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Abstract

The partial quadratic eigenvalue assignment problem (PQEVAP) concerns the reassignment of a small number of

undesirable eigenvalues of a quadratic matrix pencil, while leaving the remaining large number of eigenvalues and the

corresponding eigenvectors unchanged. The problem arises in controlling undesirable resonance in vibrating structures and

in stabilizing control systems. The solution of this problem requires computations of a pair of feedback matrices. For

practical effectiveness, these feedback matrices must be computed in such a way that their norms and the condition number

of the closed-loop eigenvector matrix are as small as possible. These considerations give rise to the minimum norm partial

quadratic eigenvalue assignment problem (MNPQEVAP) and the robust partial quadratic eigenvalue assignment problem

(RPQEVAP), respectively. In this paper we propose new optimization based algorithms for solving these problems.

The problems are solved directly in a second-order setting without resorting to a standard first-order formulation so as

to avoid the inversion of a possibly ill-conditioned matrix and the loss of exploitable structures of the original model.

The algorithms require the knowledge of only the open-loop eigenvalues to be replaced and their corresponding

eigenvectors. The remaining open-loop eigenvalues and their corresponding eigenvectors are kept unchanged. The

invariance of the large number of eigenvalues and eigenvectors under feedback is guaranteed by a proven mathematical

result. Furthermore, the gradient formulas needed to solve the problems by using the quasi-Newton optimization

technique employed are computed in terms of the known quantities only. Above all, the proposed methods do not require

the reduction of the model order or the order of the controller, even when the underlying finite element model has a very

large degree of freedom. These attractive features, coupled with minimal computational requirements, such as solutions of

small diagonal Sylvester equations make the proposed algorithms ideally suited for application to large real-life structures.

Numerical results show significant improvement in feedback norms and in the condition number of the closed-loop system.

Also, the closed-loop eigenvalues have acceptable accuracy.
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Nomenclature

ā complex conjugate of the number a

AH Hermitian of the matrix A

AT transpose of the matrix A

trðAÞ trace of matrix A

detðAÞ determinant of matrix A

rankðAÞ rank of matrix A

A40 the matrix A is positive definite
AX0 the matrix A is positive semi-definite
½A;B� the matrix A augmented by the matrix B

I unit matrix
In unit matrix of order ðn� nÞ

In�n unit matrix of order ðn� nÞ

O null matrix
Om�n null matrix of order ðm� nÞ

P \Q the intersection of the sets P and Q

x 2 S x is an element of set S

xeS x is not an element of set S

X ¼ ðx1;x2; . . . ;x2nÞ matrix of right eigenvectors
of the open-loop pencil PðlÞ

kXkF Frobenius norm of X
X1 ¼ ðx1;x2; . . . ;xpÞ matrix of open-loop eigen-

vectors corresponding to the open-loop
eigenvalues l1; . . . ; lp

X2 ¼ ðxpþ1; . . . ; x2nÞ matrix of open-loop eigen-
vectors corresponding to the open-loop
eigenvalues lpþ1; . . . ; l2n

DZ the first-order differential of the matrix Z

5CðIÞ gradient of I with respect to G
� tolerance limit for gradient in Algorithm 1
K ¼ diagðl1; l2; . . . ; l2nÞ the matrix of eigenva-

lues of the open-loop pencil PðlÞ
K1 ¼ diagðl1; l2; . . . ; lpÞ matrix of open-loop

eigenvalues to be reassigned
K2 ¼ diagðlpþ1; . . . ; l2nÞ matrix of open-loop

eigenvalues to remain invariant
K01 ¼ diagðm1;m2; . . . ; mpÞ matrix of new eigenva-

lues to replace those in K1

diagða1; a2; . . . ; anÞ the ðn� nÞ diagonal matrix
whose diagonal elements starting from
upper left hand corner are a1; a2; . . . ; an

iff. if and only if
Maxiter maximum number of iterations allowed

in Algorithm 1

In this paper matrices and vectors have been denoted by bold characters. The following symbols and
abbreviations have been used.
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1. Introduction

It is well-known that vibrating structures, such as bridges, high rise buildings, aircrafts, spacecrafts, etc., can
be modeled by a second-order linear matrix ordinary differential equation of the form:

M€qðtÞ þD_qðtÞ þ KqðtÞ ¼ fðtÞ, (1)

where M, D, K are constant real ðn� nÞ matrices, and qðtÞ and fðtÞ are real n-vectors. The matrix M is called
the mass matrix, D is called the damping matrix and K is called the stiffness matrix. The vector fðtÞ represents
an external force, t represents time and n is an integer, called the degrees of freedom (dof) of the system. In
many applications, the matrices M, K and D are symmetric; furthermore, M is positive definite and K is
positive semi-definite. We make the same assumptions about M, K and D.

The dynamics of the structures modeled by Eq. (1), are governed by the eigenvalues and eigenvectors of the
quadratic matrix polynomial PðlÞ (see Refs. [1–3]) where

PðlÞ �Ml2 þDlþ K. (2)

The matrix polynomial PðlÞ is called the open-loop pencil and its eigenvalues are called the open-loop
eigenvalues. If M is non-singular, PðlÞ has 2n eigenvalues which are the roots of the equation detðPðlÞÞ ¼ 0
(see, for example, Ref. [4]). Also, a non-zero vector x is called the right eigenvector corresponding to the
eigenvalue l of the quadratic matrix pencil PðlÞ if ðl2Mþ lDþ KÞx ¼ 0.

In some cases we find that a small number of open-loop eigenvalues are undesirable, because their presence
has a damaging effect on the system. Undesirable resonance in vibrating structures is a case in point. It is well
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known that if a vibrating structure is acted on by external forces that are vibratory in nature whose frequencies
are equal to or close to the natural frequencies of the vibrating structure then the vibrations get greatly
amplified. This phenomenon is called resonance. Now, the natural frequencies of a vibrating structure, which
are a characteristic property of the structure, are closely related to the open-loop eigenvalues. Thus it is the
presence of certain open-loop eigenvalues which is responsible for causing resonance. Resonance can have a
disastrous effect on structures. Failures of many structures like buildings, bridges, airplane wings and turbines
have been attributed to resonance.

Vibrations can be controlled either by using passive control devices such as vibration absorbers or vibration
dampers or by applying a feedback control force by means of active controllers. Passive control devices are
widely used because of their simplicity, low cost and easiness of use. However they have some practical
limitations. A more effective way of controlling resonance or other forms of instability, especially when a large
control force is required, is by using active controllers on the structures. Due to the advances in sensors and
actuators, the use of active vibration control is now becoming more and more popular. Indeed, many
structures in several countries have been built using active controllers. It may be noted that the Kyobashi
Seiwa Building built in 1989 in Tokyo was the first building to be constructed with an active control system.

To implement an active control strategy, feedback control gains must be computed in real time and it is
crucial that such gains are computed in an efficient and numerically robust way. Suppose that a control force
of the form BuðtÞ (see Refs. [3–5]) is applied to the structure. Here B is a given real n�m matrix ðmpnÞ and
uðtÞ is a real m-vector given by

uðtÞ ¼ FT _qðtÞ þGT qðtÞ, (3)

and F and G are unknown, constant, real, ðn�mÞ matrices called the feedback matrices. We assume that qðtÞ
and _qðtÞ can be measured. From Eqs. (1) and (3), we obtain the closed-loop system:

M€qðtÞ þ ðD� BFTÞ_qðtÞ þ ðK� BGT
ÞqðtÞ ¼ fðtÞ. (4)

The dynamics of this closed-loop system are determined by the eigenvalues and eigenvectors of the quadratic
matrix polynomial:

PcðlÞ � l2Mþ lðD� BFTÞ þ ðK� BGT
Þ. (5)

The quadratic matrix polynomial PcðlÞ is called the closed-loop pencil and its eigenvalues are called the closed-
loop eigenvalues. Now, in order to prevent resonance, the feedback matrices F and G are determined such that
the closed-loop spectrum is the one that we obtain from the open-loop spectrum by replacing the small
number of resonant eigenvalues, by suitably chosen ones while keeping the remaining eigenvalues and
associated eigenvectors unchanged. The last property, known as the no spill-over property, guarantees that the
large number of unassigned modes will not themselves become resonant or unstable. The problem of finding
F and G is referred to as the partial quadratic eigenvalue assignment problem (PQEVAP). In this context it
may be noted that if rankð½Ml2 þDlþ K;B�Þ ¼ n holds for the eigenvalues l1; l2; . . . ; lp then these p open-
loop eigenvalues can be reassigned arbitrarily by choosing F and G appropriately (see, for example, Ref. [6]). If
this condition is true, we say that the pair ðPðlÞ;BÞ is partially controllable with respect to these p eigenvalues.

The partial pole assignment problem was first introduced by Porter and Crosley (see Ref. [7]) for the first-
order model. The problem was later studied by Datta and Sarkissian (see Ref. [8]), and Saad (see Ref. [9]), and
Datta and Saad (see Ref. [10]), also for the first-order system. One way of solving the PQEVAP is to transform
the quadratic control problem to a standard first-order state-space problem and then solve the partial pole-
placement problem for the first order system (see Ref. [11]). However, there are several computational
concerns with this approach. For instance, it would require inversion of the mass matrix, which may be ill-
conditioned. Also, this transformation would, in most cases, destroy all the exploitable structures inherent in
most practical problems, such as symmetry, definiteness, sparsity, bandedness, etc. Furthermore, since the
existing eigenvalue assignment methods are designed for small and dense problems only, the order of the
second-order finite element model, which is usually very large, must be reduced, and this process will
invariably give rise to instability due to controllability and observability spill-overs. Moreover, the target
eigenvalues and eigenvectors computed from a reduced-order model often differ very much from those of the
original model. Similarly, the state-of-the-art independent modal space-control (IMSC) approach (see Ref. [4])
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for vibration control, also suffers from practical engineering and computational limitations. The basic idea
behind IMSC is to decouple the problem into two independent problems, solve these independent problems
individually, and then piece the solutions together to get the solution of the original problem. But the open-
loop decoupling requires the complete knowledge of the eigenvalues and eigenvectors of the open-loop pencil,
whereas the state-of-the-art computational techniques for quadratic eigenvalue problem, such as the
Jacobi–Davidson method (see Ref. [12]), are capable of computing only a small number of extremal
eigenvalues and eigenvectors of a large quadratic pencil. The closed-loop decoupling, on the other hand,
imposes stringent requirements on sensors and actuators (see Ref. [4]). In view of these considerations, for a
numerically effective solution of the PQEVAP, it is imperative that the problem be solved in quadratic setting
using only the small number of eigenvalues and eigenvectors that are computable or measurable in a vibration
laboratory, and without any a priori model reduction. Moreover, in a practical computational setting, in the
absence of techniques for computing the whole spectrum and the associated eigenvectors of a quadratic matrix
pencil, the no spill-over property must be established with the help of a mathematical theory.

In the multi-input case (i.e. when m41), the solution of the PQEVAP is not unique. For practical
effectiveness, we can take advantage of this fact by determining F and G in such a way that not only PcðlÞ has
the desired spectrum but the system has some additional desirable features also. An important practical
consideration in designing a vibration control system is to ensure robustness, that is insensitivity of the closed-
loop eigenvalues to small perturbations in data. To achieve this, the feedback matrices should be computed in
such a way that their norms are as small as possible and the closed-loop eigenvector matrix has minimum
condition number (see Ref. [13]). Smaller feedback norms also lead to smaller control signals which in turn
lead to lesser energy consumption and lesser noise amplification (see Ref. [13]). The problem of finding
the feedback matrices such that the closed-loop pencil has the desired spectrum and the feedback norms are as
small as possible is known as the minimum norm partial quadratic eigenvalue assignment problem
(MNPQEVAP) and the problem of finding the feedback matrices such that the closed-loop pencil has the
desired spectrum and the closed-loop eigenvector matrix has minimum condition number is called the robust
partial quadratic eigenvalue assignment problem (RPQEVAP).

These are clearly optimization problems. To solve them in an optimization setting, a parameterized family
of feedback matrices is generated and then the parametric matrix is determined appropriately. In this paper
we use a quasi-Newton optimization algorithm, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
(see Ref. [14]).

A direct and partial-modal approach for solving the PQEVAP was first proposed in the single-input case
by Datta, Elhay and Ram (see Ref. [2]) and then generalized to the multi-input case by Datta and Sarkissian
(see Ref. [8]) and by Datta, Elhay and Ram (see Ref. [15]), without using Sylvester equations. However the
problems of feedback norm minimization or minimization of the condition number of the closed-loop
eigenvector matrix were not considered in these papers. Such problems were considered, for first-order control
systems, by Keel, Fleming and Bhattacharyya (see Ref. [16]), Cavin and Bhattacharyya (see Ref. [17]) and
Varga (see Ref. [13]). The only paper that has been published so far that deals solely with the robustness issue
for PQEVAP is by Qian and Xu (see Ref. [18]). This algorithm is not optimization-based.

The major contributions of this paper are as follows:
�
 A parameterized algorithm for generating a family of feedback matrices for solving the PQEVAP using
Sylvester equations has been developed. The no spill-over property is guaranteed by establishing
mathematical results.

�
 Gradient formulas for the BFGS algorithm used in solving the MNPQEVAP, RPQEVAP and also for the

problem of simultaneously reducing the feedback norms and the condition number of the closed-loop
eigenvector matrix have been developed.

Also the parametric expressions for feedback matrices and the gradient formulas for the optimization
problems are computed in terms of known quantities only, viz., the open-loop eigenvalues that are to be
reassigned, their corresponding eigenvectors and the data matrices. The Sylvester equation approach for
parameterized solutions turn out to be crucial for the development of the gradient formulas. Numerical
experimental results show that the considerable reductions in both the feedback norms and the closed-loop
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condition numbers can be achieved by our algorithms. The accuracy of the closed-loop eigenvalues is
acceptable as well. Our results on RPQEVAP show that these are quite comparable with those obtained by
Qian and Xu.

This paper contains a detailed discussion on results relating to the RPQEVAP only. A preliminary version
of this paper has appeared (see Ref. [21]). In this paper the results for MNPQEVAP have been stated without
proof. The proofs may be found in Refs. [22,23].

To conclude this section, we make the following observations:
(i)
 Implementation of the control law in Eq. (3) requires the complete knowledge of the state and velocity
vectors. However, in practice some of these may not be measurable. The non-measurable ones must be
estimated by constructing suitable observers for a second-order control system. In a recent paper by Carvalho
and Datta (see Ref. [24]), a numerically effective algorithm has been proposed for state and velocity vector
estimation of a second-order control system via its transformation to a descriptor control system.
(ii)
 Our results apply only to finite-element models having a finite number of dof. However, it might be
possible to use our scheme for vibration control in real-life models such as a beam or a plate that have
infinite number of dof, in conjunction with some passive control device. It is also worth mentioning in this
context that Datta and Sarkissian (see Ref. [25]) have developed a scheme for feedback control in
distributed gyroscopic systems and applied it to partial pole assignment, corresponding to the lowest
frequencies of small oscillations of a moving string. Further research on developing such schemes for other
distributed parameter systems is in order.
2. Assumptions

The following assumptions, which are quite reasonable in practice, are made:

fl1; l2; . . . ; lpg \ flpþ1; lpþ2; . . . ; l2ng \ fm1;m2; . . . ; mpg ¼ f, (6a)

0efl1; l2; . . . ; lpg, (6b)

PðlÞ has a complete set of linearly independent eigenvectors, (6c)

The pair ðPðlÞ;BÞ is partially controllable with respect to l1; l2; . . . ; lp, (6d)

The sets fl1; . . . ; lpg and fm1; . . . ;mpg are closed under complex conjugation. (6e)

3. Some eigenvalue–eigenvector properties of the quadratic matrix pencil

In this section we present some useful properties of the quadratic matrix pencils PðlÞ and PcðlÞ which we use
later in this paper.

Theorem 3.1.
(i)
 A scaler l 2 C is an eigenvalue of the quadratic pencil PðlÞ ¼Ml2 þDlþ K with right eigenvector x iff l is

an eigenvalue of the matrix

A ¼
Oðn�nÞ Iðn�nÞ

�M�1K �M�1D

� �
,

with right eigenvector

x̂ ¼
x

lx

� �
.
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The eigenvalues of the closed-loop pencil PcðlÞ �Ml2 þ ðD� BFTÞlþ ðK� BGT
Þ are the same as the
(ii)
eigenvalues of the matrix bA ¼ A� bBbF, where bF ¼ ½�GT;�FT� and bB ¼ Oðn�mÞ

M�1B

� �
.

Also, the matrix of right eigenvectors of bA is the matrix

Y ¼
Y1 X2

Y1K
0
1 X2K2

 !
,

where Y1 ¼ ½y1; y2; . . . ; yp�, and yi is the right eigenvector of the pencil PcðlÞ corresponding to the eigenvalue mi.
Proof. Since l is an eigenvalue of the matrix pencil PðlÞ with right eigenvector x we have
ðMl2 þDlþ KÞx ¼ 0.

Thus

Ax̂ ¼
lx

�M�1ðKþ lDÞx

 !
¼ l

x

lx

� �
. (7)

This proves result (i).
By result (i) it follows that the eigenvalues of PcðlÞ are the same as the eigenvalues of the matrix

Oðn�nÞ Iðn�nÞ

�M�1ðK� BGT
Þ �M�1ðD� BFTÞ

 !
¼ A� bBbF, (8)

and the matrix of right eigenvectors of the matrix A� bBbF is the matrix

Y ¼
Y1 X2

Y1K
0
1 X2K2

 !
: &

3.1. Orthogonality properties of the eigenvectors of a quadratic matrix pencil

Generalizing the well-known orthogonality properties of the eigenvectors of a symmetric matrix and of a
symmetric definite linear pencil of the form ðK� lMÞ, three orthogonality relations for the quadratic matrix
pencil were derived by Datta, Elhay and Ram (see Ref. [2]). One of these relations, which is stated below,
is used in this paper.

Theorem 3.2. Let M ¼MT40, K ¼ KT
X0 and suppose K1 and K2 have disjoint spectra. Then

K1X
T
1MX2K2 � XT

1KX2 ¼ 0. (9)

Proof. See Refs. [2,23]. &

The above orthogonality relation can be rewritten as

Corollary 3.1.

�KX1

MX1K1

 !T
X2

X2K2

 !
¼ Oðp�2n�pÞ. (10)

This corollary can be used to prove the following result:

Corollary 3.2. If a ð2n� pÞ matrix Q satisfies Q X2

X2K2

� �
¼ Oðp�2n�pÞ, then there exists a ðp� pÞmatrix W such that

QT ¼
�KX1

MX1K1

 !
W. (11)

Proof. See Ref. [23]. &
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4. A parametric expression for the feedback matrices
As a first step towards solving the RPQEVAP and the MNPQEVAP in an optimization setting, we proceed
to obtain a parametric solution of the PQEVAP, in terms of a parametric matrix C. Then in the following
sections we describe how to choose C appropriately to solve the MNPQEVAP and RPQEVAP.

Theorem 4.1 (Parametric expression for feedback matrices). Let C ¼ fc1; c2; . . . ; cpg 2 Cm�p be such that if

mj ¼ m̄k then cj ¼ c̄k. Let Z be the unique solution of the ðp� pÞ Sylvester equation:

K1Z� ZK01 ¼ �K1X
T
1BC. (12)

Then feedback matrices F and G given by

F ¼MX1K1U
T and G ¼ �KX1U

T, (13)

where U is obtained by solving the linear system:

UZ ¼ C (14)

are solutions of the PQEVAP. Moreover, for every non-zero C satisfying the above relation, the matrices F and G

are real.

Proof. The proof has four parts.
Part I (proof of the no-spill-over property): Here we prove that if the matrices F and G are chosen as above

and U is any non-zero ðm� pÞ matrix, then the eigenvalues of the closed-loop pencil would include
lpþ1; lpþ2; . . . ; l2n with corresponding eigenvectors xpþ1;xpþ2; . . . ;x2n.

That is, with these choices of F and G, there will be no spill-over.
For this we need to show that

MX2K
2
2 þ ðD� BFTÞX2K2 þ ðK� BGT

ÞX2 ¼ 0. (15)

Eq. (15) can be rewritten as

MX2K
2
2 þDX2K2 þ KX2 � B½FTX2K2 þGTX2� ¼ 0. (16)

Now, since the matrices ðK1;X1Þ and ðK2;X2Þ are partial eigenvalue and corresponding eigenvector matrices of
the quadratic matrix pencil PðlÞ, we have

MX1K
2
1 þDX1K1 þ KX1 ¼ 0, (17)

MX2K
2
2 þDX2K2 þ KX2 ¼ 0. (18)

So, by virtue of Eq. (18), we need only show

B½FTX2K2 þGTX2� ¼ 0. (19)

It is easy to see that this relation follows immediately by substituting the expressions of the feedback matrices
F and G and then using the orthogonality relation in Theorem 3.2.

Part II (partial assignment of the spectrum): Here we show that if U is chosen according to the criterion
stated in the theorem then the spectrum of the closed-loop pencil will include m1;m2; . . . ;mp and the
eigenvectors corresponding to these eigenvalues will be y1; y2; . . . ; yp, which we define later.

Let Y1 ¼ ½y1; y2; . . . ; yp�.
In order to show that the closed-loop pencil has the eigenvalues m1;m2; . . . ;mp with y1; y2; . . . ; yp as the

corresponding eigenvectors, we need to show that

MY1K
02
1 þ ðD� BFTÞY1K

0
1 þ ðK� BGT

ÞY1 ¼ 0. (20)
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This means that we have to show that

MY1K
02
1 þDY1K

0
1 þ KY1 ¼ B½FTY1K

0
1 þGTY1�,

¼ BU½K1X
T
1MY1K

0
1 � XT

1KY1�,

¼ BUZ, (21)

where

Z ¼ K1X
T
1MY1K

0
1 � XT

1KY1. (22)

Suppose we choose U such that UZ ¼ C, where C ¼ fc1; c2; . . . ; cpg is chosen arbitrarily.
Then, we must show that

MY1K
02
1 þDY1K

0
1 þ KY1 ¼ BC, (23a)

or

ðMm2j þDmj þ KÞyj ¼ Bcj for ðj ¼ 1 : pÞ. (23b)

By assumption (6a) it follows that mj (for j ¼ 1 : p) is not an eigenvalue of PðlÞ. Hence,

detðMm2j þDmj þ KÞa0. (24)

This means that yj ’s are uniquely determined by Eq. (23b). Thus for our choice of F, G, Y1 and U Eq. (20) is
satisfied.

Part III (solution of the Sylvester Eq. (12) is unique): We now prove that Z is the unique solution of the
Sylvester equation K1Z� ZK01 ¼ �K1X

T
1BC.

Pre-multiplying both sides of Eq. (23a) by �K1X
T
1 we get

�K1X
T
1MY1K

02
1 � K1X

T
1DY1K

0
1 � K1X

T
1KY1 ¼ �K1X

T
1BC. (25)

Now eliminating D from this equation using Eq. (17) we obtain �K1X
T
1BC ¼ K1Z� ZK01.

Also, by virtue of assumption (6a) the diagonal matrices K1 and K01 have no eigenvalues in common, thus
the Sylvester equation (12) has a unique solution. It may be noted that the Sylvester equation AX� XB ¼ C

has a unique solution iff. the matrices A and B do not have common eigenvalues (see, Ref. [11]).
Part IV (feedback matrices are real): Finally, we show that if C is chosen such that if mj ¼ m̄k then cj ¼ c̄k

then, F and G are real.
Since fm1; m2; . . . ;mpg is a self-conjugate set, K̄

0

1 can be obtained from K01 by interchanging certain pairs of
columns and the corresponding rows.

Thus, there exists a permutation matrix P1 such that

K̄
0

1 ¼ PT
1K01P1. (26)

Again, by virtue of the condition that if mj ¼ m̄k then cj ¼ c̄k it follows that C̄ can be obtained from C by
interchanging the same pairs of columns as was done to obtain K̄

0

1 from K1. Thus,

C̄ ¼ CP1. (27)

Also, since fl1; l2; . . . ; lpg is a self-conjugate set, there exists a permutation matrix P2 such that

K̄1 ¼ PT
2K1P2. (28)

Now, we know that if A is a real matrix then the eigenvectors of A, associated with complex-conjugate
eigenvalues are themselves complex-conjugate.

Thus,

Y1 ¼ Y1P1 and X1 ¼ X1P2. (29)

From above it follows

Z̄ ¼ K̄1ðX1Þ
TMY1K̄

0

1 � ðX1Þ
TKY1 ¼ PT

2ZP1, (30)
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and

Ū ¼ UP2. (31)

From the relations obtained it follows that F ¼ F and G ¼ G. Hence F and G are real.
It may be noted that although there does not exist a numerically verifiable necessary and sufficient condition

for the non-singularity of the solution Z of Eq. (12), for most non-null choices of the matrix C, the matrix Z is
non-singular (as also noted in Ref. [27]). &

5. Minimizing the feedback norms

Let I ¼ 1
2
kSk2F ¼

1
2
½kFk2F þ kGk

2
F � where S ¼ ½G

T FT�. Since F and G are functions of C only, the problem of
minimizing I can be posed as Minimize: I ¼ f ðCÞ.
This is an unconstrained optimization problem. To solve this problem using the BFGS algorithm we require

an analytic expression for the gradient of I with respect to C. We denote this gradient by 5CðIÞ. The gradient
formula is obtained in terms of only the known quantities, viz., K1;K

0
1;X1, M, K, B and C.

Below we just state the result without proof. The proof can be found in Refs. [22,23]. For completeness, we
first state a result on the solution of a Sylvester equation (see Refs. [28,29]) that was used to derive our gradient
expression for MNPQEVAP and which will also be used to obtain the gradient formula for RPQEVAP later
in this paper.

Theorem 5.1. Suppose the Sylvester equation

AX� XB ¼ C (32)

has a unique solution. Here A, B, C and X are ðm�mÞ, ðn� nÞ, ðm� nÞ, ðm� nÞ matrices, respectively. Let aðtÞ
and bðtÞ be coprime monic polynomials having degrees m and n, respectively, such that aðAÞC ¼ 0 and CbðBÞ ¼ 0.
Then a unique solution of the Sylvester equation can be represented in the form

X ¼
Xn
j¼1

Xm
i¼1

gijA
i�1CBj�1, (33)

where ðgijÞ’s are scalars that are of no significance to us.

Corollary 5.1. Suppose m ¼ n and the matrices A and B have n distinct eigenvalues, with no eigenvalues in

common. Then for an arbitrary n� n matrix C1, a unique solution of the Sylvester equation

BY� YA ¼ C1 (34)

is given by

Y ¼
Xn

j¼1

Xn

i¼1

gijB
j�1ð�C1ÞA

i�1. (35)

Theorem 5.2 (Gradient formula for I). Suppose F and G are defined as in the previous theorem. Let S ¼ ½GT;FT�,
P ¼MX1K1, Q ¼ �KX1 and C ¼ ½QT;PT�. Let Z satisfy the Sylvester equation:

K1Z� ZK01 ¼ �K1X
T
1BC.

Suppose that Z is invertible and U satisfies the Sylvester equation:

K01U�UK1 ¼ Z�1CSHU, (36)

where UZ ¼ C. Then

ðiÞ S ¼ CZ�1C, (37a)

ðiiÞ 5CðIÞ ¼
1
2
½Z�1CSH

�UK1X
T
1B�

T. (37b)

Proof. See Refs. [22,23]. &
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6. A gradient-based method for robust partial quadratic eigenvalue assignment
By the Bauer–Fike theorem, an overall measure of the conditioning of the eigenvalues of the closed-loop
matrix is provided by the condition number of the matrix Y. Now, the conditioning of the eigenvalues of this
matrix is best when Y is unitary or orthogonal since in this case the condition number of Y (with respect to
2-norm) is 1. Thus we seek to determine C such that J ¼ kðI� YHYÞ2k2F is as small as possible. This measure
of robustness was used before by Keel, Fleming and Bhattacharyya (see Ref. [16]) for the first-order model.
It worked well in the first-order case and also works well in the quadratic case, as shown by the results of our
numerical examples.

If Y were a unitary or orthogonal matrix then

Y1

Y1K
0
1

 !H
X2

X2K2

 !
¼ Oðp�2n�pÞ; (38)

or YH
1 X2 þ K̄

0

1Y
H
1 X2K2 ¼ Oðp�2n�pÞ.

We now show that J can be split into two parts J1 and J2, one of which is a function of C and the other is
independent of C.

From Eq. (38) and Corollary 3.2 we obtain

Y1

Y1K
0
1

 !
¼

�KX1

MX1K1

 !
C1 ¼

�KX1C1

MX1K1C1

 !
. (39)

Hence,

Y1 ¼ �KX1C1 ¼ Q̄C1, (40)

Y1K
0
1 ¼MX1K1C1 ¼ P̄C1, (41)

where P ¼MX1K1 and Q ¼ �KX1.
Let W1 ¼ Ip � YH

1 Y1 � K01Y
H
1 Y1K1 and W2 ¼ I2n�p � XH

2 X2 � K̄2X
H
2 X2K2. Then by Eq. (38) we obtain

ðI� YHYÞ ¼
W1 Oðp�2n�pÞ

Oð2n�p�pÞ W2

 !
. (42)

Therefore,

ðI� YHYÞ2 ¼
ðW1Þ

2 Oðp�2n�pÞ

Oð2n�p�pÞ ðW2Þ
2

 !
. (43)

Thus,

J ¼ kðI� YHYÞ2k2F ¼ kðW1Þ
2
k2F þ kðW2Þ

2
k2F ¼ J1 þ J2 ðsayÞ. (44)

It may be noted, Eq. (38) relates Y1, X2, K2 and K01. Now, Y1 ¼ ½y1; y2; . . . ; yp� is determined by the choice
of C ¼ fc1; c2; . . . ; cpg since yj’s satisfy the equation ðMm2j þDmj þ KÞyj ¼ Bcj for ðj ¼ 1 : pÞ. C is chosen by
the user, whereas ðMm2j þDmj þ KÞ and B involve given quantities only. The matrix K01 is also given. Since one
of our objectives is to work without any knowledge of the matrices X2 and K2, Eq. (38) cannot be directly
utilized in choosing C. It is possible that for the optimal C, Eq. (38) will not be exactly satisfied. If
YH

1 X2 þ K̄
0

1Y
H
1 X2K2 ¼W3, then the exact expression for J is

J ¼ kW4k
2
F þ kW5k

2
F þ kW6k

2
F þ kW7k

2
F , (45)

where W4 ¼ ðW1Þ
2
þW3W

H
3 , W5 ¼ ðW2Þ

2
þWH

3 W3, W6 ¼W1W3 þW3W2, W7 ¼WH
3 W1 þW2W

H
3 . In this

equation W3 and W2 are unknown. By assuming Eq. (38) to be true we obtain Eq. (44), which is a simple
approximation of this equation and this permits us to obtain the necessary gradients of J in terms of only
those quantities that are known.
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Now, the matrix X2 is independent of C; K01, K2 are fixed matrices; and the matrix Y1 is a function of the
parameter C. Thus, J1 is a function of C and J2 is independent of C.

So, 5CðJ2Þ ¼ 0. Hence, by Eq. (44)

5CðJÞ ¼ 5CðJ1Þ. (46)

Also, since J2 remains invariant, therefore, J is as small as possible when J1 is as small as possible. Thus in
order to determine C for which J is as small as possible, we determine the C for which J1 is as small as possible
using the BFGS method. For this we obtain the gradient of J1 with respect to C.

Theorem 6.1 (Matrix gradient formula for J1). Let Z1 � Ip � YH
1 Y1 � K̄1Y

H
1 Y1K̄

0

1, Z2 � Ip � YH
1 Y1�

K01Y
H
1 Y1K1, Z3 � Z2

1Z2 þ Z2
2Z1 þ K1Z

2
1Z2K

0
1 þ K̄

0

1Z
2
2Z1K̄1, Let U1satisfy the Sylvester equation

K01U1 �U1K1 ¼ �Z3Y
H
1 KX1C

�1
1 , (47)

where C1 ¼ PTP̄þQTQ̄, P ¼MX1K1 and Q ¼ �KX1.
Then,

5CðJ1Þ ¼ 2½U1K1X
T
1 B�

T. (48)

Proof. From the definition of J1 ¼ kðW1Þ
2
k2F, it follows that J1 ¼ tr½fðW1Þ

2
gHðW1Þ

2
� ¼ tr½ðWH

1 Þ
2
ðW1Þ

2
�.

Thus J1 ¼ tr½Z2
1 Z

2
2�. So,

DJ1 ¼ tr½ðDZ2
1ÞZ

2
2 þ Z2

1ðDZ
2
2Þ�

¼ 2tr½Z2
2Z1DZ1 þ Z2

1Z2DZ2�. (49)

Again,

DZ1 ¼ �½DYH
1 Y1 þ YH

1 DY1 þ K̄1DYH
1 Y1K̄

0

1 þ K̄1Y
H
1 DY1K̄

0

1�, (50)

and

DZ2 ¼ �½DYH
1 Y1 þ YH

1 DY1 þ K01DY
H
1 Y1K1 þ K01Y

H
1 DY1K1�. (51)

Substituting Eqs. (51) and (50) in Eq. (49) we get

DJ1 ¼ � 2tr½Y1ðZ
2
1Z2 þ Z2

2Z1K1Z
2
1Z2K

0
1 þ K̄

0

1Z
2
2Z1K̄1ÞDYH

1

þ ðZ2
1Z2 þ Z2

2Z1 þ K1Z
2
1Z2K

0
1 þ K̄

0

1Z
2
2Z1K̄1ÞY

H
1 DY1�

‘DJ1 ¼ �2tr½Y1Z3DYH
1 þ Z3Y

H
1 DY1� ¼ �2tr½Y1Z3DYH

1 � � 2tr½Z3Y
H
1 DY1�. (52)

We will now show that both the terms tr½Z3Y
H
1 DY1� and tr½Y1Z3DYH

1 � can be expressed in terms of the
quantities X1;B and DC.

First, consider tr½Z3Y
H
1 DY1�. Recall,

Z ¼ ðMX1K1Þ
TY1K

0
1 þ ðKX1Þ

TY1

¼ PTY1K
0
1 þQTY1

¼ PTP̄C1 þQTQ̄C1: (using Eqs. (40) and (41)).

Thus,

Z ¼ C1C1. (53)

Hence,

DC1 ¼ C�11 DZ. (54)

Thus,

DY1 ¼ �KX1DC1 ¼ �KX1C
�1
1 DZ (55)

So, tr½Z3Y
H
1 DY1� ¼ �tr½Z3Y

H
1 KX1C

�1
1 DZ�.
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Now since Z satisfies the Sylvester equation

K1Z� ZK01 ¼ �K1X
T
1BC,

we have

K1ðDZÞ � ðDZÞK
0
1 ¼ �K1X

T
1BðDCÞ. (56)

The analytical solution of this Sylvester equation is

DZ ¼
Xp�1
j¼0

Xp�1
k¼0

gjkðK1Þ
j
ð�K1X

T
1BDCÞðK01Þ

k. (57)

So,

tr½Z3Y
H
1 DY1� ¼ � tr½Z3Y

H
1 KX1C

�1
1 DZ�,

¼ � tr
Xp�1
j¼0

Xp�1
k¼0

gjkZ4ðK1Þ
j
ð�Z5ÞðK

0
1Þ

k

" #
,

¼ tr
Xp�1
j¼0

Xp�1
k¼0

gjkðK
0
1Þ

kZ4ðK1Þ
jZ5

" #
, (58)

where Z4 ¼ Z3Y
H
1 KX1C

�1
1 and Z5 ¼ K1X

T
1 BDC.

Since U1 satisfies the Sylvester equation K01U1 �U1K1 ¼ �Z3Y
H
1 KX1C

�1
1 , using Corollary 5.1 we can write

U1 ¼
Xp�1
j¼0

Xp�1
k¼0

gjkðK
0
1Þ

kZ4ðK1Þ
j. (59)

So, finally we have

tr½Z3Y
H
1 DY1� ¼ tr½U1K1X

T
1BDC�. (60)

Next, consider tr½Y1Z3DYH
1 �.

tr½Y1Z3DYH
1 � ¼ tr½Y1Z3ðDY1Þ

H
�

¼ � tr½Y1Z3ðDZÞ
H
ðC�11 Þ

HXT
1K� ðusing Eq. (55)Þ

¼ � tr½ðC�11 Þ
HXT

1 KY1Z3ðDZÞ
H
�. (61)

Since, K1ðDZÞ � ðDZÞK
0
1 ¼ �Z5. We have K̄

0

1ðDZÞ
H
� ðDZÞHK̄1 ¼ ðZ5Þ

H. Also the solution ðDZÞH of this
Sylvester equation is

ðDZÞH ¼
Xp�1
j¼0

Xp�1
k¼0

djkðK̄
0

1Þ
jZH

5 ðK̄1Þ
k. (62)

Let Z6 ¼ ðC
�1
1 Þ

HXT
1 KY1Z3. Then

tr½Y1Z3DYH
1 � ¼ � tr½Z6ðDZÞ

H
�

¼ � tr
Xp�1
j¼0

Xp�1
k¼0

djkZ6ðK̄
0

1Þ
j
fZH

5 gðK̄1Þ
k

" #

¼ � tr
Xp�1
j¼0

Xp�1
k¼0

djkðK̄1Þ
k
fZ6gðK̄

0

1Þ
jZH

5

" #
. (63)

Now, define the matrix U2 to be the unique solution of the Sylvester equation

K̄1U2 �U2K̄
0

1 ¼ �Z6. (64)
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Then

tr½Y1Z3DYH
1 � ¼ � tr½U2ðDCÞHBHX̄1K̄1�

¼ � tr½BHX̄1K̄1U2ðDCÞH�. (65)

Thus by substituting Eqs. (60) and (65) in Eq. (52)

DJ1 ¼ 2tr½U1K1X
T
1BðDCÞ þ BHX̄1K̄1U2ðDCÞH�. (66)

Now, we know that if J is a function of matrices G and L and

DJ ¼ tr½J1DGþ J2DL�.

Then, 5GJ ¼ JT1 and 5LJ ¼ JT2 (see, for example Ref. [30]).
Hence from Eq. (66) we obtain,

5CðJ1Þ ¼ 2½U1K1X
T
1B�

T. (67)

The above results lead to the following algorithm.

Algorithm 1. A Robust Partial Quadratic Eigenvalue Assignment Algorithm.
Inputs:
(i)
 The matrices M ¼MT40, K ¼ KT
X0, D ¼ DT.
(ii)
 The control matrix B of order n�m ðmpnÞ.

(iii)
 A self-conjugate subset fl1; l2; . . . ; lpg of the spectrum of PðlÞ and corresponding eigenvectors

x1; x2; . . . ; xp.

(iv)
 A suitably chosen self-conjugate set of complex numbers fm1; . . . ;mpg.

(v)
 The initial metric D1 used in the BFGS method.

(vi)
 Tolerance 2 and maximum number of iterations, Maxiter.
Output: Real feedback matrices F and G such that the condition number of the closed-loop eigenvector
matrix is as small as possible.

Step 0: Form the matrices K1, K01, X1, C1. Set k ¼ 1.
Step 1: Choose a matrix C ¼ fc1; c2; . . . ; cpg 2 Cm�p such that if mj ¼ m̄k, then cj ¼ c̄k.
Step 2: Compute the unique solution Z of the Sylvester equation K1Z� ZK01 ¼ �K1X

T
1BC. If condðZÞ is

large, take another C.
Step 3: Compute Y1 ¼ ½y1; y2; . . . ; yp� where, yj satisfies ðMm2j þDmj þ KÞyj ¼ Bcj for ðj ¼ 1 : pÞ, and the

solution U1 of the Sylvester equation: K01U1 �U1K1 ¼ Z3Y
H
1 KX1C

�1
1 .

Step 4: Compute Grad ¼ 5CðJ1Þ. If kGradkFo� or if the number of iterations exceed Maxiter, go to Step 6.
Else, go to Step 5.

Step 50: Update C using BFGS method, set k ¼ k þ 1 and repeat from Step 2.
Step 6: Record the minimum value for J1 obtained thus far and the corresponding value of C. For this

C compute the matrices F and G using Theorem 3.1. Stop.
Computation of updated C in Step 4:
The function to be minimized is J1 ¼ kðIp � YH

1 Y1 � K01Y
H
1 Y1K1Þ

2
k2F . We denote the current value of C by

Cold and the updated value of Cold by Cnew. Then Cnew can be obtained as follows:
(i)
 Replace Cold by Ĉ ¼ Cold þ adj where dj is given by dj ¼ �Dj Grad. Here Grad represents the current
gradient, Dj is the metric obtained as in the BFGS method and a is a scaler.
(ii)
 Obtain the value bY1 of Y1 corresponding to bC, as follows: Let bY1 ¼ fby1;by2; . . . ;bypg and
bC ¼ fbc1;bc2; . . . ;bcpg

then obtain byi by solving the Sylvester equation ðMm2i þDmi þ KÞbyi ¼ Bbci for i ¼ 1 : p.

(iii)
 Find l ¼ minakðIp � bYH

1
bY1 � K01bYH

1
bY1K1Þ

2
k2F . (This is obtained by using the MATLAB function fminbnd.)
(iv)
 Cnew ¼ Cold þ ldj.
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Efficiency: The cost of solving each of the ðp� pÞ Sylvester equations in Steps 2 and 3 is Oðp Þ flops. The
cost of computing Grad in Step 4 is Oðn2pÞ flops.
3

7. A gradient based method for simultaneous improvement of feedback norms and condition number of

eigenvector matrix

We have so far discussed feedback norm minimization and the minimization of the conditioning of the
closed-loop eigenvector matrix separately. The question naturally arises whether these two aspects can be
combined in one setting. That is, can the feedback norms and the condition number of the closed-loop
eigenvector matrix be improved simultaneously? This problem has been considered by Varga (see Ref. [13]) in
the case of the first-order model. Following Varga, we now consider the following objective function for the
quadratic pencil:

O ¼
½ðC1ÞðaÞIþ ðC2Þð1� aÞJ1�

½ðC1ÞðaÞ þ ðC2Þð1� aÞ�
, (68)

where I ¼ 1
2
kSk2F ¼

1
2
½kFk2F þ kGk

2
F � and J1 ¼ kðIp � YH

1 Y1 � K01Y
H
1 Y1K1Þ

2
k2F and C1;C2 and a are constants.

Note that when a ¼ 1, we have the minimum-norm problem and when a ¼ 0, we have the robust problem.
The gradient of O with respect to C can be computed as follows (see Ref. [23] for details):

5CðOÞ ¼
½ðC1ÞðaÞ5CðIÞ þ ðC2Þð1� aÞ5CðJ1Þ�

½ðC1ÞðaÞ þ ðC2Þð1� aÞ�
(69)

5CðIÞ is given by Theorem 5.2 and 5CðJ1Þ is given by Theorem 5.1, respectively. If the magnitudes of the
elements of 5CðIÞ and 5CðJ1Þ are widely disparate then the constants C1 and C2 need to be chosen to scale
their magnitudes, to prevent one gradient totally dominating the other. After the constants C1 and C2 have
been chosen appropriately for a particular problem, the value of the constant a is varied between 0 and 1 to
bring about different amounts of reduction in the feedback norms and the condition number of the
eigenvector matrix.

8. Results of numerical experiments

The results on our numerical experiments are presented below. Problem 1 is from Ref. [1], Problem 2 is a
benchmark example taken from Ref. [31] and Problem 3 is from Ref. [18]. Tables 1–5 contain, respectively, the
results of Problem 1, Problem 2(i), Problem 2(ii), Problem 2(iii) and Problem 3. Table 6 contains results
of comparisons of our Algorithm 1 with those of the Qian–Xu method. A graph based on the results of
Problem 2(i) is shown in Fig. 1. In the following, the percentage reduction in the Frobenius norm is calculated
as follows: Percentage reduction in the Frobenius norm ¼ 100ððIN� FNÞ=INÞ where IN is the value of the
norm with initial C and FN is the value of the norm with optimal C. The percentage reduction in the condition
number is similarly defined.
Table 1

Numerical results for Problem 1.

Results of the three algorithms for Problem 1 Perturbation results for Algorithm 1

Algorithm Accuracy Percentage

reduction

Norm of DK Accuracy with

perturbed K

(i) Norm reduction (I) Oð10�14Þ 99.99 0.3181 0.1687

(ii) Condition number reduction (CN) (Algorithm 1) Oð10�14Þ 99.74 0.0172 0.0109

0.0024 0.0015

(iii) Simultaneous reduction of norm and condition

number for a ¼ 0:4, C1 ¼ 50, C2 ¼ 0:5
Oð10�13Þ 99.99(I) 3.0672E�004 1.9691E�004

99.28(CN) 3.5702E�005 2.2926E�005

2.8591E�006 1.8360E�006
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Table 2

Numerical results for Problem 2(i).

Results of the three algorithms for Problem 2(i) Perturbation results for Algorithm 1

Algorithm Accuracy Percentage

reduction

Norm of DK Accuracy with

perturbed K

(i) Norm reduction (I) Oð10�14Þ 99.94 0.1101 0.0312

(ii) Condition number reduction (CN) (Algorithm 1) Oð10�14Þ 99.66 0.0253 0.0072

0.0058 0.0017

(iii) Simultaneous reduction of norm and condition

number for a ¼ 0:4, C1 ¼ 1016, C2 ¼ 1

Oð10�14Þ 99.98(I) 5.7261E�004 1.6406E�004

98.68(CN) 2.5621E�005 7.3413E�006

5.5808E�006 1.5991E�006

Table 3

Numerical results for Problem 2(ii).

Results of the three algorithms for Problem 2(ii) Perturbation results for Algorithm 1

Algorithm Accuracy Percentage

reduction

Norm of DK Accuracy with

perturbed K

(i) Norm reduction (I) Oð10�6Þ 99.92 1.9438E�001 7:4819Eþ 000

(ii) Condition number reduction (CN) (Algorithm 1) Oð10�5Þ 99.39 1.4198 E�002 2:8098Eþ 000

1:0908E� 004 4.5488�001

(iii) Simultaneous reduction of norm and condition

number for a ¼ 0:4, C1 ¼ 109, C2 ¼ 1

Oð10�5Þ 99.99(I) 3.3279�005 2.3029E�001

98.94(CN) 2.9898E�006 2.5192�002

6.0432�007 5.5007�003

Table 4

Numerical results for Problem 2(iii).

Results of the three algorithms for Problem 2(iii) Perturbation results for Algorithm 1

Algorithm Accuracy Percentage

reduction

Norm of DK Accuracy with

perturbed K

(i) Norm reduction (I) Oð10�2Þ 99.97 3:1643Eþ 000 1:2004Eþ 000

(ii) Condition number reduction (CN) (Algorithm 1) Oð10�2Þ 99.32 1:4159E� 001 3:1010E� 001

3:0841E� 002 2:2944E� 001

(iii) Simultaneous reduction of norm and condition

number for a ¼ 0:4, C1 ¼ 1017, C2 ¼ 1

Oð10�2Þ 99.99(I) 1:2178E� 003 1:0295E� 001

96.89(CN) 2:8063E� 004 9:2421E� 002

2:0837E� 005 1:3234E� 001

S. Brahma, B. Datta / Journal of Sound and Vibration 324 (2009) 471–489 485
Accuracy ¼ The Frobenius norm of the difference between the desired closed-loop eigenvalues and the
actual closed-loop eigenvalues obtained for optimal C.

Verifying the sensitivity of the closed-loop eigenvalues under small perturbations:
To verify the robustness of our solutions to the partial eigenvalue assignment problem, we perturb the

stiffness matrix K and then compute the closed-loop eigenvalues corresponding to the feedback matrices F and
G (obtained for the optimal C for the unperturbed problem) keeping M, D and B unchanged. The rationale
behind leaving the mass and stiffness matrices unperturbed is that the mass matrix is usually accurately
determined and the damping matrix is hard to estimate in practice. On the other hand, the stiffness matrix K is
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Table 5

Numerical results for Problem 3.

Results of the three algorithms for Problem 3 Perturbation results for Algorithm 1

Algorithm Accuracy Percentage

reduction

Norm of DK Accuracy with

perturbed K

(i) Norm reduction (I) Oð10�14Þ 99.79 0.0693 0.0143

(ii) Condition number reduction (CN) (Algorithm 1) Oð10�13Þ 99.96 0.0182 0.0037

0.0015 0.0003

(iii) Simultaneous reduction of norm and condition

number for a ¼ 0:4, C1 ¼ 107, C2 ¼ 1

Oð10�15Þ 98.93(I) 2.6739E�004 5.4816E�005

97.86(CN) 2.2863E�005 4.6869E�006

5.5511E�009 1.1379E�009

Table 6

Numerical results of the Qian–Xu method.

Prob. Percentage reduction Accuracy

1 97.52 5.8042E�010

2(i) 99.61 1.8195

2(ii) 98.56 8.3242E�008

2(iii) 98.14 0.0525

3 99.45 2.1915E�014
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Fig. 1. Closed-loop eigenvalues for Problem 2(i): (a) desired closed-loop eigenvalues, (b) actual closed-loop eigenvalues for optimal C for

the unperturbed problem, (c) closed-loop eigenvalues under 100 random perturbations of order 0.01 and (d) closed-loop eigenvalues under

100 random perturbations of order 0.001.

S. Brahma, B. Datta / Journal of Sound and Vibration 324 (2009) 471–489486



ARTICLE IN PRESS
S. Brahma, B. Datta / Journal of Sound and Vibration 324 (2009) 471–489 487
often not determined accurately. We then calculate the norm (accuracy with perturbed K) of the difference of
the matrices of the closed-loop eigenvalues under perturbation obtained as described and the corresponding
closed-loop eigenvalues actually obtained for the unperturbed problem. Our results show that small
perturbations in K produce only small changes in the closed-loop eigenvalues.

Problem 1.

M ¼

1:4685 0:7177 0:4757 0:4311

0:7177 2:6938 1:2660 0:9676

0:4757 1:2660 2:7061 1:3918

0:4311 0:9676 1:3918 2:1876

0BBB@
1CCCA,

K ¼

1:7824 0:0076 �0:1359 �0:7290

0:0076 1:0287 �0:0101 �0:0493

�0:1359 �0:0101 2:8360 �0:2564

�0:7290 �0:0493 �0:2564 1:9130

0BBB@
1CCCA,

D ¼

1:3525 1:2695 0:7967 0:8160

1:2695 1:3274 0:9144 0:7325

0:7967 0:9144 0:9456 0:8310

0:8160 0:7325 0:8310 1:1536

0BBB@
1CCCA; B ¼

0:3450 0:4578

0:0579 0:7630

0:5967 0:9990

0:2853 0:3063

0BBB@
1CCCA.

The open-loop eigenvalues are f�0:0861� 1:6242i;�0:1748� 1:1922i;�0:4480� 0:2465i;�0:1022� 0:8876ig.
The first two eigenvalues f�0:0861� 1:6242ig were reassigned to f�8� 1:6242ig, the other eigenvalues were
kept unchanged.

Problem 2. M ¼ 4In�n, D ¼ 4In�n

K ¼

1 �1 0 . . . 0 0

�1 2 �1 . . . 0 0

0 �1 2 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 . . . �1 2 �1

0 0 . . . 0 �1 1

26666666664

37777777775
; B ¼

1 0

0 0

..

. ..
.

..

. ..
.

0 0

0 �1

266666666664

377777777775
.

Case i: With n ¼ 8, there are 16 open-loop eigenvalues of which the first four, viz., f�0:5� 0:8438i;�0:5�
0:7769ig are reassigned to f�3� 0:8438i;�5� 0:7769ig, keeping other eigenvalues unchanged.

Case ii: With n ¼ 10, there are 20 open-loop eigenvalues of which the first six, viz., f�0:5� 0:7375i;�0:5�
0:8518i;�0:5� 0:8090ig are reassigned to f�8� :7375i;�8� 0:8518i;�8� 0:8090g, keeping other eigenvalues
unchanged.

Case iii: With n ¼ 200, there are 400 open-loop eigenvalues of which the first six, viz., f�0:5�
0:8660i;�0:5� 0:8659i;�0:5� 0:8657ig are reassigned to f�1� 0:8660i;�1� 0:8659i;�1� 0:8657ig, keeping
other eigenvalues unchanged.

Problem 3.

K ¼

40 �40 0

�40 80 �40

0 �40 80

0B@
1CA,
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B ¼

1 2

3 2

3 4

0B@
1CA; M ¼ 10I3;3; D ¼ O3;3.

The open-loop eigenvalues are f�3:6039i;�2:49399i;�0:8901ig. The first two eigenvalues f�3:6039ig were
reassigned to f�1;�2g, the other eigenvalues were kept unchanged.

Note on convergence of Algorithm 1: For the five problems the optimal C was obtained after 2, 2, 8, 2 and 5
sweeps, respectively. We set � ¼ 10�4 for Problems 1 and 2(i) and � ¼ 10�8 for the remaining three problems.
In most cases the algorithm stopped when the number of iterations equalled Maxiter. The solution is dependent
on the choice of the initial C and the initial metric D1. For some choices of C and D1 the condition number did
not decrease.

Comparison of Algorithm 1 with the Qian– Xu method: The results obtained by using the Qian–Xu method
for the five problems considered are presented in Table 6. A comparison of the two algorithms show that they
produce almost the same accuracy and condition number reductions also are comparable. However since our
method is optimization based, this method is also suitable for large-scale computations using specialized large
scale optimization techniques. Furthermore our method can also handle simultaneous minimization of both
feedback norms and the closed-loop eigenvector conditioning. It may be noted in the context of comparison
that the ‘‘accuracy’’ measure is computed differently in the Qian–Xu paper.
9. Conclusion

The problem of designing a robust active controller for a vibrating structure modeled by a system of second-
order matrix differential equations is the one in which a feedback controller has to be constructed such that
the feedback matrices have minimum norms and the condition number of the closed-loop eigenvector matrix
is as small as possible to ensure that the closed-loop eigenvalues are not sensitive to small perturbations of the
data. Mathematically, this leads to minimum-norm and robust partial quadratic eigenvalue assignment
problems (MNPQEVAP and RPQEVAP). Basically these problems are optimization problems, and one
special advantage of solving these problems in an optimization setting is that an excellent numerical
optimization technique, such as the BFGS method, can be profitably used. However, a bottleneck in using this
technique is deriving parametric expressions for feedback matrices and developing appropriate gradient
formulas. In case of the problems under consideration here, a further computational challenge is to develop
such gradient formulas using only a few eigenvalues and the corresponding eigenvectors of the associated
quadratic eigenvalue problem, since in practice it is impossible to compute all the eigenvalues and eigenvectors
of a large quadratic matrix pencil even by using state-of-the-art computational techniques. In the present
paper and in another recent one, (i) parametric expressions for feedback matrices have been derived using
Sylvester equations and (ii) appropriate gradient formulas both for minimum-norm and robust eigenvalue
assignment problems have been developed using only the small number of eigenvalues that need to be
reassigned and the associated eigenvectors. These techniques are, therefore, implementable in practice even for
large-scale structures. However, some more work still needs to be done. One of the underlying mathematical
problems is how to choose the initial parametric matrix in each algorithm so that convergence can be
guaranteed within a reasonable number of steps. It is to be noted in this context that the underlying
optimization problems are difficult and further research is needed and currently underway for finding local
and global solutions.
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