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Abstract

The regenerative-chatter resistance of a viscoelastic cantilever beam is analyzed and compared to the common dynamic

vibration absorber (DVA) system. The beam represents a tool holder for turning operation in machining. The optimum

structural parameters are found by maximizing the most negative real part of the frequency response function (FRF). The

FRF is found analytically by using an appropriate Green’s function. Keeping the cantilever static stiffness constant,

further increase in the optimal resistance is achieved by changing the ratio between the two elastic moduli in the

3-parameter solid viscoelastic material model. Three additional chatter resistance indicators are also investigated: the most

positive real part of the FRF, the magnitude of the FRF and the resonant frequency. It is found that in contrast to the

DVA system, the chatter resistance of the viscoelastic beam is optimal with respect to the above indicators for

approximately unique set of the same material parameters.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the common operations in machining is creating cylindrical deep holes by single-point turning. The
cutting tool holder is usually a cantilever with cylindrical cross-section and large overhang ratio (length to
diameter ‘‘L/D’’). The deflection and vibration response limit the allowable machining conditions. Usually,
with an overhang ratio L/D44, vibration instabilities, known as chatter, become apparent. The chatter causes
a noticeable wear in the cutting tool and limits machining productivity since the cutting removal rate is usually
reduced. Chatter vibrations increase surface roughness, reduce machining accuracy and produce an irritating
unacceptable noise.

Regenerative and non-regenerative chatters are two types of machine tool chatters. Regenerative chatter
results from cutting on a previous wavy surface and non-regenerative chatter occurs in some special conditions
such as mode coupling. In this article we will focus on the regenerative chatter which is the most common type
occurring in turning operations (Wang and Fei [1], Tlusty [2], Pratt and Nayfeh [3], Chen and Tsao [4]).
Enhancing the chatter resistance and therefore increasing allowable overhang ratio of tool holders is

achieved by active (e.g. Takemura et al. [5], Pratt and Nayfeh [6]) and passive methods (e.g. Tobias [7], Rivin
and Kang [8]). Despite the potential advantages of active methods, passive methods remain a useful device for
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

b chip width
c DVA normalized modal damping
E1, E2 elastic moduli in the 3-parameter solid

viscoelastic material model
f DVA normalized eigen-frequency
Gxztt Green’s function as a function of x, z, t

and t
G1(io) frequency response function
h chip thickness
k DVA normalized modal stiffness
m DVA normalized mass
u1, u2 orientation coefficients
uxt beam transverse displacement at x loca-

tion and time t

y displacement of the cutting tool normal
to the cut surface

Y relaxation modulus
e relative phase angle of vibration between

successive tooth passes
Z damping ratio of the viscoelastic beam
x DVA damping ratio
c frequency parameter
o vibration angular frequency

Notations

Zx1x2...xn
a function Z of n independent variables
x1, x2,y,xn (i.e. Z(x1,x2,y,xn))

Zx1x2...xn;xixj ...xk
partial derivatives of Zx1x2...xn

with
respect to xi, xj,y,xk (i, j, k ¼ 1,2,3,y)

F̄ s Laplace transform of Ft with respect to
time (t)

Re(F) real part of a complex function F

Abs(F) magnitude of a complex function F
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improving the chatter stability of machining systems, due to their lower complexity and cost. Several passive
methods have been studied in the literature: (1) anisotropic bars (Thomas et al. [9]), proved experimentally by
Mescheriakov et al. [10] to be hardly possible to implement; (2) bars made of high Young’s modulus material
such as sintered tungsten carbide (Rivin and Kang [8], Nagano et al. [11]); (3) bars with viscoelastic clamping
device (Rivin and Kang [12]); (4) a dynamic vibration absorber (DVA) attached to the bar (Fig. 1(a))
(e.g. Donies and Van Den Noortgate [13]). The DVA has to be placed inside the tool holder in an internal
cavity and at the furthest available position and (5) a ‘‘combination structure’’ (Rivin [14], Rivin and
Kang [8]), which is a heterogeneous bar made from two parts: a root segment (with high Young’s modulus)
and an overhanging free segment (made of light material). This design improves the effect of an attached DVA
by increasing the mass ratio.

The common DVA device, when tuned to the proper frequency, can reduce the peak magnitude of the
frequency response function (FRF) of the tool holder. This is achieved by using Ormondroyd and Den
Hartog’s classical ‘‘equal peaks’’ method (Den Hartog [15]). However, for improving the chatter stability other
methods have been proposed: analytical solutions (Rivin and Kang [8], Sims [16]), numerical optimized
solutions using machining simulations (Liu and Rouch [17]) and manual tuning (Tarng et al. [18]).

The main disadvantage of passive vibration absorbers is the need for adaptive tuning during machining, e.g.
if the sign of an ‘‘orientation factor’’ changes because of a change in the cutting conditions the DVA has to be
M

K C

x

u

w

M

K C

Fig. 1. (a) A typical dynamic vibration absorber attached to a cantilever tool holder and (b) equivalent lumped mass model.
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tuned accordingly. In addition, the DVA performance is limited by the need to place it on the cutting tool
without interfering with the cutting process.

Analytical solutions of stability limit in turning show that the depth of cut dominates the chatter instability
and is inversely proportional to the most negative real value of the FRF (Tlusty [2]). The analysis introduced
by Rivin and Kang [8] and Sims [16], considers the cantilever tool as a lumped, linear and one degree of
freedom (dof) model. The DVA is considered as an additional linear dof. Rivin [19] used the Kd optimization
criteria, where K is the effective stiffness and d represents the log-decrement damping parameter of the
cantilever with the DVA. Sims introduced three different optimizations: minimizing the peak magnitude of
the FRF, maximizing the most negative real part of the FRF and minimizing the most positive real part of the
FRF. Although Rivin’s method offers superior performance over Den Hartog’s method, Sims stated that it
does not optimize the most negative or most positive real parts of the FRF.

To our knowledge, optimization of viscoelsatic beams (VB) as turning bars and comparison with a
corresponding DVA system have not been fully investigated yet, in particular with regard to optimization of
chatter resistance. In this work, the cantilever tool is modeled as a continuous beam made from a uniform
linear viscoelastic material. Practically, viscoelastic behavior of a beam can be achieved by using several
methods such as the Fluid Surface Damping and constrained layer damping techniques (Ghoneim [20]). In the
analysis of the present article, the cantilever transverse displacement is only considered although rotation and
axial displacements may also occur. The transversal stiffness at the cantilever tip is proportional to D4/L3

while the rotational and axial ones are proportional to D4/L and D2/L, respectively. Therefore, an increase in
L/D decreases considerably the transversal stiffness with respect to the rotational and axial ones. The
significance of the rotational stiffness is demonstrated in Rivin and Kang [8] work for turning at high cutting
speeds.

The optimization criteria used in this study is based on the most negative real part of the FRF. In addition
the optimal response is also examined by comparing the other two indicators: the most positive real part and
the peak magnitude of the FRF. The effect of the tuning on the resonant frequency is studied too.
The VB holder is also compared to elastic continuous cantilever with a tuned DVA (CDVA) attached to its
tip. In this work, Sims method for tuning a DVA attached to a lumped mass model is generalized to the
CDVA model.

2. Theory

In turning processes, three main types of vibrations may occur: free, forced and self-excited. The free
vibration is transient and less important than the forced and self-excited ones. Forced vibrations arise with
the application of periodic cutting forces acting on the cutting tool. Forced vibrations magnitude become large
when a cutting force frequency approaches the natural frequency of the cutting tool (resonance). Self-excited
vibrations result from an interaction between the cutting forces and cutting edge displacements. The amplitude
of self-excited vibrations increases rapidly up to some amplitude which is limited by the nonlinearity of the
cutting process. The frequency of self-excited vibrations is close to and greater than the natural frequency of
the cantilever tool (Tlusty [2]).

Tlusty and Polacek [21] introduced a simplified beam model for regenerative chatter analysis for turning
operations as shown in Fig. 2. The system of workpiece and cutting tool are linear and characterized by two
individual modes of vibration (directions x1 and x2). Vibration amplitudes y0 and y represent the wavy
surfaces, before and after a cutting pass, respectively, with a phase shift (e). The cutting force F is assumed
directly proportional to the chip area and has a constant direction b.

The process of self-excitation is a closed loop in which the tool vibration induces a force variation, which in
turn affects the tool vibrations. The feedback relationship of vibrations y caused by force variation F0 is in
general: y ¼ G0(io)F0. The oriented transfer function (TF) G0 can be represented as a sum of the direct TFs Gi

of uncoupled modes in xi directions multiplied by the ‘‘orientation factors’’ (ui), i.e. G0 ¼ uiGi. It is shown in
Ref. [2] that the chip width (b) at the stability limit point is

blim ¼
�1

2KsReðG0ðioÞÞ
. (2.1)
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Fig. 2. The regeneration diagram relating force, surface waviness and vibration.
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Ks (N/m2) is the ‘‘specific force’’, that is, force per unit chip area and within a first approximation it is a
workpiece material constant (Ks values for selected materials are given in Ref. [2]).

The smallest chip width at which chatter may occur is

blim;cr ¼
�1

2KsminðReðG0ðioÞÞÞ
, (2.2)

where min(Re(G0(io))) denotes the most negative (minimum) real part of G0(io).
Cutting is stable when boblim,cr and chatter is developed when b4blim,cr. Eq. (2.2) has great practical

significance and is used to analyze and design optimal cutting tools. It offers a clear criterion for the dynamic
response of the machine–tool interaction.

3. Chatter resistance optimization

In this work, the cantilever holder is assumed to be made of linear viscoelastic material. For simplicity, the
cantilever cross-section orientation (determined by ai) is chosen such that one of the orientation factors
(say u2) is neglected. Assuming u140, (2.2) becomes

blim;cr ¼
�1

2Ksu1minðReðG1ðioÞÞÞ
, (3.1)

then it is desirable to increase min(Re(G1(io))). Note that if u1o0, the chatter stability is dictated by the most
positive real part of G1(io) (max(Re(G1(io)))) which should be decreased for increasing blim,cr.

In this study, we find G1(io) by transferring the impulse response function (Green’s function) of the
cantilever problem into the Laplace domain (Karnovsky and Lebed [22]).

The dynamic governing equation of a uniform VB with a cross-section A, density r, viscoelastic modulus Y

and inertia I, loaded by a distributed load qxt is

ðY tt0 �
t0

uxt0 ;xxt0IÞ;xx þ rAuxt;tt ¼ qxt; 0oxoL; t40. (3.2)

The boundary conditions (BCs) are

uxtjx¼0 ¼ uxt;xjx¼0 ¼ uxt;xxjx¼L ¼ uxt;xxxjx¼L ¼ 0; t40. (3.3)

The operation Ptt0 �
t0

Qt0 ;t0 between two functions P(t) and Q(t), denotes the hereditary integral (Flügge [23]):

Ptt0 �
t0

Qt0;t0 � PðtÞ �Qð0Þ þ

Z t

t0¼0

Pðt� t0Þ �
qQðt0Þ

qt0
dt0 (3.4)
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Fig. 3. (a) A cantilever beam model and (b) 3-parameter solid model of a linear viscoelastic material.
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and x is the distance from the fixed end (Fig. 3(a)). Green’s function is the solution of the boundary value
problem (BVP) (3.2) and (3.3) for impulse loading, i.e.

ðY tt0 �
t0

Gxzt0t;xxt0IÞ;xx þ rAGxztt;tt ¼ dðx� zÞdðt� tÞ; 0ox; zoL; t; t40. (3.5)

The BCs are similar to Eq. (3.3). For stationary BVP,

Gðx; z; t; tÞ ¼ Gðx; z; t� tÞ ¼ Gðx; z;DtÞ. (3.6)

The Laplace transform of the Green’s function G(x, z, Dt) with respect to Dt, is the TF of the beam problem
and it is the solution of the following static BVP:

ðsȲ sḠxzs;xxIÞ;xx þ rAs2Ḡxzs ¼ dðx� zÞ; 0ox; zoL, (3.7)

with BCs,

Ḡxzsjx¼0 ¼ Ḡxzs;xjx¼0 ¼ Ḡxzs;xxjx¼L ¼ Ḡxzs;xxxjx¼L ¼ 0. (3.8)

The solution of Eqs. (3.7) and (3.8) is as follows: divide the beam’s length into two regions: xoz and x4z.
In each region solve Eq. (3.7) with the RHS ¼ 0. Then apply the BCs (3.8) and the continuity conditions:

Ḡxzsjx¼zþ ¼ Ḡxzsjx¼z� ; Ḡxzs;xjx¼zþ ¼ Ḡxzs;xjx¼z� ;

Ḡxzs;xxjx¼zþ ¼ Ḡxzs;xxjx¼z� ; Ḡxzs;xxxjx¼zþ � Ḡxzs;xxxjx¼z� ¼
1

sȲ sI
. (3.9)

Recall that the model represents a tool holder with a cutting force applied at the tip so that Ḡxzsjx¼z¼L is our
main interest. The solution of Eqs. (3.7) and (3.8) at x ¼ z ¼ L and with s ¼ io (o is an angular frequency) is
obtained analytically:

Ḡxzojx¼L
z¼L
¼

y
Lo2rA

�
sinðyÞ coshðyÞ � cosðyÞ sinhðyÞ

1þ cosðyÞ coshðyÞ
, (3.10)

where y is defined by

y4 �
o2rAL4

IðsȲ sÞjs¼io
. (3.11)

Finally, we use the equality:

Ḡxzojx¼L
z¼L
¼ G1ðioÞ. (3.12)

For a 3-parameter solid viscoelastic model (Fig. 3(b)),

ðsȲ sÞjs¼io ¼
Ẽ2ðẼ1 þ ioCÞ

Ẽ1 þ Ẽ2 þ ioC
. (3.13)

Defining E as an equivalent Young’s modulus when C-0, (3.10) and (3.12) yield:

G1ðioÞ ¼
aL3

EIc4
�
sinðaÞ coshðaÞ � cosðaÞ sinhðaÞ

1þ cosðaÞ coshðaÞ
; a �

c
Zc

. (3.14)
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c is a frequency parameter and Zc is related to the relaxation modulus as

c4
�

o2rAL4

EI
; Z4

c �
E2ðE1 þ 2ic2ZÞ

E1 þ E2 þ 2ic2Z
. (3.15)

E1 and E2 are normalized Young moduli and Z is a damping ratio:

E1 �
Ẽ1

E
; E2 �

Ẽ2

E
; Z �

C

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

ErAL4

s
. (3.16)

Normalizing G1(io) in Eq. (3.14) by the static deflection (G1(0)), we use a normalized form without
re-notation:

G1ðioÞ ¼
3a

c4

E1E2

E1 þ E2

� �4
sinðaÞ coshðaÞ � cosðaÞ sinhðaÞ

1þ cosðaÞ coshðaÞ
. (3.17)

min(Re(G1(io))) which controls the stability against regenerative chatter (3.1) will be optimized as follows.
Let us expose the main characteristics of the solution by considering an example where E1 ¼ E2 ¼ 2 and

various Z values as seen in Fig. 4. The specific values of Ei are chosen such that the effective modulus is 1 for
Z ¼ 0. For very small or very large values of Z, min(Re(G1(io))) approaches �N, which indicates that chatter
will always occur even for a very small value of b. However, for intermediate values of Z, the minimum point
and therefore blim,cr are finite.

Fig. 4 shows two damping-independent (locked) points. Therefore min(Re(G1(io))) is constrained by these
points. The frequency parameters of the ‘‘positive’’ and ‘‘negative’’ locked-points, denoted by c(p) and c(n), are
equal to the cantilever eigen-parameters when Z-0 and Z-N, respectively. Optimal value of min(Re(G1(io))) is
obtained for Z which exhibits a minimum at c(n) (i.e. for Zffi0.4). The condition at this point is

dReðG1ðioÞÞ
dc

����
c¼cðnÞ

¼ 0. (3.18)

The optimum can be further improved by choosing different E1/E2 ratios, keeping the cantilever static stiffness
(Re(G1(io) when c-0) the same. Comparison between three E1/E2 ratios at the associated optimal responses
Fig. 4. The frequency response function real part, for a viscoelastic cantilever with E1 ¼ E2 ¼ 2 and various values of the damping ratio Z.
There are two locked-points.
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Fig. 5. The frequency response function real part for the optimized viscoelastic cantilever, at three different E1/E2 ratios. Static stiffness is

similar.

Fig. 6. The frequency response function magnitude for the optimized viscoelastic cantilever, at three different E1/E2 ratios. Static stiffness

is similar.
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is shown in Fig. 5. It can be seen that by changing E1/E2 from 2 to 1/2, blim,cr is increased by three-fold.
In addition, improving the optimum is followed by an increase in both the chatter and the resonance
frequencies (see Figs. 5 and 6). The system is therefore more stable (Szuba et al. [24], Yen and Hsueh [25],
Rivin and Kang [8]).
4. Sims optimization method for an elastic continuous beam model with an attached DVA (CDVA)

In this section, Sims [16] method for tuning a DVA attached to a lumped mass model is generalized to a
CDVA model (Fig. 1). The FRF of the CDVA at the tip will be obtained explicitly. The most negative or
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positive real parts of the FRF will be optimized. The DVA parameters at the optimum for the two models will
be compared. It will be shown that the results of the two models are essentially identical.

The FRF of a uniform elastic cantilever with a DVA attached to its tip was obtained analytically by
Korenev and Reznikov [26]. After some algebraic manipulations the FRF at the cantilever tip (G1(io)),
normalized by G1(0) (without re-notation), is

G1ðioÞ ¼
3

mc4
ðk þ icc2

Þ

mc4
� icc2

� k
þ sc

. (4.1)

m, c, k are normalized DVA modal parameters defined by

m �
M

LrA
; c � C

ffiffiffiffiffiffiffiffiffiffiffiffi
L2

EIrA

s
; k � K

L3

EI
. (4.2)

E is the Young modulus of the cantilever and sc is defined by

sc ¼ c3 1þ cosðcÞ coshðcÞ
coshðcÞ sinðcÞ � cosðcÞ sinhðcÞ

, (4.3)

which represents the contribution of the elastic cantilever to G1(io).
Following Sims’ method, we first obtain the damping invariant points of the response. Fig. 7 shows the

response of the CDVA system for m ¼ 0.1 and different c and k values in the vicinity of c(1), which is the first
eigen-parameter of an elastic cantilever beam without DVA (c(1)

ffi1.8751). Three points are invariant (locked)
to the damping ratio c. These points are essential in this tuning method and can be obtained by finding the
roots of the denominator of Re(G1(io)) at c ¼ 0 and at c-N. For c ¼ 0 and given values of m and k, two
roots near c(1) can be obtained from Eq. (4.1):

sc þ
kmc4

mc4
� k
¼ 0. (4.4)

These roots are denoted by c(p) and c(n) (Re(G1(io)) is positive at c(p) and negative at c(n)). For c-N the
third root (denoted by c(a)) of the denominator, can be obtained by the equation:

sc �mc4
¼ 0. (4.5)
Fig. 7. The frequency response function real part, for a cantilever with DVA system.
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In this tuning method, for optimizing max(Re(G1(io))), one equates Re(G1(io)) at c ¼ c(a) to Re(G1(io)) at
c ¼ c(p), then requires that Re(G1(io)) at c(p) or c(a) has a maximum. These two optimum conditions
determine both c and k for every given value of m. For optimizing min(Re(G1(io))), one equates Re(G1(io)) at
c(a) to Re(G1(io)) at c

(n), then requires that Re(G1(io)) at c
(p) or c(a) has a minimum. This optimization

procedure is based on Sims’ method [16], where Den Hartog’s ‘‘equal peaks’’ method is adapted for use on the
real part of the FRF rather than the magnitude part.

Eqs. (4.4) and (4.5) are implicit in c and numerical solution is needed for obtaining the roots. Using the
following approximation:

sc ffi 3 1�
c

cð1Þ

� �4
 !

(4.6)
Fig. 8. Comparison of s(c) which controls c(p), c(n) and c(a), for continuous and lumped DVA systems. It is seen that for c up to 2.5 these

functions are essentially the same.
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Fig. 9. DVA damping ratio (x) at optimal tuning for various values of mass ratios (m): – x(p) for lumped mass model, –– x(n) for lumped

mass model, ’ x(p) for the CDVA model and m x(n) for the CDVA model.
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Fig. 10. DVA natural frequency (f) at optimal tuning for various values of mass ratios (m): – f(p) for lumped mass model, –– f(n) for

lumped mass model, ’ f(p) for continuous cantilever model and m f(n) for continuous cantilever model.

J. Saffury, E. Altus / Journal of Sound and Vibration 324 (2009) 26–39 35
and inserting into Eqs. (4.4) and (4.5), reduces to the corresponding equations given in Sims’ work for the
lumped system. Fig. 8 compares the exact and approximated sc from Eqs. (4.3) and (4.6). It can be concluded
that lumped and continuous beams have essentially the same sc response for c up to 2.5.

In his work, Sims obtained the DVA damping ratio (x) and normalized eigen-frequency (f) at optimal
tuning conditions for selected values of mass ratios (m). The parameters x and f are related to m, c and k by the
following relations:

x ¼
c

2
ffiffiffiffiffiffiffi
km
p ; f ¼ ðcð1ÞÞ�2

ffiffiffiffi
k

m

r
(4.7)

Figs. 9 and 10 show x and f at optimal conditions for the lumped and continuous beam models. The curves
represent the analytical solutions obtained by Sims while the points are related to the numerical solutions for
the CDVA system. For maximizing min(Re(G1(io))) x and f are denoted by x(n) and f(n) while for minimizing
max(Re(G1(io))) we use x

(p) and f(p). It is shown that the two models yield approximately similar values for the
optimal parameters. This is true as long as c(p), c(n) and c(a) are close to c(1).
5. Comparison of the VB with the CDVA system

The optimal response of the CDVA and VB systems will be compared in the following with respect to the
three criteria discussed above: min(Re(G1(io))), max(Re(G1(io))) and Abs(G1(io)).

Keeping the static stiffness constant, the FRF of the CDVA system is controlled by m, c and k, while E1/E2

and Z control the FRF of the VB system.
As shown above, in the VB min(Re(G1(io))) is optimized by tuning Z for each E1/E2 ratio. In the CDVA

system optimization is performed by tuning c and k for each m value; therefore, the mass ratio (m) in the
CDVA system is equivalent to E1/E2 in the VB system. Fig. 11 shows Re(G1(io)) for the two systems in their
optimal response, having the same static stiffness and mass density. It is seen that increasing m or decreasing
E1/E2 will always improve the optimal response (monotonic). Their limit will be controlled by design
constraints.

One clear and important difference between the two systems is their max(Re(G1(io))). This value becomes
crucial when the cutting conditions are such that the sign of u1 (3.1) changes. In this case the DVA modal
parameters have to be tuned again for minimizing max(Re(G1(io))). This is illustrated in Fig. 7 where for
m ¼ 0.1, c ¼ 0.1483 and k ¼ 0.4413, max(Re(G1(io))) is optimized. On the other hand, we observe that in the
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Fig. 11. Comparison of optimum frequency response function real part between DVA system and continuous viscoelastic cantilever.

Static stiffness is similar.

Fig. 12. The frequency response function magnitude, for a cantilever with DVA for several values of DVA modal parameters.
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VB system (Fig. 4), max(Re(G1(io))) is close to the positive locked-point and therefore such re-tuning is not
necessary.

In the general field of vibration control, it is often desirable to suppress Abs(G1(io)). Fig. 12 shows
Abs(G1(io)) of the CDVA for the selected values of c and k above. It is found that Abs(G1(io)) is optimal
when c ¼ 0.15 and k ¼ 0.635, according to Ormondroyd and Den Hartog’s [15] ‘‘equal peaks’’ method.

In the CDVA system the optimal parameters for the above criteria are different: optimizing min(Re(G1(io)))
leads to c ¼ 0.1995, k ¼ 1.0631, optimizing Abs(G1(io)) yields c ¼ 0.15 and k ¼ 0.635 and optimizing
max(Re(G1(io))) leads to c ¼ 0.1483 and k ¼ 0.4413 (Figs. 7 and 12). On the other hand, the optimized VB
system yields Zffi0.4 for all these criteria (Figs. 13 and 4). The reason is that the peak of Abs(G1(io))
or max(Re(G1(io))) are close to the locked-points. This advantage was found to be valid for a wide range
of E1/E2 ratios.
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Fig. 13. The frequency response function magnitude, for a viscoelastic cantilever with E1 ¼ E2 ¼ 2 and various values of the damping

ratio Z.

Fig. 14. Comparison of optimum frequency response function magnitude between DVA system and continuous viscoelastic cantilever.

Static stiffness is similar.
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We can draw a general conclusion with regard to the VB system. The parameters controlling the optimum
performance for the three different stability criteria are approximately the same.

Examining the first resonant frequency for the two systems at the optimal parameters is also fruitful
(Fig. 14). It is seen that improving the chatter resistance of the CDVA system by increasing m, is followed by a
decrease in the resonant frequency which may undermine the optimization effect. On the other hand, in the
optimized VB system, decreasing E1/E2 causes an increase in the resonant frequency, which strengthens the
stability effect even further.
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6. Conclusions

A viscoelastic beam for increasing the resistance against regenerative chatter of turning bars is analyzed and
compared to the common DVA system. The structural viscoelastic material is modeled by a 3-parameter linear
solid. The optimal chatter resistance is examined with respect to three stability measures: (1) the most negative
real part of the FRF; (2) the most positive real part of the FRF and (3) the FRF peak magnitude in case of
forced vibration. It was found that for the viscoelastic beam, all three measures are optimized near the same
damping ratio. This result is difficult to achieve by a CDVA system since the DVA has to be tuned differently
for each measure.

Optimal chatter resistance of the VB system is improved by decreasing the E1/E2 ratio while the CDVA
system is improved by increasing the DVA mass ratio (m). An additional advantage of the VB is that
increasing the optimal chatter resistance is followed by an increase in the resonant frequency, while decreasing
it in the DVA system. Viscoelastic properties of a beam can be materialized by several techniques such as fluid
surface damping, which is currently under investigation.
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