
distances from the impinged end and extracted from numerical simulations performed with a FE code. It was
found that the first-order response of the bar is insensitive to the form of the excitation at distances greater
than one and half diameters from the excited end. The meaning of this insensitivity is as follows: based on the
first-order response at stations located beyond 1.5 times the bar diameter, one cannot tell which of the strikers
were impinged on the bar while the velocity of the striker can be extracted based on Eq. (1) whatever the form
or the magnitude of the area of the contacting interface. That region of one and a half diameters from the
impinged end is the affected zone where the bar response is extremely sensitive to the form and the size of the
excitation and is much smaller than commonly assumed.

It is evident that the size of the affected zone depends on the type of striker used and the exact location at
the cross-section upon which the attenuation is judged. Therefore, the estimation obtained here cannot be
considered as a rigorous upper bound on the size of the affected zone. Yet, waveguide dynamics support that
estimation which is of a comparable size as in the static case [25].

The design of the form of the strikers used in this investigation had mainly theoretical interest for
examination of the form effect. Yet, the forms examined might have some practical implications. Pin-type
strikers can be considered as simulating a standard compression SHPB experiment when the diameter of the
specimen is smaller than the diameter of the bars (e.g., Ref. [26]) or any other non-uniform excitation form
(e.g., Ref. [27]). Bore-type strikers have some similarity to the form of bars in shear punch dynamic tests (e.g.,
Ref. [28]) and the ring compression test (e.g., Ref. [29]). The tension test in the SHPB system also involves
excitation that cannot be considered as uniform both for the system bars (e.g., Ref. [30]) and for the sample
itself (e.g., Ref. [31]). Furthermore, the results obtained here might be of practical interest for the SHPB
system design with large diameter bars (e.g., Ref. [32]) where the requirement to locate strain gauges at
distances larger than 10 diameters of the bar is difficult to achieve.
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