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Abstract

In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in

the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed

system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to

make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from

previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless

matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic

model is proposed.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Industrial computational models developed for the vibroacoustic analysis of complex structures in the low-
and medium-frequency ranges are mainly constructed using the finite element method which enables complex
systems to be analyzed. However, even if the predictability of these models is quite acceptable for general
conception purposes, there still exists a gap between experimental analysis and numerical analysis. This gap is
due to uncertainties existing not only in the parameters of the physical system and their measuring procedures,
but also in the numerical model itself. This is why applying statistical methods becomes necessary to
compensate for those uncertainties. One well known statistical approach is the parametric probabilistic
approach. This approach takes into account uncertainties in the physical system parameters but does not take
into account the computational model uncertainties. To take into account these model uncertainties, the non-
parametric probabilistic approach of model uncertainties presented in Refs. [1–3] is used in this work to
construct a statistical computational model.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Statistical methods based on energy analysis like the well known statistical energy analysis (SEA) [4,5] are
devoted to the high-frequency range where the number of modes is very high and the statistical properties are
quite evident. On the other hand in the low- and medium-frequency ranges, global modes and local modes
are present simultaneously in a same narrow frequency band. The SEA and its derivations have been developed
and implemented in a lot of previous research works such as those presented in Refs. [6–13]. The efficiency of
those methods in the high-frequency range is due to the small statistical fluctuations with respect to the mean
values obtained using frequency averaging. This is not the case in the low- and medium-frequency ranges where
the mean values are no more representative of the response due to very high statistical fluctuations. In addition, in
these frequency ranges, we need to keep the mean phases of the responses which are not linearly decreasing. It is
well understood today that only a computational model derived from the complete boundary value problem is
necessary. Another reason why statistical methods using frequency averaging are not adapted to low- and
medium-frequency ranges is that such averaging induces a loss of the frequency resolution which is not
compatible with the frequency responses in these frequency ranges for lightly damped systems. For this last
reason frequency averaging is sometimes replaced by spatial averaging. This type of averaging is very difficult to
implement on complex structures like automotive vehicles structures and may be problematic in these cases.
Consequently, the most appropriate strategy is to use an ensemble averaging applied to a family of random
systems requiring the explicit construction of the probability model. This strategy is adopted in the present work
by using a probabilistic computational model constructed using the non-parametric probabilistic approach. Using
the ensemble averaging, statistical properties of the response that have been observed in previous work [14,15] in
the low- and medium-frequency ranges in a stochastic context can be exploited.

It should be noted that Refs. [14,15] deal with the prediction and experimental validation in the low- and
medium-frequency ranges of the complex vibroacoustic systems, such as an automotive vehicle, using an
uncertain computational model. In this work, the random frequency response functions (FRF) are predicted
for all the frequencies in the band of interest and with a spatial resolution corresponding to the used finite
element mesh. Such complex systems can have several millions of degrees of freedom, and consequently,
several millions of FRF. The objective of the present work is to significantly reduce the number of FRF,
constructed by the method proposed in Refs. [14,15], through replacing several millions of FRF by only a few
hundred FRF while keeping a reasonable accuracy of the vibroacoustic responses.

A simplified vibroacoustic model for low- and medium-frequency bands is proposed based on an energy-
density field approach which uses the statistical computational model. This approach requires a full stochastic
vibroacoustic analysis using the non-parametric probabilistic approach of uncertainties for which the CPU
time is denoted by tfull . A post-treatment of the results of this full stochastic analysis is then needed to
construct the simplified vibroacoustic model. The CPU time required for this post-treatment is denoted as
Dtsimpl . For a very large computational vibroacoustic model, Dtsimpl is not significant with respect to tfull which
means that the total CPU time is equivalent to tfull . Consequently, there is no additional CPU time with
respect to the full stochastic vibroacoustic computation. It should be noted that the introduction of such
simplified vibroacoustic model is not carried out to decrease the CPU time, but is rather developed to help
save time in the phase of the design process by engineers. Compared to CPU time, this gaining of time is much
more significant.

The stochastic reduced computational model of the vibroacoustic system is obtained from the mean reduced
computational model using the non-parametric probabilistic approach of both model uncertainties and system
parameters uncertainties. The stochastic reduced matrix equation is then solved using the Monte Carlo
method. The main idea of the proposed energy approach is based on a normalization of the FRF using both
the input and the output mobilities of the system. The vibroacoustic energy analysis is performed in a local
coordinate system to ensure better analysis of the structural deformations. The reason of using these local
coordinates will be explained in details later.

It should be noted that the normalization of the FRF with respect to the input and output mobilities has
been presented in previous works dedicated to energy methods. However, the mobilities used in these works
are not the same as those used in the present work. For example Ref. [16] uses what is called the energy
mobility. Moreover, those methods use either frequency or spatial averaging.

For shortness the mean vibroacoustic model is not presented in this paper. The mean reduced model and the
stochastic vibroacoustic model are briefly summarized. The reader is referred to Ref. [17] for the general
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formulation of the mean model and to Refs. [14,15] for the stochastic formulation in the context of automotive
structures.

The general structure of this paper is then presented as follows: First, we present the mean reduced

computational model of the vibroacoustic system. Second, the application of the non-parametric probabilistic
approach of uncertainties on the mean reduced model is presented. The energy-density field approach and the
transformation from the global coordinate system to the local one are then explained. Then, we present
the construction of the simplified vibroacoustic model. Finally, the results and the conclusion are presented in
the last two sections.

2. Notation

The following notations are used in this paper:
�
 Lower case bold letters stand for deterministic vectors (e.g. u).

�
 Curved capital letters stand for the mean reduced model deterministic matrices (e.g. A).

�
 f is the force vector of the mean reduced model.

�
 Bold upper case letters stand for random matrices of the stochastic computational model (e.g. A).

�
 Any underlined quantity means that this is the mean statistical value of this quantity (e.g. T).

�
 The superscripts ‘‘s’’ stands for the structure and ‘‘f ’’ stands for the acoustic cavity (e.g. qs and qf ).

�
 The superscript ‘‘loc’’ stands for a quantity in the local coordinates (e.g. Eloc).

�
 The superscript ‘ indicates directions of the local coordinates system ðX ‘; Y ‘; Z‘Þ.
3. Reduced mean computational vibroacoustic model

For all angular frequencies o belonging to the frequency band of analysis B ¼ ½omin;omax� with omin40, the
reduced mean computational vibroacoustic model is written as

usðoÞ ¼ CqsðoÞ; pf ðoÞ ¼ Fqf ðoÞ, (1)

in which qsðoÞ is the vector of the generalized structural coordinates, with values belonging to Cn, associated
with the n first structural elastic modes constituting the matrix C and in which qf ðoÞ is the vector of the
generalized acoustical coordinates, with values belonging to Cm, associated with the m first acoustic modes
constituting the matrix F which includes the constant pressure mode at zero eigenfrequency. qsðoÞ and qf ðoÞ
verify the matrix equation

AsðoÞ C

o2CT Af ðoÞ

" #
qsðoÞ

qf ðoÞ

" #
¼

fs
ðoÞ

ff
ðoÞ

" #
. (2)

In Eq. (1), usðoÞ and pf ðoÞ are, the vector of the structural dofs with values belonging to Cns , and the vector
of the acoustical dofs with values belonging to Cnf , respectively. In Eq. (2),AsðoÞ andAf ðoÞ are, respectively,
the generalized dynamical stiffness matrix of the structure and the generalized dynamical stiffness matrix of
the acoustic cavity which are defined by

AsðoÞ ¼ �o2Ms
n þ ioDs

n þKs
n, (3)

Af ðoÞ ¼ �o2Mf
m þ ioDf

m þKf
m. (4)

In Eq. (3), Ms
n;D

s
n and Ks

n are positive-definite symmetric real ðn� nÞ matrices corresponding to the

generalized mass, damping and stiffness matrices. In Eq. (4) devoted to the acoustic cavity, Mf
m is a positive-

definite symmetric real ðm�mÞ matrix corresponding to the generalized ‘‘mass’’ matrix and, Df
m and Kf

m are

the positive symmetric real ðm�mÞ matrices corresponding to the generalized ‘‘damping’’ and ‘‘stiffness’’
matrices. Finally, in Eq. (2), C is the real (n�m) matrix corresponding to the generalized vibroacoustic

coupling matrix and where fs
ðoÞ and ff

ðoÞ are the generalized structural forces and the generalized acoustical
sources applied to the vibroacoustic system.
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4. Stochastic computational vibroacoustic model

In this work, the non-parametric probabilistic approach [1–3] is used to construct the statistical
computational vibroacoustic model in order to take into account both parameter and model uncertainties.
One refers the reader to Ref. [14] for the details of this implementation. In such an approach, the matrices of
the reduced mean computational vibroacoustic model are replaced by random matrices whose mean values are
equal, by construction, to the matrices of the reduced mean computational vibroacoustic model.
Consequently, Eqs. (1) and (2) are replaced by the following random equations:

UsðoÞ ¼ CQsðoÞ; Pf ðoÞ ¼ FQf ðoÞ, (5)

in which, the random vector QsðoÞ with values belonging to Cn and the random vector Qf ðoÞ with values
belonging to Cm, verify the random matrix equation

As
ðoÞ C

o2CT Af
ðoÞ

" #
QsðoÞ

Qf ðoÞ

" #
¼

fs
ðoÞ

ff
ðoÞ

" #
, (6)

where the random matrices As
ðoÞ and Af

ðoÞ are written as

As
ðoÞ ¼ �o2Ms

n þ ioDs
n þ Ks

n, (7)

Af
ðoÞ ¼ �o2Mf

m þ ioDf
m þ Kf

m. (8)

In Eq. (7), Ms
n;D

s
n and Ks

n are random matrices with values in the set of all the positive-definite symmetric real
ðn� nÞ matrices. In Eq. (8), Mf

m is a random matrix with values in the set of all the positive-definite symmetric
real ðm�mÞ matrices and, Df

m and Kf
m are random matrices with values in the set of all the positive symmetric

real ðm�mÞ matrices. Finally, in Eq. (6), C is a random matrix with values in the set of all the real ðn�mÞ

matrices. The probability distributions of these seven random matrices are completely defined in the non-
parametric probabilistic approach and a numerical procedure for generating independent realizations of these
random matrices is explicitly known (see Refs. [1–3]). It should be noted that, in this random matrix theory,
the statistical fluctuation level of each random matrix is controlled by a dispersion parameter d40. If d ¼ 0
(deterministic case) the random matrix is equal to its mean value. The higher the value of d, the higher is the
uncertainty level.

5. Implementation of the energy-density field approach

Let nsf ¼ ns þ nf be the total number of dofs. One will only use the subset fj1; . . . ; ja; . . . ; jrg of the r observed
dofs which is equal to the number of excited dofs for the vibroacoustic system. In general, r5nsf . Note that the
excited dofs are the same as the observed dofs. The excitations are represented by external mechanical forces
applied to the structure and/or by external acoustic sources in the acoustic cavity. For a fixed in f1; . . . ; rg, let
t/faðtÞ be the function from R into Rr representing the excitation vector relative to the dofs ja which is
written as faðtÞ ¼ f0; . . . ; f a

aðtÞ; . . . ; 0g and which is such that fað�tÞ ¼ faðtÞ. It is assumed that fa is square
integrable on R. Let faðoÞ ¼

R
R
e�iotfaðtÞdt be its Fourier transform which is real function such that

fað�oÞ ¼ faðoÞ. Consequently, we have faðoÞ ¼ f0; . . . ; f a
aðoÞ; . . . ; 0g. Finally, it is assumed that the support of

o/faðoÞ is the bounded interval B [ B in which B ¼ ½�omax;�omin�. Let ZðoÞ be the ðnsf � nsf Þ complex
random matrix such that

ZðoÞ ¼
C 0

0 F

� �
As
ðoÞ C

o2CT Af
ðoÞ

" #�1
CT 0

0 FT

" #
, (9)

which exists for all o in B. Let ZðoÞ be the ðr� rÞ complex random matrix such that, for all a and b in
f1; . . . ; rg, one has

ZabðoÞ ¼ ZjajbðoÞ. (10)
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For all o fixed in B, let TðoÞ be the ðr� rÞ complex random matrix defined by

TðoÞ ¼ ioZðoÞ. (11)

The function o/TðoÞ is called the matrix-valued random FRF related to the excited and to the observed
dofs. It should be noted that Tð�oÞ ¼ TðoÞ. For a fixed in f1; . . . rg, let VaðoÞ be the complex random vector
of the velocity responses for the observed dofs fj1; . . . ; jrg. One then has

VaðoÞ ¼ TðoÞfaðoÞ. (12)

We now introduce the ðr� rÞ random mobility matrix YðoÞ of the vibroacoustic system for the excited and for
the observed dofs. Below one uses the terminology introduced in Refs. [18,19] concerning the driving point
mobility functions and the coupling mobility functions. In the present work we are only interested in the
driving point mobility functions and not in the coupling mobility functions, the random mobility matrix is a
ðr� rÞ real diagonal random matrix defined by

YabðoÞ ¼
ReðTaaðoÞÞ if a ¼ b;

0 if aab:

(
(13)

It should be noted that, for all o 2 B, YaaðoÞ is positive-valued random variable which is such that
Yaað�oÞ ¼ YaaðoÞ.

The random input power of the vibroacoustic system induced by the excitation fa is defined by

Pa
in ¼

Z
R

faðtÞTVaðtÞdt. (14)

Since fað�oÞ ¼ faðoÞ and since Vað�oÞ ¼ VaðoÞ, one can write

Pa
in ¼

1

p

Z
B

faðoÞT RefVaðoÞgdo. (15)

Substituting Eq. (12) into Eq. (15) yields

Pa
in ¼

1

p

Z
B

faðoÞT RefTðoÞgfaðoÞdo, (16)

which can be rewritten as

Pa
in ¼

Z
B

painðoÞdo, (17)

painðoÞ ¼
1

p
faðoÞT RefTðoÞgfaðoÞ ¼

1

p
RefTaaðoÞgf

a
aðoÞ

2. (18)

One introduces the vector-valued spectral density function sf ðoÞ ¼ ðsf
1ðoÞ; . . . ; s

f
r ðoÞÞ belonging to ðRþÞr

relative to all the excited dofs such that

sf
aðoÞ ¼ ð1=2pÞf

a
aðoÞ

2. (19)

Similarly, one introduces the random input power density function pin with values belonging to ðRþÞr such
that

pin ¼ ðp1in; . . . ; p
a
in; . . . ; p

r
inÞ (20)

which can then be written, using the diagonal matrix YðoÞ, as

pinðoÞ ¼ 2YðoÞsf ðoÞ. (21)

From Eq. (21), it can be deduced that

sf ðoÞ ¼ 1
2
YðoÞ�1pinðoÞ. (22)
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On the other hand, the total energy of the response signal Va ¼ ðV a
1; . . . ;V

a
r Þ is defined by the equation

Ea
tot ¼

Z
R

kVaðtÞk2 dt ¼

Z
B

1

p
kVaðoÞk2 do. (23)

Introducing the random total spectral density function sv
a of the random response velocity Va such that

sv
aðoÞ ¼

1

p
kVaðoÞk2. (24)

One then introduces the random spectral density function sv of the random velocity responses V1; . . . ;Vr with
values belonging to ðRþÞr such that

svðoÞ ¼ ðsv
1ðoÞ; . . . ; s

v
rðoÞÞ. (25)

Finally, one introduces the ðr� rÞ real random matrix HðoÞ which can be define by

HbaðoÞ ¼ jTbaðoÞj2. (26)

From Eq. (12), it can then be deduced that Va
bðoÞ ¼ TbaðoÞ f

a
aðoÞ without summation over a. Thus, Eq. (24)

yields sv
aðoÞ ¼ ð1=pÞ

Pr
b¼1jTbaðoÞj2f a

aðoÞ
2. Using Eqs. (19) and (26) one can obtain the equation sv

aðoÞ ¼

2
Pr

b¼1HbaðoÞsf
a which can be rewritten as

svðoÞ ¼ 2HðoÞsf ðoÞ. (27)

Introducing the random local response power density function pR with values belonging to ðRþÞr such that

svðoÞ ¼ YðoÞpRðoÞ, (28)

and substituting Eqs. (27) and (22) into Eq. (28), yields

pRðoÞ ¼ YðoÞ�1HðoÞYðoÞ�1pinðoÞ. (29)

From the right-hand side of Eq. (29) one can define the (r� r) real full random matrix EðoÞ such as

EðoÞ ¼ YðoÞ�1HðoÞYðoÞ�1, (30)

it can easily be seen that Eq. (29) can be rewritten as

pRðoÞ ¼ EðoÞpinðoÞ. (31)

The two fundamental equations (28) and (31) enable the calculation of svðoÞ as a function of pinðoÞ and using
pRðoÞ. Consequently, the random matrix EðoÞ can be considered as a random dimensionless operator allowing the
random local response power density function to be calculated as a function of the random input power density
function. On the other hand, from Eqs. (27) and (30), the following fundamental equation can be deduced:

svðoÞ ¼ 2YðoÞEðoÞYðoÞsf ðoÞ. (32)

6. Representation of the matrix-valued random FRF in the principal directions of the mean local mobility

It should be noted that the random equations defined by Eqs. (5) and (6) are expressed in the global
coordinates system. In this section, one shows the representation of the FRF in a local coordinates system
defined by the principal directions of the mean local mobility. Such a representation enables the type of
dominant deformations to be analyzed with respect to the geometry. For instance, at a local point located in a
thin shell of the structure, if the most important principal direction is perpendicular to the tangent plane of the
shell, then the largest part of the energy of the response will be mainly associated with flexural deformations
while if the most important principal direction belongs to the tangent plane, then the largest part of the energy
will be mainly associated with membrane deformations. This is illustrated in Fig. 1 which shows two examples
relative to the mobilities of the vibroacoustic system in the principal directions of the mean local mobility (in
semi-log scale). One can notice that for some types of elements (flexible structural elements), the value of the
mobility in the first principal direction of the mean local mobility is much higher than that in the two other
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Fig. 1. Mobility in the three principal local directions: first direction X ‘ (thick line), second direction Y ‘ (medium line), third direction Z‘

(thin line) at a point located in a flexible structural element (a) and at a point located in a stiff structural element (b).
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principal directions over the frequency band of analysis. This is not the case for stiff structural elements where
the values of the mobility in the three directions are similar. Thus, using the mobility analysis in the principal
directions of the mean local mobility can also permit the different structural components to be classified.
Moreover, one can notice that for Eq. (32) to be considered as a simplification of the spectral density function
of the response, the mobility matrix should not be a full matrix. In the local coordinates defined by the
principal directions of the mean local mobilities, the mobility matrix is a diagonal matrix by definition.

6.1. Introduction of local coordinates system defined by the principal directions of the mean local mobility

Let TpðoÞ be the random matrix with values in the set of all the symmetric complex ð3� 3Þ matrices and
corresponding to the translational dofs of the random FRF matrix TðoÞ at a given point p of the structure
(note that the rotational dofs are not considered here). Since the structure is dissipative, it can be proven that
RefTpðoÞg is a positive-definite symmetric real random matrix. One then introduces the mean value EfTpðoÞg
of the random matrix TpðoÞ in which E denotes the mathematical expectation. Let TpðoÞ be the symmetric real
ð3� 3Þ matrix such that TpðoÞ ¼ RefEfTpðoÞgg. So, the symmetric real matrix TpðoÞ is positive definite and
can then be written as TpðoÞ ¼ XpðoÞLðoÞXpðoÞ

T in which XpðoÞ is an orthogonal real ð3� 3Þ matrix (matrix
of rotation in the three-dimensional Euclidean space) made up of the eigenvectors of TpðoÞ and where LðoÞ is
a diagonal matrix containing the positive eigenvalues associated to these eigenvectors. The local coordinates at
this given point, defined by the principal directions of the mean local mobility, are such that XpðoÞ maps the
local coordinates into the global coordinates.

6.2. Representation of the local random FRF in the local coordinates system

The representation of the random matrix TpðoÞ in the local coordinates attached to the given point p and
defined by the principal direction of the mean local mobility is the random matrix denoted by Tloc

p ðoÞ and
defined by

Tloc
p ðoÞ ¼ XpðoÞ

TTpðoÞXpðoÞ. (33)

One can then define Hloc
p;ijðoÞ ¼ jT

loc
p;ijðoÞj

2 while Yloc
p ðoÞ is constructed as in Eq. (13). Let HlocðoÞ, TlocðoÞ and

YlocðoÞ be the matrices corresponding to the assemblage of these local matrices for all the local dofs of the
structure at points p and for all the global dofs of the acoustic cavity. One then obtains the following equation
for the vibroacoustic system:

ElocðoÞ ¼ YlocðoÞ�1HlocðoÞYlocðoÞ�1. (34)

All other equations of Section 5 still hold true in the local coordinates of the structure. Thus, these equations
are going to be used in what follows with a subscript or a superscript loc to refer to values in these coordinates.
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7. Simplified statistical averaging model of the random matrix-valued FRF

The complexity of the problem of the vibroacoustic analysis of industrial structures is induced by the large
number of configurations which have to be studied. Consequently, simplified computational models have to be
constructed from the full computational vibroacoustic model. In this section, a simplified vibroacoustic model
based on the energetic approach introduced in Section 5 and using statistical ensemble averaging is presented.

7.1. Statistical averaging of the model parameters

The mean matrix-valued FRF is calculated using all the realizations of the random matrix-valued FRF
which is estimated using the Monte Carlo method after projection on the local coordinates (for the structure).
The mean values are such that

TlocðoÞ ¼ EfTlocðoÞg (35)

and

ElocðoÞ ¼ EfElocðoÞg. (36)

In this case, the mean local mobility is such that

Yloc
ab ðoÞ ¼

ReðTloc
aa ðoÞÞ if a ¼ b;

0 if aab:

(
(37)

One can now define ðsv
locðoÞÞ

ref as the exact value of the mathematical expectation of the random vector svðoÞ
defined by Eq. (32) in the local coordinates and which is written as

sv
locðoÞ

ref
¼ 2EfYlocðoÞElocðoÞYlocðoÞsf

locðoÞg, (38)

which is estimated using the Monte Carlo method.

7.2. Construction of the simplified vibroacoustic model

Let J and O be the set of excitation and observation dofs, respectively, such that J ¼ fkq; q ¼ 1; . . . ;mg and
O ¼ fjp; p ¼ 1; . . . ; ng, where m and n are the number of excitation and the number of observation dofs,
respectively, as illustrated in Fig. 2.

Assuming that the excitation and observation dofs J and O are sufficiently distant from each other, let
eOJ ðoÞ be the positive real number, such that for each o in the frequency band B, one can write

ElocðoÞjpkq
’ eOJ ðoÞ. (39)

Using Eq. (39) and from Eq. (38), the following reasonable approximation can be deduced:

sv
locðoÞ

app
jp
¼ eOJ ðoÞY

locðoÞjpjp
plocin;J , (40)
O = {jp, p = 1,...,v}

O = {kq, q = 1,...,�}

S� (ω)

Sf (ω)

Fig. 2. Schematic presentation of the sets of excitation and observation dofs.
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where plocin;J is the mean value of the random total input power relative to set J, which is defined by plocin;J ¼Pm
q¼1p

loc;q
in in which ploc;qin is defined by Eqs. (20) and (21) expressed in the local coordinates system defined by

the principal directions of the mean local mobility (for the structure). Clearly, the objective of this paper is to
prove that such an approximation exists for complex vibroacoustic systems. It is, however, important to note
that the spectral density function defined by Eq. (40) is an approximated value which is used to obtain an
expression to calculate the positive real value eOJ ðoÞ. To calculate the value of eOJ ðoÞ the reference value

sv
locðoÞ

ref calculated using Eq. (38) (i.e. without any approximation) is used in the expression obtained from

Eq. (40) such that

eOJ ðoÞ ¼

Pn
p¼1s

v
locðoÞ

ref
jp

plocin;J

Pn
p¼1Y

locðoÞjpjp

. (41)

The value of the approximated mean vector-valued spectral density function of the output velocity can then be
calculated by substituting eOJ ðoÞ, calculated with Eq. (41) into Eq. (40).

The value of the approximated mean vector-valued spectral density function of the output velocity can then
be calculated by substituting eOJ ðoÞ calculated using Eq. (41) into Eq. (40) in order to estimate the error
induced by the approximation. The associated error due to the approximation can then be evaluated using two
error functions. For the observation dofs jp belonging to O and for all o belonging to the frequency band of
analysis B, the first error function DðoÞjp

is defined by

DðoÞjp
¼ jsv

locðoÞ
ref
jp
� sv

locðoÞ
app
jp
j, (42)

which measures the accuracy of the calculation of sv
locðoÞ

app
jp

Eq. (40) with Eq. (41). The second error function

is defined for all jp in J and kq in O, and for all o in B, the second error function eEðoÞjpkq
such that

eEðoÞjpkq
¼ jdBðoÞjpkq

� dBðoÞappjpkq
j, (43)

dBðoÞjpkq
¼ 10 log10 E

locðoÞjpkq
; dBðoÞappjpkq

¼ 10 log10 EOJ ðoÞ
app
jpkq

, (44)

where EOJ ðoÞ
app
jpkq
¼ eOJ ðoÞ. Eqs. (43) and (44) measure the accuracy of the calculation of EOJ ðoÞ

app
jpkq

.

8. Application to a complex vibroacoustic system

The validation of the proposed energy method is performed on an automotive vehicle model. The mean
vibroacoustic model consists of a non-trimmed vehicle structure and its internal acoustic cavity. The
computational vibroacoustic model is made up of a finite element model of the structure and a finite element
model of the internal acoustic cavity (see Fig. 3). The two finite element models are compatible on the coupling
interface between the structure and the acoustic cavity. The finite element mesh of the structure is constituted
of 1 042 851 dofs and that of the acoustic cavity is constituted of 9157 dofs. As mentioned earlier, only
translational displacements of the structure are taken into account. Unit excitations forces are placed at each
Fig. 3. Finite element mesh of the structure (a) and of the acoustic cavity (b).
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observation dofs of the structure, while unit acoustic sources are placed at each observation dofs in the
acoustic cavity. So, the number of observation and excitation dofs are equal. There are 12 excitation and
observation points chosen in different zones of the internal acoustic cavity, and 28 points on the structure with
a total of 96 dofs. The excitation points on the structure correspond to: the points at which loads induced by
the engine and the front suspension are applied; other points are chosen on the floor board, wind shield, roof
and trunk board. This set of points is used to define the sets O and J in the following discussion. The
vibroacoustic analysis is performed in the low- and medium-frequency band B ¼ ½50; 350�Hz.

In the reduced mean computational vibroacoustic model, the generalized structural damping matrix and the
generalized acoustic damping matrix are generated as diagonal matrices whose diagonal terms are usually
constructed with the damping rates of the modes. It is assumed that the damping rates are constant for all the
elastic modes of the structure and are equal to 0:04 and are also constant for all the acoustic modes of the
internal acoustic cavity and are equal to 0:1. For this reduced model and for the frequency band of analysis B,
the structure is represented by 1955 elastic modes and 3 rigid body translational modes (n ¼ 1958), while the
acoustic cavity is represented by 160 acoustic modes including the constant pressure acoustic mode (m ¼ 160).
These values of n and m are sufficiently high to get a good convergence of the deterministic and stochastic
reduced models in the frequency band of analysis under consideration as proven in a previous work (see Refs.
[14,15]) for a similar computational vibroacoustic model. After constructing the matrices of the deterministic
reduced mean computational vibroacoustic model as explained in Section 3, the random matrices of the
stochastic computational vibroacoustic model are constructed as explained in Section 4. Uncertainties are
taken into account for the mass, damping and stiffness matrices of the structure and of the acoustic cavity as
well as for the coupling matrix. The values of the dispersion parameters for these random matrices are those
identified in previous work for a similar computational vibroacoustic model [14,15]. The stochastic
vibroacoustic equation is solved using the Monte Carlo method to obtain nr independent realizations.

The mean-square convergence of the random solution is studied as a function of nr using the following function:

convH ðnrÞ ¼
1

nr

Xnr

‘¼1

Z
B

kQHðo; y‘Þk2 do, (45)

in which H stands for the letter s designating the structure and for the letter f designating the acoustic fluid,
and where QHðo; y1Þ; . . . ;QHðo; ynr Þ are the independent realizations of the vector-valued random variable
QHðoÞ constructed with Eq. (6). Fig. 4 shows the graphs of convsðnrÞ and convf ðnrÞ, for the structure and for
the acoustic fluid, respectively, as a function of nr.

Fig. 4 shows that convergence occurs at about 550 realizations for the structure and at about 400
realizations for the acoustic fluid. Thus, all the results presented have been computed using 600 realizations to
ensure the convergence for both the structure and the acoustic cavity. The local coordinate systems defined by
the principal directions of the mean local mobilities are calculated as explained in Section 6.1. The local
coordinates are then denoted by ðX ‘;Y ‘;Z‘Þ. Each realization Tloc

p ðo; yÞ and Elocðo; yÞ are calculated using
Eqs. (33) and (34). The mean values TlocðoÞ and ElocðoÞ are calculated using Eqs. (35) and (36). The confidence
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Fig. 4. Graphs of convsðnrÞ for the structure (a) and of convf ðnrÞ for the acoustic fluid (b) as a function of nr.
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Fig. 5. Graphs of TlocðoÞ (a) and of ElocðoÞ (b) for the structure input–structure output FRF as a function of the frequency. The structure

output is the structure velocity in direction X ‘. The three structure inputs are the structural forces applied in the three local principal

directions X ‘ (thin line), Y ‘ (medium line), Z‘ (thick line).
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Fig. 6. Graphs of TlocðoÞ (a) and of ElocðoÞ (b) for three acoustic input–acoustic output FRF as a function of the frequency. Each

corresponds to a given excitation point and a given observation point inside the acoustic cavity.
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Fig. 7. Graphs of TlocðoÞ (a) and of ElocðoÞ (b) for the structure input–acoustic output FRF as a function of the frequency. The acoustic

output is the pressure at a given point inside the acoustic cavity. The three structure inputs are the structural forces applied in the three

local principal directions X ‘ (thin line), Y ‘ (medium line), Z‘ (thick line).
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regions of Tloc
p ðoÞ and ElocðoÞ are constructed using the quantiles method (see Ref. [20]) for a probability level

of 0.95. Figs. 5, 6 and 7 show the mean values TlocðoÞ and ElocðoÞ of TlocðoÞ and ElocðoÞ for different excitation
and observation points.
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From Figs. 5 to 7, one can notice that the variation in magnitude, as a function of frequency, of ElocðoÞ is
less than that of TlocðoÞ. Moreover, from Figs. 5 and 7 it has been noticed that when fixing an observation
point and changing the direction of excitation among the three local principal directions or vice versa, ElocðoÞ
seems to undergo less changes than TlocðoÞ. It can also be seen that the three curves corresponding to the
excitations in the three directions of the normalized FRF tend towards an asymptotic value starting at about
300Hz. This illustrates the independency of the normalized FRF from the direction of excitation. The
independency of the normalized FRF from the direction of observation was also verified. This considerably
reduces the size of the problem to be analyzed. Figs. 8–10 show the confidence regions for TlocðoÞ and ElocðoÞ
corresponding to different excitation-observation combinations.

From Figs. 8 to 10, it can be noted that the confidence region around the mean value ElocðoÞ is smaller than
that around the mean value TlocðoÞ. In other words, using ElocðoÞ as a representation of the FRF yields less
dispersion in the results than using TlocðoÞ. This decrease in the dispersion values increases the predictability of
the model and makes it more robust regarding uncertainties. So, the normalized FRF is a more reliable
parameter than the usual FRF. The observations mentioned above regarding the response of the vibroacoustic
system made it interesting to observe the behavior of the matrix of the normalized FRF for all degrees of
freedom as a function of frequency. This is illustrated in Fig. 11 which shows the color plots of the matrix
ElocðoÞ at frequencies 70, 170, 270 and 350Hz.

From Fig. 11, it can be seen that starting at about 170Hz the color plot of the matrix takes a block diagonal
form. The blocks on the diagonal correspond to different parts of the structure. Extra-diagonal blocks can
also be observed. These extra-diagonal blocks represent coupling between different parts of the structure.
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Fig. 8. Confidence regions of TlocðoÞ (a) and ElocðoÞ (b). Excitation is a force applied to a given point on the structure in the X ‘ direction.

Observation is the velocity in another point of the structure in the X ‘ direction. Medium line is the mean value. Upper and lower lines

delimit the confidence region.
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Fig. 9. Confidence regions of TlocðoÞ (a) and ElocðoÞ (b). Excitation is an acoustic pressure applied to a given point in the acoustic cavity.

Observation is the acoustic pressure observed in another point of the acoustic cavity. Medium line is the mean value. Upper and lower lines

delimit the confidence region.
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Fig. 10. Confidence regions of TlocðoÞ (a) and ElocðoÞ (b). Excitation is a force applied to a given point on the structure in the X ‘ direction.

Observation is the acoustic pressure observed in a point of the acoustic cavity. Medium line is the mean value. Upper and lower lines

delimit the confidence region.

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−20

−15

−10

−5

0

5

10

15

20

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−20

−15

−10

−5

0

5

10

15

20

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−20

−15

−10

−5

0

5

10

15

20

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−20

−15

−10

−5

0

5

10

15

20

Fig. 11. Color plot of ElocðoÞ at 70Hz (a), 170Hz (b), 270Hz (c) and 350Hz (d). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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At higher frequencies the color representation of the matrix gets stable which confirms the results shown in
Fig. 5(b) concerning the convergence of the response towards an asymptotic value. Moreover, away from the
block diagonal terms, several zones (extra-diagonal blocks) have a uniform color indicating constant values.
This result also confirms the observations made in Fig. 5(b) concerning the independency of the value of
ElocðoÞ from the excitation and observation directions. Moreover, these constant value zones group several
points belonging to different parts of the structure which means that these zones have the same behavior
regarding the imposed excitation. Taking into account the previous comments, it is now important to show the
error matrix eEðoÞ to better understand the domain of validity of the approximation defined using the positive
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real value eOJ ðoÞ. eOJ ðoÞ is calculated using Eq. (41). The ðnm � nnÞ matrix eEðoÞ is then calculated using
Fig. 12. Fig. 12 shows the color plots of the ðnm � nnÞ matrix eEðoÞ at frequencies 70, 170, 270 and 350Hz.

From Fig. 12, it can be seen that, at low frequency the error between EOJ ðoÞ and ElocðoÞ is high at most of
the matrix elements. At higher frequencies the error decreases away from the diagonal terms, that is to say
when the excitation and observation points are far enough from each others confirming the starting hypothesis
used for the construction of the simplified model. Such a behavior seems to hold true for frequencies higher
than 170Hz. Again each block on the diagonal of the matrix corresponds to the dofs located on the same part
of the structure. We can then conclude that the positive real value eOJ ðoÞ can be used to approximate
ElocðoÞjpkq

see Eq. (39) between zones of the structure for which the corresponding error function is small.

9. Conclusion

An energy-density field approach for complex vibroacoustic systems has been presented and validated in the
low- and medium-frequency ranges. This method is based on the introduction of a dimensionless energy-
density function and its averaging over a set of random vibroacoustic systems, deduced from the deterministic
nominal computational vibroacoustic model, obtained using a probabilistic model of uncertainties. The
energy-density field enables an approximation of the FRF to be introduced. The concept of local coordinates
system defined by the principal directions of the mean local mobility was also presented. This coordinates
system enables the type of dominant deformations to be analyzed and prevent the loss of information that may
be associated with the elimination of coupling terms of the mobility matrix (diagonal matrix). A simplified
model is constructed based on this energy-density field approach with the hypothesis that the excitation points
and the observation points are sufficiently distant from each others. The response of this simplified model is
shown to be less dispersed than the usual FRF and thus provides more reliable and robust results. Two error
functions are introduced in order to estimate the error due to the presented approximation. These error
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functions also enable the automatic identification of zones for which the approximation holds true. The
proposed method and the simplified model have been validated on a sufficiently complex vibroacoustic system
(automotive vehicle). A straightforward extension of this approach and the model simplification is an
automatic sub-structuring technique. This technique is particularly useful in the context of concurrent
engineering. It enables time reduction of the conception process by providing the response of a complete zone
rather than discrete dofs and by providing a powerful tool for the predictions of low- and medium-frequency
vibroacoustic behavior of the complex structure.
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