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Abstract

In the present study, the natural frequencies of axially loaded, tapered bars are obtained experimentally. A tensile load is

applied gradually till failure (necking) starts at the minimum cross-section end or yielding initiates at the maximum cross-

section end. Experiments are carried out for aluminum and mild steel specimens with four different taper ratios. The results

are presented in the amplitude–frequency plane as waterfall diagrams, which are processed further using a suitable

windowing technique to better resolve the first two vibration modes. A comparison of experimental observations with

results obtained from ANSYS indicates agreement in the elastic part of loading, but the results differ in the post-elastic

domain. It is believed that the present results can serve as benchmarks for further investigation in this domain.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Free flexural vibration analysis of axially loaded bars is an important area of research in the fields of
mechanical, structural and aerospace engineering. Prediction of the dynamic behavior of such an axially
loaded bar in the post-elastic state is quite a challenging and demanding task. Much research has been carried
out in predicting the behavior of axially loaded bars under both compression and tension modes of loading.
In post-elastic state, the dynamic behavior becomes completely different. The next few paragraphs provide a
detailed account of the research work related to this field. The literature review also encompasses the work in
the field of buckling just to signify and document the post-elastic behavior of bars and beams.

Karagiozova and Jones [1] studied numerically the dynamic elasto-plastic buckling phenomenon of rods
under axial impact considering both axial and lateral inertia. Lepik [2] analyzed the dynamic buckling of
elasto-plastic beams using linear strain hardening material behavior and extended the same to incorporate the
effect of axial stress waves [3]. In an earlier study, Lepik [4] used an energy approach based on Hamilton’s
principle for a bifurcation analysis of an elasto-plastic beam. The dynamic elasto-plastic buckling
phenomenon of square tube under axial impact has been studied by Karagiozova [5] and Karagiozova and
Jones [6] considering isotropic linear strain hardening material behavior and using the von Mises yield
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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criterion. Kong et al. [7] presented the static and dynamic analysis of Bernoulli–Euler beams based on strain
gradient theory using both analytical and variational methods. Ma et al. [8] investigated dynamic instability of
elastic–plastic beam using a three-degree-of-freedom beam model.

Ross and Johns [9] reported theoretical and experimental observations for plastic axisymmetric buckling of
thin-walled conical and cylindrical shells under uniform external pressure. Zeinoddini et al. [10,11] studied the
effects of pre-loading on the dynamic behavior of tubular and solid cylindrical structural elements using a
commercial finite element package incorporating geometric and material nonlinearities and validated the
simulation results with experimental results. Zhang et al. [12] presented a new algorithm based on a parametric
variational principle for the simulation of dynamic elasto-plastic strain hardening/softening problems. Plaut
and Virgin [13] investigated the stability and vibration characteristics of a flexible and inextensible half loop
under self-weight for both linearly elastic and softening materials. Virgin and Plaut [14] carried out similar
work for a column with initial curvature under self-weight.

Lacarbonara et al. [15] presented a nonlinear control strategy for the cancellation of principle-parametric
resonance of the first skew-symmetric mode of a simply supported uniform elastic beam subjected to an axial
end force. Jaworski and Dowell [16] considered the accuracy and convergence of the Rayleigh–Ritz method,
component modal analysis and finite element method using ANSYS for the free vibration analysis of a
cantilevered beam with multiple steps in cross-section. They also carried out an experiment to validate the
predicted results. Li [17] presented general solutions for free vibration of multistep nonuniform beams with
several concentrated masses, rotational springs and transitional springs attached at the ends and intermediate
points.

Pulngern et al. [18] investigated large amplitude vibrations of horizontal variable arc length beams using the
finite element method, and considering the effect of large initial static sag deflections due to self-weight. They
have complemented the analytical results with results obtained from an experimental modal analysis.
Jaroszewicz and Zoryi [19] employed the method of influence functions to solve the free transverse vibration
problems of a vertical cantilever and a bar subjected to axial loads. The nonlinear dynamics of a pin-ended
elasto-plastic beam with both kinematic and isotropic hardening has been discussed by Savi and Pacheco [20]
using an iterative numerical procedure, and the results indicated practical problems in predicting the response
of the beam. Recently, the present authors [21] have analyzed numerically the free vibration behavior of
axially loaded nonuniform tapered bars in the elasto-plastic domain.

The literature review reveals that no experimental work is available for investigation of post-elastic dynamic
behavior of an axially loaded, tapered bar. The available studies are devoted to calculating either the linear
natural frequencies or the loaded natural frequencies in the elastic regime. In the present study experiments are
carried out for two different bar materials and for four different taper ratios. Results are presented as waterfall
plots obtained by improving the resolution of the experimentally acquired signal using a suitable windowing
technique, for which a separate algorithm has been developed. The experimental results are also presented in a
traditional load–frequency plane to compare with the simulation results generated using the commercial finite
element package ANSYS (version 8.0).

2. Specimen description

2.1. Geometry

Two different materials, namely, aluminum and mild steel, are used in the present experimentation. For
each material, four different types of tapered geometries are considered by varying the diameter of the
specimen at the smaller end keeping the diameter at the larger end fixed. The schematic diagram of the
specimen geometry is shown in Fig. 1. The various dimensions of the specimens are mentioned in Table 1.

2.2. Material properties

Using the ASTM standard (E08M) procedure, the stress–strain behavior is determined by the Instron
testing machine. Strain is obtained directly using extensometer provided with the instrument, and the
corresponding stress value is derived mathematically by dividing the corresponding applied load with the
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Fig. 1. Schematic diagram of specimen geometry.

Table 1

Specimen dimensions in mm.

Sl. no. L Lg Lc d2 d1 R Material Nomenclature

1 165 100 30 1070.1 970.1 5 Aluminum AL1

Mild steel MS1

2 165 100 30 1070.1 870.1 5 Aluminum AL2

Mild steel MS2

3 165 100 30 1070.1 770.1 5 Aluminum AL3

Mild steel MS3

4 165 100 30 1070.1 670.1 5 Aluminum AL4

Mild steel MS4

Notations shown in Fig. 1.

Fig. 2. Stress–strain diagrams: (a) aluminum and (b) mild steel.

D. Das et al. / Journal of Sound and Vibration 324 (2009) 74–9076
specimen cross-sectional area. At the end of the experiment, the set of data for strain and stress is obtained in
sequential file format. The Instron also provides the salient information of the stress–strain diagram, namely,
yield stress (0.002 offset), ultimate tensile strength and elastic modulus. The information for yield strength and
tensile strength are required for the dynamic test for controlling the load, whereas, the same information along
with the elastic modulus are required for theoretical simulation. The engineering stress–strain diagram
obtained for aluminum and mild steel are shown in Fig. 2(a) and (b), respectively.
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3. Experimental details

3.1. Experimental set-up

A schematic diagram and a photograph of the experimental set-up are shown in Figs. 3 and 4, respectively.
The set-up consists of five major components, namely, the accelerometer, coupler for the accelerometer,
oscilloscope, computer and loading instrument.

The accelerometer (make: Kistler, type: 8728A500, acceleration range: 75000m/s2, frequency range:
1Hz–10 kHz) is mounted on the specimen using Petro-Wax adhesive material. To avoid the effect of mass
loading, the weight of the accelerometer (1.6 g) is kept less than 10 percent the weight of the test specimen.

The coupler (make: Kistler, type: 5114, frequency range: 0.07Hz–60 kHz) provides the electrical interface
between the low-impedance, voltage mode piezoelectric sensor and the display or the recording instrument.
The coupler has two functions: first, to provide constant current power supply to the impedance converter of
the accelerometer; and second, to decouple the DC bias voltage from the output signal.

A digital storage oscilloscope (make: Tektronix, model: TDS 210) with a TDS2MM extension module for
Fast Fourier Transform (FFT) is used to display, process and store the signal of the vibrating specimen. It has
the following specifications: peak detect bandwidth: 50MHz; sample rate range: 50 samples/s–1Gigasamples/s;
record length: 2500 samples; and lower frequency limit: 10Hz. It has RS-232 port compatibility by which it is
connected to a computer to transfer data.

A desktop computer with an Intel Pentium 4 CPU 2.40GHz processor is used as the storage and (offline)
processing device for the acquired data. Data acquired through the RS-232 communication port is grabbed by
Fig. 3. Schematic diagram of the experimental setup.

Fig. 4. Photograph of the experimental setup.
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the computer main memory using WSTRO Wavestar software. The software has the capability to process the
saved data in offline mode and convert it into a sequential data format for further processing.

For loading purposes, a very robust servo hydraulic machine is used (make: Instron, model: 8801, maximum
load capacity: 7100 kN and maximum axial movement: 150mm). The inbuilt Bluehill software for online
processing is used during the material testing to obtain the salient points in the stress–strain diagram and the
material properties. The machine has two different independent modes of control for loading. One is computer
control into which loading information can be provided using the Bluehill software interface. The other one is
the manual mode in which the loading is controlled by a key in the control panel; this mode is used for the
dynamic experiment.

3.2. Test procedure

Tests are carried out to determine the loaded natural frequencies of uniform tapered bars. The applied load
is controlled in such a way that the bar enters its post-elastic state and finally failure (necking) occurs in the
material. It is apparent that yielding initiates at the end of minimum cross-section, and with gradual increase
in load, the yield front proceeds to form a yield region in the post-elastic state. Two cases are possible, either
necking starts at the minimum cross-section before the yield front reaches the other end (maximum cross-
section), or, the yield front reaches the maximum cross-section before necking starts at the critical section.
Occurrence of a particular case depends on the yield strength and tensile strength as well as the ratio of
diameters of maximum and minimum cross-section of the test specimen. As the material properties and the
dimensions of the specimen are known, the approximate uniaxial load at which necking starts (Pu) at the
minimum cross-section or yielding front reaches at maximum cross-section (Py2) can be calculated
theoretically. Accordingly load increment is controlled and end of test is confirmed. Various important
load values are tabulated in Table 2, where, Py1 and Py2 are the loads at which yielding initiates at the
minimum cross-section and yielding front reaches the maximum cross-section, respectively; Pu is the load at
which necking starts at minimum cross-section.

The test procedure is as follows. First, the Instron is made ready for the operation after necessary
initializations in accordance with the operating instructions. Using the computer control mode and by keeping
the load protect capability of Instron ‘on’ (with a specified load), the test specimen is gripped in between the
jaws (hydraulically). This is required to protect the specimen from overloading at the gripped ends. After the
specimen is gripped, the load protect capability is made ‘off’ and the control is transferred to a control panel.
Due to gripping, the test specimen is loaded by a small amount and the amount of load is shown in the load
pane of the control panel. Depending on the magnitude and direction of initial loading, the specimen is given a
small displacement by rotating the displacement key in the direction opposite to that of loading to nullify the
effect of initial loading as much as possible. In addition, the Instron has the capability to compensate for the
effect of pre-loading at the gripped ends to some extent.
Table 2

Important load values.

Material Number Py1 (kN) Py2 (kN) Pu (kN)

Aluminum 1 13.55 16.73 15.84

2 10.71 16.73 12.52

3 8.20 16.73 9.58

4 6.02 16.73 7.04

Mild steel 1 17.81 21.99 28.69

2 14.07 21.99 22.67

3 10.78 21.99 17.36

4 7.92 21.99 12.75
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The accelerometer is mounted on the test specimen at a pre-defined location using adhesive. The location is
selected in such a way that no node exists at that location for the first few (at least 4) mode shapes. The
oscilloscope and coupler are powered on and ‘math’ mode is kept on with ‘auto’ trigger mode.
Table 3

Loads corresponding to load plane numbers.

Load plane number Load (kN)

Aluminum Mild steel

1 2 3 4 1 2 3 4

1 0.488 0.104 0.100 0.230 1.162 0.270 1.016 0.631

2 1.032 0.874 0.517 1.006 1.922 1.576 1.506 1.440

3 1.796 1.435 0.942 1.520 2.727 2.011 2.085 2.900

4 2.382 2.044 1.412 2.014 3.569 2.833 2.649 2.149

5 3.011 2.581 2.014 2.515 4.023 3.581 3.578 3.567

6 3.660 3.159 2.451 2.991 4.722 4.214 4.175 4.381

7 4.260 3.888 2.986 3.501 5.083 5.133 4.879 5.043

8 4.694 4.371 3.473 4.049 5.776 5.955 5.455 5.492

9 5.104 5.025 4.015 4.531 6.158 5.676 6.019 6.263

10 5.515 6.025 4.420 5.289 6.771 7.311 6.480 7.065

11 5.994 6.479 4.927 5.506 8.257 7.976 7.080 7.883

12 6.417 7.021 5.476 5.697 8.926 8.807 7.721 8.237

13 6.902 7.584 5.929 5.826 9.727 9.529 8.278 8.394

14 7.438 8.055 6.216 5.991 11.560 10.420 8.761 8.650

15 7.774 8.611 6.484 6.121 12.060 11.370 9.120 9.158

16 8.254 8.917 6.823 6.297 12.920 12.320 9.926 9.384

17 8.619 9.076 7.125 6.398 13.390 13.200 10.320 9.792

18 9.000 9.172 7.474 6.528 13.830 13.720 10.520 10.070

19 9.447 9.315 7.693 6.723 14.670 13.840 10.810 10.930

20 10.030 9.498 7.758 6.867 15.080 14.170 11.030 10.960

21 10.440 9.659 7.968 6.994 15.790 14.270 11.370 11.630

22 10.890 9.773 8.072 � 16.250 14.360 11.670 11.850

23 11.310 9.872 8.165 � 16.870 14.410 11.870 12.660

24 11.700 9.996 8.269 � 17.150 14.500 12.080 �

25 12.060 10.120 8.461 � 17.820 14.890 12.130 �

26 12.280 10.260 8.612 � 17.950 15.080 12.200 �

27 12.360 10.390 8.732 � 18.120 15.320 12.470 �

28 12.470 10.470 8.825 � 18.380 15.470 12.820 �

29 12.650 10.590 8.948 � 18.440 15.740 13.470 �

30 12.750 10.690 9.072 � 18.580 15.890 13.650 �

31 12.920 10.780 � � 18.660 15.910 13.920 �

32 13.040 10.920 � � 18.830 16.600 14.480 �

33 13.190 11.000 � � 19.210 17.200 14.740 �

34 13.320 11.130 � � 19.510 17.550 15.050 �

35 13.410 11.260 � � 19.880 18.100 15.500 �

36 13.480 11.310 � � 20.160 18.920 15.640 �

37 13.630 11.610 � � 20.370 20.600 15.890 �

38 13.760 11.710 � � 20.760 � � �

39 13.820 11.990 � � 21.220 � � �

40 13.960 12.150 � � 21.590 � � �

41 14.090 � � � 21.650 � � �

42 14.190 � � � 22.120 � � �

43 14.310 � � � 22.410 � � �

44 14.340 � � � 22.660 � � �

45 14.610 � � � 22.770 � � �

46 14.850 � � � 22.830 � � �

47 � � � � 23.100 � � �
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The load increment is prescribed by controlling the displacement key of the control panel of Instron
manually to take the load to a higher value and it is kept static at that value. The oscilloscope is kept ready at
the ‘RUN’ condition. The specimen is hammered to provide disturbance and the oscilloscope captures the
signal from the vibrating specimen and plots FFT. Using the RS-232 communication port, data is sent and
grabbed in the computer main memory using WSTRO Wavestar software, and it is stored in the secondary
memory using an appropriate file name and format. These steps are repeated until the desired load to be
applied is reached or failure occurs in the specimen.

4. Results and discussions

The dynamic behavior of tapered bars in terms of loaded natural frequency for the first two modes is
obtained using the procedure mentioned in Section 3.2. FFT capability of the extension module of the
oscilloscope transformed the signal of the vibrating specimen from time domain to frequency domain, which is
acquired and stored in the computer. The dynamic behavior for different loads is shown as 3D waterfall plots
generated in MATLAB. In these plots, the frequency–amplitude planes are plotted one after another with
increasing values of loads. A sequentially assigned load plane number is used to identify each
frequency–amplitude plane. Although the load plane number acts as an indicator of load increments, a
uniform increment could not be given during the experiment. The values of loads corresponding to load plane
numbers are shown in Table 3. For each specimen, data are captured within frequency range of 0–25.5 kHz.
The waterfall plots in the full frequency range are presented first with the data obtained directly from the
oscilloscope. Subsequently, different waterfall plots are then magnified for each mode as observed from the
full frequency range plot.
Fig. 5. Waterfall plots for AL1: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.
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To obtain the magnified waterfall plots for each mode of vibration, the original signal is further processed to
improve resolution. The original signal obtained in the frequency domain undergoes certain leakage effects
due to the error induced during FFT processing. This is why the peaks for each mode of vibration in the
magnified waterfall plots do not seem to be sharp enough to produce better visibility. Thus, the original signal
requires a windowing operation to be performed on it to regain sharper peaks and better visibility. It is well
known that windowing can be performed on the signal either in the time or frequency domains. As the data
acquired for the present experiment is in the frequency domain, windowing is performed in the frequency
domain. The Hanning function was found to be suitable as the windowing function for the present case. The
FFT of the Hanning function is performed once, stored in memory, and is then applied to each central
frequency where windowing is needed. For each load plane, the central frequencies correspond to the peaks of
each vibration mode. The detailed algorithm of windowing operation [22] is omitted here to maintain
brevity.

Use of waterfall diagram for dynamic analysis of structural elements is quite useful. Kang and Raman [23]
experimentally investigated the vibration and acoustic oscillation of disks rotating in an air-filled medium and
presented some results in the form of waterfall diagrams. Wu and Meng [24] presented a method to identify
rotor malfunction based on 3D spectrum analysis and extensively used waterfall diagrams. In the present
study, the 2D load–frequency plots are also obtained for each specimen from waterfall diagrams. The
frequencies for each mode of vibration corresponding to each load are extracted from the original diagram
using a separate numerical algorithm [22] to present a comparison of the experimental results with the
simulation plots obtained using ANSYS.
Fig. 6. Waterfall plots for AL2: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.
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4.1. Results for aluminum

It is well known that each structural element has its own natural frequencies for different modes of
vibration, and the free vibration behavior changes appreciably when the structural element is loaded
externally. The natural frequency of such a member is called the loaded natural frequency. The loaded natural
frequency increases for tensile and reduces for compressive axial loadings. However, when the induced stress
exceeds the yield limit, i.e., when plastic flow commences, the material properties no longer remain uniform
throughout the test specimen. Due to the gradual increase in load, a region in a post-elastic state develops
where materials are at different post-yield levels. The growth of this region causes softening of the tapered bar
as its stiffness reduces when compared to the purely elastic state of the material. The present paper investigates
how the tapered bar behaves dynamically in a post-elastic state.

Fig. 5(a) presents the waterfall plot for aluminum specimen AL1 for the full frequency range. Magnified
plots of the first and second vibration modes are shown separately in Fig. 5(b) and (c), respectively. Fig. 5(a) is
obtained from the original signal whereas Fig. 5(b) and (c) are obtained with Hanning windowing operation
performed on the original signal as explained earlier. Figs. 6–8 present similar plots for aluminum specimens
AL2, AL3 and AL4, respectively. In some of the magnified waterfall plots, some peaks are obtained which are
out of the general trend. These outliers are probably obtained as a consequence of the high noise level
comparable with the amplitude of the actual harmonics.

The general trend for each vibration mode is that the frequency of vibration increases with tensile load, with
a decreasing slope in the elastic region. However, as the load magnitude is increased further to initiate plastic
deformation in the material, the free vibration frequency decreases sharply and becomes sharper for higher
vibration modes. Exception to this observation is observed for specimen AL4, for which the frequency of
Fig. 7. Waterfall plots for AL3: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.
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vibration continues to increase after the inception of plastic deformation. The load plane number
corresponding to the commencement of plastic deformation for each specimen can be obtained from Tables
2 and 3. This change in behavior with taperness ratio is probably due to the dominance of stretching effect
Fig. 8. Waterfall plots for AL4: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.

Fig. 9. Two-dimensional plots in normalized load–frequency plane for aluminum: (a) first vibration mode and (b) second vibration mode.
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over the softening effect due to plastic deformation. It is also seen that as the taperness of the bar increases
(from AL1 to AL4), the frequency of vibration in the unloaded condition decreases considerably.

To visualize the comparative dynamic behavior of different aluminum specimens, 2D load–frequency plot in
normalized plane for aluminum specimens, obtained using the peaks from Figs. 5(b), 6(b), 7(b) and 8(b), is
presented in Fig. 9(a) for first vibration mode. Similar plot for second vibration mode, obtained using the
peaks from Figs. 5(c), 6(c), 7(c) and 8(c), is presented in Fig. 9(b). It is to be noted that, load is normalized by Pu,
Fig. 10. Finite element model of aluminum specimen.

Fig. 11. Comparison plots in load–frequency plane: (a) AL1, (b) AL2, (c) AL3 and (d) AL4.



ARTICLE IN PRESS
D. Das et al. / Journal of Sound and Vibration 324 (2009) 74–90 85
the load at which necking starts at minimum cross-section, and frequency is normalized by the unloaded
frequency. The plots shown in Fig. 9 are generated by fitting spline curves through the data points and
removing the distinct outliers. The general trend in these figures indicates hardening–softening behavior as
mentioned in the previous paragraph and the effect of taperness becomes obvious for specimen AL4,
especially for the second vibration mode.

The experimental results are then compared with the numerical results obtained using ANSYS. The finite
element model in ANSYS is built using SOLID 95 elements and the loaded natural frequencies are obtained
using a pre-stressed modal analysis. Fig. 10 shows the finite element model of the tapered bar in meshed
condition. The stress–strain data obtained during material testing are provided as input in the simulation
study to match the exact material behavior. The simulated and experimental results are compared in
Fig. 11(a)–(d) for AL1, AL2, AL3 and AL4, respectively. The important load values of the specimens are
indicated in the plots by horizontal lines.

The comparison plots show that the experimental results match well with the simulation results for first
vibration mode but a discrepancy arises for the second vibration mode. The discrepancy is apparent in the
post-elastic region where the decrease in vibration frequency of the simulation results is sharper than that of
the experimental results. The anomalous behavior of elastic–plastic beam dynamics under impulsive loading
has also been reported by Li et al. [25]. There are different reasons that may explain this discrepancy. In the
simulation study, a multilinear isotropic hardening model is used for the nonlinear material model, which may
not match the actual material behavior. Secondly, during dynamic testing, the gripping of the specimen at
the jaws produces significant pre-stressing and permanent deformation, which is not taken into account in the
simulation model. Also, an altogether different physical phenomenon might exist which gives rise to the
discrepancy in the dynamic behavior between the experimental and simulation results.
Fig. 12. Waterfall plots for MS1: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.
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4.2. Results for mild steel

Fig. 12(a) presents the waterfall plot for mild steel specimen MS1 for full frequency range. Magnified plots
for the same specimen of first and second vibration modes are shown in Fig. 12(b) and (c), respectively. These
plots are obtained with the Hanning windowing operation performed on the original signal as explained
earlier. Figs. 13–15 present similar plots for mild steel specimens MS2, MS3 and MS4, respectively. Like the
case for aluminum specimens, the high noise level induced some peaks which are out of the general trend in
some of the magnified plots of mild steel specimens. The general trend observed for each vibration mode of
mild steel specimens remains similar to that observed for aluminum specimens.

The comparative dynamic behavior of different mild steel specimens, in 2D normalized load–frequency
plane, has been shown in Fig. 16(a) for first vibration mode and this plot is generated using the peaks from
Figs. 12(b), 13(b), 14(b) and 15(b). Similar plot for second vibration mode, obtained using the peaks from
Figs. 12(c), 13(c), 14(c) and 15(c), is presented in Fig. 16(b). The normalization schemes, as used for aluminum
specimens, have been used for this case also. The plots shown in Fig. 16 are generated by removing the outliers
and fitting splines through the data points. The general observations for this figure remain same as in the
previous case for aluminum specimens.

The comparisons of the experimental results for mild steel specimens with the numerical results obtained
using ANSYS are shown in Fig. 17(a)–(d) for MS1, MS2, MS3 and MS4, respectively. The finite element
modeling and analysis procedure in ANSYS is same as mentioned for aluminum specimens. The stress–strain
data for material property obtained during material testing are provided as input for the simulation study to
match the exact material behavior. It may be noted that stress–strain diagram for mild steel (Fig. 2(b))
contains sharp peaks and discontinuities around the yield region, which makes the convergence for the
Fig. 13. Waterfall plots for MS2: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.
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Fig. 14. Waterfall plots for MS3: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.

D. Das et al. / Journal of Sound and Vibration 324 (2009) 74–90 87
simulation study almost impossible. To overcome this problem, a smooth stress–strain curve has been
assumed around the yield region for the simulation study.

The comparison plots show that the loaded natural frequency trends for the experimental results match the
simulation results within the elastic part of the loading, but a qualitative discrepancy prevails for higher
modes. The reasons for this discrepancy are the same as those mentioned for aluminum specimens. Although
the trends of the results are initially in good agreement, they begin to deviate when the load is increased further
into the post-elastic domain.

The experimental findings are identical for both the mild steel and aluminum specimens. Each material’s
experimental results closely match with ANSYS for the first mode of transverse vibration and within elastic
part of the loading. However, the higher mode results differ in magnitude of frequency as well as in nature in
the post-elastic domain. This discrepancy opens up new avenues for future study in this direction. The present
study considers tapered bars of circular cross-section only, and the effect of other specimen geometries is
another area for future study.

5. Conclusions

The paper investigates experimentally the elastic and post-elastic free vibration behavior of axially loaded,
tapered bars. Detailed descriptions of the experimental set-up and test procedure are presented, and a
numerical algorithm for processing the acquired signal has been developed to obtain better resolution of the
waterfall diagrams. Experimental work has been carried out on specimens having circular cross-section for
two different materials, and the observations are found to be similar. A comparison between experimental
observations and results simulated using the commercial analysis package ANSYS indicates good agreement
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Fig. 15. Waterfall plots for MS4: (a) full frequency range, (b) first vibration mode and (c) second vibration mode.

Fig. 16. Two-dimensional plots in normalized load–frequency plane for mild steel: (a) first vibration mode and (b) second vibration mode.
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in the elastic part of loading, although the results differ when load is increased further in post-elastic domain.
This observation points towards the inadequacy of the simulation models, and the suggested future work aims
to improve the agreement of dynamic behavior between simulation and experiment of axially loaded, tapered
bars in the post-elastic regime.
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Fig. 17. Comparison plots in load–frequency plane: (a) MS1, (b) MS2, (c) MS3 and (d) MS4.
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