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Abstract

This study is the first work to consider the sound radiation of a panel subject to 2:1 internal resonance. The research also

furthers the experimental work of a previous paper that did not make use of 2:1 internal resonance for sound reduction and

failed to tune the frequency ratio of the first symmetric and anti-symmetric modes of the curved structure close to two.

The results indicate that when the ratio of the resonant frequencies of the first bending symmetric and anti-symmetric

modes is close to two, and the excitation frequency is equal to the resonant frequency of the first symmetric mode, the

contribution of the first anti-symmetric mode is significant, even though the curved panel and excitation are symmetrical.

This is because a large amount of the vibration energy is transferred to the anti-symmetric mode, whose sound radiation

efficiency is much lower than that of the symmetric mode. Thus, the total sound radiated from the panel is reduced.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of nonlinear systems have been widely investigated in various research studies. For example,
Yamaki et al. [1,2] examined the effects of axial displacement on the dynamic responses of a clamped beam
and the corresponding internal and combination resonances. Abou-Rayan et al. [3] performed a theoretical
study of the nonlinear single-mode responses of a simply supported curved beam to parametric excitation, and
Feng and Hu [4] presented their nonlinear beam work using the multi-mode approach. Other studies have
considered the two-mode responses of various systems with internal resonance (e.g., [5]), but have not
examined the coupling between the symmetric and anti-symmetric modes. Some studies of two-to-one internal
resonance (e.g., [6–8]) have shown that the anti-symmetric modes of a curved panel can be excited by
symmetric excitations, and Nayfeh and Mook [9] presented a detailed theoretical and experimental discussion
of the two-to-one internally resonant responses of a beam-mass system. However, only limited results have
been obtained regarding the effects of internal resonance on sound radiation. Lee et al. [10] considered the
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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effects of the anti-symmetric mode on the total vibration response of a curved beam, but failed to tune the
frequency ratio of the first symmetric and anti-symmetric modes closer to two. The theoretical and
experimental work in this study investigated the effects of 2:1 internal resonance on the noise and vibration
responses of curved structures.

2. Theory

Consider an initially curved panel or shallow shell that is simply supported or clamped at two opposite sides
and free at the other two, and is subject to transverse harmonic base excitation (see Fig. 1). In our theoretical
model, flexural bending along the width is neglected. Thus, this structure can be considered to be a beam-like
panel. The governing differential equation of a curved beam that is subject to uniform base harmonic
excitation [11] is given by

rA €wþ O _wþ EIw0000 ¼
EA

L
ðw00 þ w00Þ

Z L

0

w0w0 þ
1

2
ðw0Þ2

� �
dx� F sin ot, (1)

where w is the transverse displacement caused by the panel bending; _w and €w the first and second derivatives of
the transverse displacement with respect to time t; w0;w00; and w0000 the first, second, and fourth derivatives of
the transverse displacement with respect to the spatial variable, x; w the initial transverse displacement of the
panel; E Young’s modulus of the panel; r the material density of the panel; O the damping coefficient of
the panel; A ¼ B� h the cross-sectional area of the panel; B panel width; h panel thickness; L panel length;
F the base excitation amplitude (where F ¼ rAgk); o the excitation frequency; k the base excitation
parameter; and g the gravity ¼ 9.81ms�2.

Consider that the transverse displacement is expressed in terms of the panel mode shapes

wðx; tÞ ¼
XN

i¼1

qiðtÞfiðxÞ, (2)

where qi is the modal amplitude of the ith mode; fi the ith mode shape, which is normalized so that the
maximum value of each mode shape is equal to one; i the mode number; and N the number of modes
considered.

It is assumed that the initial deflection shape w ¼ q0f1, where q0 is the transverse displacement at the center.
Hence, the residual can be defined by substituting Eq. (2) into (1), as follows.

D ¼ rA
XN

i¼1

€qifi þ xoi

XN

i¼1

_qifi þ EI
XN

i¼1

qif
0000
i �

EA

L

XN

i¼1

qif
00
i þ q0f

00
1

 !

�
XN

i¼1

q0qi

Z L

0

f01f
0
i dxþ

1

2

XN

i¼1

XN

j¼1

qiqj

Z L

0

f0if
0
j dx

 !
þ F sin ot (3)

where f0i;f
00
i , and f0000i the first, second and fourth derivatives of the ith mode shape, respectively and i, j the

mode numbers. xoi ¼ O, where x ¼ modal damping coefficient.
Curved panel with two sides simply
supported/clamped and two sides free

Base
Excitation 

F sin ωt

Fig. 1. Side view of a curved panel under base excitation.



ARTICLE IN PRESS
Y.Y. Lee et al. / Journal of Sound and Vibration 324 (2009) 1003–1015 1005
Using the Galerkin approach [12], the weighted residual in Eq. (3) is set to zero. Multiplying fm by each
term on the right-hand side of Eq. (3) and taking the integration over the beam length gives

rA
XN

i¼1

€qia
0;0
i;m þ xoi

XN

i¼1

_qia
0;0
i;m þ EI

XN

i¼1

qia
4;0
i;m �

EA

L
þ
XN

i¼1

a1;11;i a
2;0
1;mq2

0qi

"

þ
XN

i¼1

XN

j¼1

a1;11;i a
2;0
j;m þ

1

2
a1;1i;j a

2;0
1;m

� �
q0qiqj þ

1

2

XN

i¼1

XN

j¼1

XN

k¼1

a1;1i;j a
2;0
k;mqiqjqk

#
� €qb;m ¼ 0, (4)

where bm ¼
R L

0 fm dx; a0;0i;m ¼
R L

0 fifm dx; a2;0i;m ¼
R L

0 f00i fm dx; a4;0i;m ¼
R L

0 f0000i fm dx; a1;1i;m ¼
R L

0 f0if
0
m dx; m, k the

mode numbers, €qb;m the modal base acceleration ¼ Fbm sin ot=rAa0;0m;m.
Similarly, multiplying another mode shape function by Eq. (4) and taking the integration allows N�N

matrix equations to be set up. The unknown modal amplitude, |qi|, can be solved using Runge–Kutta time
domain numerical integration.

Note that the linear modal stiffness terms in Eq. (4) are

Ki;m ¼ EIa4;0i;m �
EA

L
a1;11;i a

2;0
1;mq2

0. (5)

For the simply supported condition, the mode shapes are obviously given by

fmðxÞ ¼ sin
mpx

L

� �
. (6)

Hence, by substituting Eq. (6) into (5), the linear modal stiffness matrix becomes diagonal, i.e.,

Ki;m ¼ 0 for iam. (7)

For the clamped condition, the mode shapes must satisfy the following boundary conditions.

fmðxÞ ¼ f0mðxÞ ¼ 0 at x ¼ 0 or L. (8)

To have linear diagonal modal stiffness and the mass matrices in Eq. (4), the mode shapes are also required to
satisfy the following conditions. Z L

0

fmfi dx ¼ 0 for iam; (9a)

Z L

0

f0000m fi dx ¼ 0 for iam; (9b)

Z L

0

f01f
0
i dx ¼ 0 for 1ai; (9c)

Z L

0

f001fm dx ¼ 0 for 1am; and (9d)

Z L

0

f001fi dx ¼ 0 for 1ai. (9e)

Let the symmetrical mode shapes for the clamped panel be

fmðxÞ ¼
1

Cm

XSm

s¼1

Cm;scsðxÞ, (10)

where csðxÞ ¼ ð1� cosðð2ps=LÞxÞÞ is a ‘‘sub-mode shape’’ that is able to satisfy the boundary conditions in
Eq. (8); Cm,s is set to one, whereas the other coefficients, Cm,s, are unknowns to be determined; Cm is a
normalization constant so that the maximum value of fm is equal to one; and Sm is the number of sub-mode
shapes used. By substituting Eq. (10) into (9a–e), a set of equations can be set up and used to solve for the
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unknown coefficients Cm,s. The total number of sub-mode shapes is selected according to the condition that
the number of equations is equal to the number of unknown coefficients Cm,s. Then, the anti-symmetric mode
shapes are given by

fmðxÞ ¼
1

Cm

coshðgmxÞ � cosðgmxÞ �
cosðgmLÞ � coshðgmLÞ

sinðgmLÞ � sinhðgmLÞ
ðsinhðgmxÞ � sinðgmxÞÞ

� �
, (11)

where gm is the mth root of the equation coshðgLÞ cosðgLÞ � 1 ¼ 0; the anti-symmetric mode shapes in Eq. (11)
are adopted from the exact solution to the clamped beam. Note that the mode shape in Eq. (11) satisfies the
conditions in Eqs. (8) and (9a–e).

As previously mentioned, the modal amplitudes can be found in the time-domain numerical integration.
The modal vibration and acoustic energies of each mode can also be found and are proportional to j _q2mj, which
represents the temporal average of the square of the response of the mth mode. Thus, the modal vibration
energy contribution ratio, the normalized modal vibration energy, and the normalized total vibration energy
are given by

Dv;m ¼
j _q2

mjPN
i¼1j _q

2
i j
, (12a)

Ev;m ¼ 10 log
j _q2

mj

G
(12b)

Ev ¼ 10 log

P
mj _q

2
mj

G
, (12c)

where G is a normalization constant so that the maximum values of Ev,m and Ev are equal to one.
Similarly, the modal contribution ratio of the acoustic energy radiated from the vibrating panel, the

normalized modal sound energy, and the normalized total sound energy are given by

Ds;m ¼
j _q2

mjsmPN
i¼1j _q

2
i jsi

, (13a)

Es;m ¼ 10 log
j _q2

mjsm

G
, (13b)

Es ¼ 10 log

P
mj _q

2
mjsm

G
, (13c)

where sm is the radiation efficiency of the mth mode (the calculation of the acoustic pressure radiated from a
vibrating panel is described in the following paragraph).

It is noted that Eqs. (12)–(13) consider the flexural vibration amplitudes of the panel only. The predictions
for the modal vibration, total vibration, modal sound, and total sound energies of the vibrating panel plus the
excitation base are computed by

E0v;m ¼ 10 log
jð _qm þ _qb;mÞ

2
j

G
, (14a)

E0v ¼ 10 log

P
mjð _qm þ _qb;mÞ

2
j

G
, (14b)

E0s;m ¼ 10 log
jð _qm þ _qb;mÞ

2
jsm

G
, (14c)

E0s ¼ 10 log

P
mjð _qm þ _qb;mÞ

2
jsm

G
. (14d)
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The resulting acoustic pressure at an observer point Pm(r,f,j), which is radiated from the mth vibrating mode
shape of a panel, can be found from the modified Rayleigh’s integral [12] and is given by

Pmðr; y;jÞ ¼ �i0k0r0c0
ei0k0r

2pr

Z B

0

Z L

0

fme
�i0ðgx=LþZy=BÞ dxdy. (15a)

Hence, the sound power radiated from the mth mode and the sound radiation efficiency are given by

Pm ¼

Z 2p

0

Z p=2

0

jPmðr; y;jÞj2

r0c0
r2 sinðyÞdydj, (15b)

sm ¼
8Pm

r0c0BL
, (15c)

where sm is the sound radiation efficiency of the mth mode; Pm the sound power from the mth mode;
|Pm(r,f,j)| the acoustic pressure magnitude at the observer point; g the k0L sin y cos j; Z the k0B sin y sin j;
r the distance between the panel corner and the observer point; y and j the angle between r and the y-axis and
the angle between r and the x-axis, respectively (see [12]); k0 the wave number; r0 and c0 the air density and

sound speed; respectively; and i0 ¼
ffiffiffiffiffiffiffi
�1
p

.
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Fig. 2. (a) Theoretical normalized modal vibration energy of the simply supported panel (o1/o2 ¼ 2). (b) Theoretical normalized modal

vibration energy of the simply supported panel (o1/o2 ¼ 1.85). (c) Theoretical normalized modal vibration energy of the simply supported

panel (o1/o2 ¼ 1.43).
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3. Numerical results

In Fig. 2a, the normalized modal vibration energy of the simply supported panel is plotted against the
normalized excitation frequency. The Young’s modulus and density of the panel are 200� 109N/m2 and
7800 kg/m3, respectively. The dimensions are B ¼ 150mm�L ¼ 400mm� h ¼ 0.5mm. The initial center
deflection, base excitation parameter and damping ratio are w ¼ 1:6mm, k ¼ 0.01 and x ¼ 0.02, respectively.
The resonant frequencies of the first symmetric and anti-symmetric modes are o1 ¼ 2o2 and o2 ¼ 2p� 28.702
radian/s, respectively, and the resonant frequencies of the second symmetric and anti-symmetric modes are
o3 ¼ 2p� 64.579 radian/s and o4 ¼ 2p� 114.807 radian/s, respectively. Figs. 2b–c show the normalized
modal vibration energies for the cases that the initial center deflection of the panel is adjusted to w ¼ 1:5mm
and 1.15mm, and the resonant frequency is adjusted to o1 ¼ 1.85o2 and o1 ¼ 1.43o2, respectively. In Fig. 2a,
at a o/o2 ratio close to 2 (where o ¼ the excitation frequency), the ‘‘V trough’’ on the solid line indicates a
sharp reduction in the amplitude of the first symmetric mode. In contrast, the first anti-symmetric mode
amplitude increases sharply and becomes highly significant. This phenomenon can be explained by the
vibration energy transfer from the symmetric mode to the anti-symmetric mode. The peak at o/o2 ¼ 2.25 is
caused by the resonance of the second symmetric mode. The line that represents the second anti-symmetric
mode does not appear on the graph because its amplitude is very small and is outside the bounds of the figure.
In Fig. 3a, there is a peak at o/o2 ¼ 2 on the dotted line, which represents the typical linear vibration
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Fig. 3. (a) Theoretical normalized total vibration energy of the simply supported panel (o1/o2 ¼ 2). (b) Theoretical normalized total

vibration energy of the clamped panel (o1/o2 ¼ 2). (c) Total sound energy radiated from the simply supported panel (o1/o2 ¼ 2). (d) Total

sound energy radiated from the clamped panel (o1/o2 ¼ 2). (e) Sound radiation efficiency of the mode shapes of the simply supported

panel. (f) Time histories of the modal responses of the simply support panel (o/o2 ¼ 2). (g) Frequency spectrums of the modal responses in

Fig. 3f.
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phenomenon. The comparison between the two lines indicates that the single mode approach is incorrect and
unable to prove the existence of the modal energy transfer. Similarly, in Figs. 2b–c, a ‘‘V trough’’ that is much
smaller than that in Fig. 2a appears on the solid line around o/o2 ¼ 2. The first anti-symmetric mode
amplitude increases sharply and becomes highly significant around o/o2 ¼ 2. The amplitude also jumps
sharply at a o/o2 close to 1.85 in Fig. 2b or 1.43 in Fig. 2c, but that of the first symmetric mode is much more
significant. This implies that the modal energy transfers are very weak when compared with the case in Fig. 2a.
It can be seen that a weaker modal energy transfer still exists if o1/o2 is close to 2.

In Figs. 3a–b, the normalized total vibration energies of the simply supported and clamped panels are
plotted against the normalized excitation frequency. The material properties and configurations of the simply-
supported panel are the same as those in Fig. 2a. For the clamped panel, the initial center deflection
is w ¼ 1:45mm; the other configurations and material parameters are also the same as those in Fig. 2a.
In Figs. 3a–b, the peaks at o/o2 ¼ 2 on the dotted lines represent the typical linear vibration resonance, while
the troughs at o/o2 ¼ 2 on the solid lines represent the aforementioned nonlinear modal coupling
phenomenon. Thus, the comparison between the lines indicates that the single mode approach is incorrect and
is unable to prove the existence of the modal energy transfer. In addition, it is observed that the energy transfer
at o/o2 ¼ 2 in the case of the simply supported panel is more significant than in the case of the clamped panel.
In Figs. 3c–d, the normalized total sound powers are plotted for the cases in Figs. 3a–b. Obviously, the sound
contribution due to the first anti-symmetric mode is much less significant. This is because (1) at low to medium
frequencies (or below the critical frequency), the radiation efficiency of the first anti-symmetric mode is much
lower than that of the first symmetric mode (see Fig. 3e); and (2) the first anti-symmetric mode response
frequency is only half of the first symmetric mode response frequency at o/o2 ¼ 2 (see the time domain modal
responses and the corresponding frequency spectra in Figs. 3f–g). The radiation efficiencies in Fig. 3e are
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Table 1

(a) Modal vibration energy contribution ratio for the simply supported panel at o/o2 ¼ 2. (b) Modal sound energy contribution ratio for

the simply panel at o/o2 ¼ 2.

Contribution ratio 1 mode approach 2 mode approach 3 mode approach 4 mode approach

(a)

1st symmetric mode, o1 100.000 0.630 0.628 0.628

1st anti-symmetric mode, o2 � 99.370 98.983 98.958

2nd symmetric mode, o3 � – 0.389 0.389

2nd anti-symmetric mode, o4 � – – 0.025

(b)

1st symmetric mode, o1 100.000 87.140 82.493 82.493

1st anti-symmetric mode, o2 � 12.860 12.174 12.174

2nd symmetric mode, o3 � � 5.333 5.333

2nd anti-symmetric mode, o4 � � � 0.000

Y.Y. Lee et al. / Journal of Sound and Vibration 324 (2009) 1003–10151010
calculated using Eqs. (15a–c). Thus, the lower response frequency of the first anti-symmetric mode leads to
lower sound radiation. Tables 1a–b show the comparisons between the various modal acoustic and vibration
energy contribution ratios at o/o1 ¼ 2 for the simply-supported panel. The three-mode approach is sufficient
and is able to achieve five-digit accuracy.
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In Fig. 4a, the normalized modal vibration energies of the simply supported panel are plotted against the
damping ratio for o/o2 ¼ 2, and the panel configurations and parameters are the same as those in Fig. 2a.
The first anti-symmetric mode vibration energy monotonically decreases for damping ratios from 0.01 to 0.25.
Its vibration energy is the highest among the four modes considered. The first symmetric vibration level
steadily increases for damping ratios from 0.01 to 0.25. Its vibration energy approaches that of the first anti-
symmetric mode when the damping ratio is near 0.25. The second anti-symmetric mode and the second
MCML MR
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Fig. 5. The experimental setup.
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symmetric mode vibration energy levels are nearly constant and not very significant. Fig. 4b plots the
normalized vibration energies of the first symmetric mode, the first anti-symmetric mode and the second
symmetric mode against the base acceleration factor for o/o2 ¼ 2. The other panel configurations and
parameters are the same as those in Fig. 2a. All of the normalized vibration energies increase monotonically,
and the first anti-symmetric mode always plays the most important role in the base acceleration range
considered.
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Fig. 6. (a) Experimental normalized modal vibration energy of the clamped steel panel (o1/o2 ¼ 2.02). (b) Experimental mode shapes. (c)
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o1/o2 ¼ 2.02). (d) Theoretical mode shapes. (e) Time histories of the modal responses of the clamped steel panel (o/o2 ¼ 2.02). (f)

Frequency spectrums of the modal responses in Fig. 6e.
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4. Experiment setup

A curved panel with a thickness of 0.5mm, an arc length of 310mm, and a breadth of 350mm was
fabricated from a steel sheet. Two sides of the panel were clamped, and the other two remained free. Note that
the inevitable slipping effect at the clamped sides caused a deviation in the natural frequency response. Tests
were conducted by periodically exciting the base frame and measuring the displacement of the panel from the
frame using accelerometers as sensing elements. The test setup was similar to that in [10]. A schematic diagram
of the complete setup is shown in Fig. 4. The base frame was bolted to the exciter table of a 6000-N
electromagnetic vibration shaker, and a uniformly distributed pulsating load was applied to the panel by
shaking the base frame sinusoidally. In the experiment, the two resonant frequencies were tuned to nearly 2 by
placing a strut at the panel center and adjusting the curvature. The dynamic responses of the panel were
obtained via accelerometers. An additional accelerometer was used to monitor the dynamic response of the
shaker table. This arrangement allowed the frame to be subject to sine-wave excitation for a wide frequency
range. Three microphones were also set 1.5m above the panel surface to measure the average level of the
sound that radiated from the panel. Note that the sound and vibration measurements were conducted in an
anechoic chamber to ensure that the sound received by the microphones was mainly and directly from the
panel vibration. The temporally averaged magnitudes of the total symmetrical and anti-symmetrical responses
of the panel and the base excitation are defined by

_qsym ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j�¼1
ð _W C;j� Þ

2

M

s
; _qant ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j�¼1

_W L;j��
_W R;j�

2

� �
M

vuut
; _qbas ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j�¼1
ð _W B;j� Þ

2

M

s
, (16a2c)
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Fig. 7. (a) Experimental normalized modal vibration energy of the clamped steel panel (o1/o2 ¼ 1.85). (b) Theoretical normalized modal

vibration energy of the clamped steel panel (B ¼ 150mm; L ¼ 300mm; h ¼ 0.5mm; k ¼ 0.05; x ¼ 0.04; o1/o2 ¼ 1.85).
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where W C;j� , W L;j� , W R;j� , and W B;j� are the dynamic responses at the j*th time steps of the measurement
locations, respectively, and M is the total time step (Fig. 5).
5. Experimental results and verifications

Fig. 6a depicts the experimental normalized modal vibration energy of the clamped curved panel under
symmetrical base excitation (k ¼ 0.175, o1/o2 ¼ 2.02). Fig. 6b shows the measured mode shapes. The first two
modes are nearly symmetric (101Hz) and anti-symmetric (50Hz), respectively. As the panel was not perfectly
symmetrical, a few anti-symmetrical responses were induced (see the experimental mode shapes in Fig. 6b).
Significant resonant peaks can be found on the two curves at o/o2 ¼ 1, 2.02, and 2.43. Figs. 6c–d show the
theoretical normalized modal vibration energies of the clamped curved panel and the mode shapes. The
experimental and theoretical results indicate that the anti-symmetrical responses become very significant
around o1/o2 ¼ 2.02. The small resonant peaks on the experimental curves at o/o2 ¼ 1.58, which are caused
by another panel mode, cannot be predicted by the beam model. In addition, there are two resonant peaks at
o/o1 ¼ 1 on the experimental curves in Fig. 6a, but no similar peaks in Fig. 6c. These symmetrical and anti-
symmetrical resonant responses at o/o2 ¼ 1 were induced in the experiment because of the unsymmetrical
property of the beam. Figs. 6e–f show the time histories of the beam responses for o/o2 ¼ 2.02, and the
corresponding frequency spectrums. The dominant frequencies of the anti-symmetric and symmetric responses
are only half of, and the same as, the excitation frequency, respectively. This agrees with the theoretical results
shown in Figs. 3f–g.
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Fig. 7a shows the experimental normalized modal vibration energy of the clamped curved panels (k ¼ 0.175,
o1/o2 ¼ 126/68 ¼ 1.85). Generally, the symmetrical response is more significant than the anti-symmetrical
response. No strong modal coupling can be found. This agrees with the theoretical prediction in Fig. 7b.
Moreover, similar to those in Fig. 6a, the peaks at o/o2 ¼ 1 and 1.58 in Fig. 7a cannot be found in the
theoretical prediction in Fig. 7b.

Figs. 8a–b depict the experimental and theoretical normalized total radiated sound levels of the clamped
curved panel for o1/o2 ¼ 2.02 and 1.85. These experimental and theoretical results indicate that the total
radiated sound is significantly reduced when o1/o2 ¼ 2.02, because energy transfer occurs from the high
radiation symmetrical mode to the low radiation anti-symmetrical mode. The experimental data for
o1/o2 ¼ 1.85 was only recorded for the frequency range o/o2 ¼ 0.62 to 2.08. In addition, note that the sound
power level predictions in Fig. 8b cannot be directly compared with the measured sound pressure levels in
Fig. 8a.

6. Conclusion

This study demonstrated that anti-symmetric responses can be induced in a symmetrical curved panel under
symmetric excitation, provided that the ratio of the resonant frequencies of the first bending symmetric and
anti-symmetric modes is close to two, and that the excitation frequency is equal to the resonant frequency of
the first symmetric mode (which are the main conditions for two-to-one internal resonance). The contribution
of the first anti-symmetric mode to the total vibration response is highly significant, even though the curved
panel and excitation distribution are symmetrical. This occurs because a large amount of the vibration energy
is transferred to the anti-symmetric mode, the sound radiation efficiency of which is much lower than that of
the symmetric mode. Hence, the overall sound radiated from the panel is reduced.
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