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Abstract

This paper presents a systematic study on active flutter suppression of a high aspect-ratio wing with multiple control

surfaces distributed throughout the span. The dynamic characterization of the wing structure is done by the finite element

method. Doublet lattice method is used to model unsteady aerodynamic loads acting on the lifting surface with leading-

edge and trailing-edge control surfaces. The open-loop aeroelastic equations with input delays are established by the modal

transformation of the structural equations and the minimum state approximation of the aerodynamic influence coefficient

matrix. To suppress flutter of the time-delayed system, a dynamic controller is synthesized in HN control theory

framework. The delay-dependent stability of the closed-loop system is analyzed by tracing the rightmost eigenvalues of the

system. Numerical simulations are made to demonstrate the effectiveness of all the above approaches.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flutter is a self-excited dynamic instability phenomenon in aeroelasticity. It is caused by the interactions
between motions of an aircraft structure and aerodynamic loads. Flutter instability may decrease aircraft
performance or even lead to the catastrophic failure of the structure [1]. The traditional passive means of
avoiding flutter, such as mass balancing and local stiffening, have continued to the present day. These
techniques are usually inefficient (because they add weight to the structure) as well as unsystematic, and they
do not always succeed. In order to overcome the inadequacy of passive techniques and to fly at a velocity
greater than the flutter velocity, a new technique, called active flutter suppression, was developed in early
1970s. In active flutter suppression, flutter is suppressed through the pitching motions of the control surfaces
actuated by an onboard automatic control system.

With the development of control theories, many advanced control strategies, such as optimal control [2],
robust control [3] and adaptive control [4], have been applied to the design of the flutter suppression system.
However, in most of the previous studies in aeroservoelasticity, time delays in control loops were not
considered in the mathematical model of the control system. In fact, some short time delays in control loops
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

ā dimensionless distance of the elastic axis
from mid-chord, positive aft

Āaic aerodynamic influence coefficient matrix,
Āaic ¼ D̄

�1

aic

AN infinitesimal generator of the solution
operator

bR reference semi-chord length, bR40
c̄LE dimensionless distance between leading-

edge hinge line and mid-chord of the
wing, c̄LEo0

c̄TE dimensionless distance between trailing-
edge hinge line and mid-chord of the
wing, c̄TE40

C̄
cont

p pressure coefficients of the aerodynamic
boxes on the control surfaces

C̄
wing

p pressure coefficients of the aerodynamic
boxes on the main wing

Dww modal damping matrix
Da

ww global damping matrix of the wing
structure

Ds
ww structural damping matrix

D̄aic aerodynamic influence coefficient matrix
EI bending stiffness of the wing
fa aerodynamic forces
f̄
cont

f aerodynamic forces acting on the control
surfaces

f̄
wing

f aerodynamic forces acting on the main
wing

fF flutter frequency
GJ torsional stiffness of the wing
ḠactðsÞ transfer function of the actuator system
h vertical bending deflection of the elastic

axis, positive upward
k reduced frequency
Kww modal stiffness matrix
KconðsÞ transfer function of the controller
K̄conðsÞ transfer function of the reduced order

controller
Ka

ww global stiffness matrix of the wing
structure

Ks
ww structural stiffness matrix

ln length of nth finite element
Mww modal mass matrix
Mwc coupling modal matrix
Ma

ww global mass matrix
Ms

ww structural mass matrix
Ms

wc structural coupling mass matrix
P̄sysðsÞ transfer function of the aeroelastic sys-

tem

qd dynamic pressure
q modal displacement
QwcðkÞ aerodynamic matrix due to the motions

of the control surfaces
QwwðkÞ aerodynamic matrix due to the motion of

the main wing
Sacc position matrix reflecting the location of

sensors
t time
u
wing
3=4 deflection at the 3/4 chord point of each

box on the main wing
u
wing
1=4 deflection at the 1/4 chord point of each

box on the main wing
ucont3=4 deflection at the 3/4 chord point of each

box on control surfaces
ucont1=4 deflection at the 1/4 chord point of each

box on control surfaces
UacðtÞ actual input signal to the actuators
U stepð�Þ heavisides step function
V flow speed
VF flutter speed
w vertical displacement of the wing
w global vector of nodal displacements
Wact weighting function to limit the magni-

tude and frequency content of the actua-
tor inputs

Wnoise weighting function of the noise
Wper performance weighting function

W̄
wing

3=4 dimensionless downwash at the 3/4 chord
of the aerodynamic elements on the main
wing

W̄
cont

3=4 dimensionless downwash at the 3/4 chord
of the aerodynamic elements on control
surfaces

Xa aerodynamic states
YaeðtÞ measurement signal
YacðtÞ output signal of the actuators
YperðtÞ performance signal
U modal shape matrix
a torsional angle of the elastic axis, positive

nose-up
am twist angle at the mth node
b control surfaces deflection
bLEI LEI control surface deflection
bTEI TEI control surface deflection
bLEO LEO control surface deflection
bTEO TEO control surface deflection
bLEIac commanded signals of the LEI control

surface
bTEIac commanded signals of the TEI control

surface
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bLEOac commanded signals of the LEO control
surface

bTEOac commanded signals of the TEO control
surface

o vibration frequency
ra air density
t, tm time delay
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are inevitable because of the dynamics involved in the actuators, sensors, and controllers. The time delays are
prevalent when digital controllers, analogue anti-aliasing and reconstruction filters, and hydraulic actuators
are used [5]. These time delays become particularly significant when the control effort demands large control
forces or high frequencies. It is therefore crucial to understand the effect of time delays on control systems. On
the one hand, applications of unsynchronized control forces due to time delay may result in a degradation of
the control performance and it may even render the controlled structures to be unstable, but on the other
hand, an appropriate time delay may stabilize an unstable system [6].

In the field of aeroservoelasticity, the stability and stabilization of the aeroelastic system with time-delayed
feedback control have received much attention in recent years. In Ref. [7], for example, the chaotic motions of
a two-dimensional airfoil with cubic pitching stiffness and linear viscous damping were controlled by using the
time-delayed feedback in the form of Pyragas. Four control strategies were implemented with plunging
displacement, plunging velocity, pitching angle and pitching velocity as the feedback signals. The study
showed that the system could be stabilized to a periodic motion if the control was generated by either
measuring the plunging displacement, or pitching angle, or pitching velocity. The results demonstrated that
the feedback control signal derived from the measurement of the pitching variables is more effective in
controlling the chaotic motion of the airfoil. Yuan et al. [8] investigated the effect of the time-delayed feedback
control on the flutter instability boundary of a two-dimensional supersonic lifting surface. They demonstrated
that the time delay in the nonlinear feedback control could have a profound effect on the stability of the
bifurcation motions. For example, it could transform a subcritical Hopf bifurcation to a superciritical one. In
Ref. [9] the effects of time delay on the feedback control of two-dimensional lifting surfaces in an
incompressible flow-field was investigated. The stability behavior of aeroelastic systems with nonlinear time-
delayed feedback was analyzed via Pontryagin’s approach in conjunction with Stepan’s theorems and the
associated aeroelastic Volterra kernels. It was found that, with proper design, the time delay could be a more
efficient way to control instability than the conventional control strategies without time delay. In Ref. [10], the
flutter instability of actively controlled airfoils involving a time-delayed feedback control was investigated via
Stepan’s theorems. It was observed that any value of time delay could be detrimental from the point of view of
the aeroelastic response, but short time delays might be beneficial from the point of view of flutter instability.
In Ref. [11], the center manifold reduction and normal form theory were applied to investigate the stability of
an airfoil in the post-flutter flight speed regimes. Numerical simulations were carried out to determine the
implications of time delay in the considered controls.

One the other hand, flexible wings for high performance aircraft usually use multiple leading and trailing
edge control surfaces to gain multiple benefits [12,13], such as increased control power, reduced aerodynamic
drag, reduced aircraft structural weight, and so on. However, the wings of this configuration usually have
lower flutter speed due to their flexibility. Hence, flutter suppression of the wings with multiple control
surfaces should be studied to increase the flight envelope of the high performance aircraft. However, to the
best of our knowledge, the studies that deal with this subject are very limited in the published literature.

In this paper, some theoretical aspects encountered in the design of the active flutter suppression system for
a high aspect-ratio wing with multiple control surfaces are studied. We extend the previous studies in the
following five aspects: (1) multiple control surfaces configuration is considered in the present study. (2) In
Refs. [7,8,10,11], time delay effects on the stability of the controlled aeroelastic system are investigated.
However, no control surface and actuator dynamics are considered. As a result, the way by which the control
efforts act on the aeroelastic system is not clear. In this paper, time delays in the control loop are introduced
into the design procedure of the present flutter suppression system with multiple control surfaces driven by
actuators. (3) On the basis of the doublet lattice method (DLM), the unsteady aerodynamic forces model
suitable for the multiple control surfaces configuration is also developed. (4) The dynamic control law for the
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aeroelastic system with input time delay in control loop is designed by using HN control theory. (5) The delay-
dependent stability of the closed-loop system is predicted through the computation of the rightmost
eigenvalues of the system.
2. Structural model

As shown in Fig. 1, the wing under analysis is a high aspect-ratio wing. Respectively two inner and outer
leading (LEI and LEO) and trailing-edge (TEI and TEO) control surfaces are installed at two different span-
wise sections, resulting in four total control surfaces. Each control surface is actuated by a discrete actuator.
A finite element representation is used to develop the dynamic structural model of the flexible wing. The flexible
wing structure is approximated by a cantilevered beam with a center of mass offset from its neutral axis. Along
with Euler–Bernoulli bending, the flexible model also incorporates torsion. Therefore, a beam-rod finite
element model of the structure is developed which acts like a beam in bending and a rod in torsion. The elastic
axis is chosen to be the neutral axis of the beam so that the bending and torsion of the straight wing structure
are structurally uncoupled statically. Fig. 1 shows a finite element mesh for the wing model consisting of
ne elements. Each beam-rod element has six degrees-of-freedom, three degrees-of-freedom at each node. These
include one translational degree degrees-of-freedom, bending displacement, and two rotational degrees of
freedom which describe the bending slope and the torsional motion about the elastic axis, respectively.

As shown in Fig. 2, the displacement of the lifting surface can be represented by a vertical bending deflection
h(y, t) (positive, upward) along the elastic axis and a twist angle a(y, t) (positive, nose-up) about that axis,
given by

wðx; y; tÞ ¼ hðy; tÞ � ðx� ā � bÞaðy; tÞ �UT
contðx; yÞðbðtÞ þ acontðy; tÞÞ, (1)

where Ucont, b(t) and acont(y, t) are given in Appendix A.
For convenience, we introduce two finite element sets denoted by SETO and SETI, respectively.

SETOconsists of the elements located in the span of LEO (or TEO) control surface. SETI consists of the
elements located in the span of LEI (or TEI) control surface. The relative deflections of control surfaces can be
written as

bLEIspanðy; tÞ ¼ bLEIðtÞ þ f ðy; tÞ;

bTEIspanðy; tÞ ¼ bTEIðtÞ þ f ðy; tÞ;

bLEOspan ðy; tÞ ¼ bLEOðtÞ þ gðy; tÞ;

bTEOspan ðy; tÞ ¼ bTEOðtÞ þ gðy; tÞ;

8>>>>><
>>>>>:

(2)
y

x

la

lb

V

o
1 2 ne

TEI TEO

LEI LEO

ld

LEI  actuator

TEI  actuator

LEO actuator

TEO actuator

1

1

2 3 4 ne + 1ne

lc

Fig. 1. Structural model of the high aspect-ratio wing.
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Fig. 2. Cross-section of the wing.
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where f(y, t) and g(y, t) are defined as follows:
When lapyola þ l½SETIð1Þ�

f ðy; tÞ ¼
la � y

l½SETIð1Þ�
ðaSETIð1Þþ1ðtÞ � aSETIð1ÞðtÞÞ, (3)

When

la þ
Xi�1
j¼1

l½SETIðjÞ�pyola þ
Xi

j¼1

l½SETIðjÞ�; i ¼ 2; 3; . . . ; nI

f ðy; tÞ ¼
ðla þ

Pi�1
j¼1l½SETIðjÞ�Þ � y

l½SETIðiÞ�
ðaSETIðiþÞ1ðtÞ � aSETIðiÞðtÞÞ þ aSETIðiÞðtÞ � aSETIð1ÞðtÞ, (4)

When lbpyolb þ l½SETOð1Þ�

gðy; tÞ ¼
lb þ l½SETOð1Þ� � y

l½SETOð1Þ�
ðaSETOð1Þþ1ðtÞ � aSETOð1ÞðtÞÞ þ aSETOðnoÞþ1ðtÞ � aSETOð1Þþ1ðtÞ, (5)

When

lb þ
Xi�1
j¼1

l½SETOðjÞ�pyolb þ
Xi

j¼1

l½SETOðjÞ�; i ¼ 2; 3; . . . ; no

gðy; tÞ ¼
ðlb þ

Pi
j¼1l½SETOðjÞ�Þ � y

l½SETOðiÞ�
ðaSETOðiÞþ1ðtÞ � aSETOðiÞðtÞÞ þ aSETOðnoÞþ1ðtÞ � aSETOðiÞþ1ðtÞ, (6)

In Eqs. (3), (4), (5) and (6), ln denotes the length of the nth element, am(t) is the twist angle at the mth node.
SETI(j) and SETO(j) denote the jth element in the sets of SETI and SETO, respectively. no is the number of
elements located in the span of LEO (or TEO) control surface, nI is the number of elements located in the span
of LEI (or TEI) control surface.

Upon assembly of the element mass, damping and stiffness matrices, the equations of motion of the wing
can be written as

Ms
ww €wþDs

ww _wþ Ks
www ¼ �M

s
wc
€bþ fa, (7)

where Ms
ww, D

s
ww, K

s
ww and Ms

wc are the mass, damping, stiffness and coupling mass matrices, respectively. W is
the global vector of nodal displacements. fa is the aerodynamic forces given in the next section.



ARTICLE IN PRESS
Y.H. Zhao / Journal of Sound and Vibration 324 (2009) 490–513 495
3. Unsteady aerodynamic model

For calculation of subsonic, compressible unsteady aerodynamic forces on harmonically oscillating lifting
surfaces, the most generally used scheme is the DLM [14]. In DLM, the lifting surface is represented by a grid
of boxes of trapezoidal shape, as shown in Fig. 3. The DLM determines the pressure in each box as a function
of the downwash velocities at the 3

4
-chord locations of the different boxes, where

W̄
wing

3=4

W̄
cont

3=4

8<
:

9=
; ¼ D̄aic

C̄
wing

p

C̄
cont

p

8<
:

9=
;, (8)

where D̄aic is the aerodynamic influence coefficient matrix, W̄
wing

3=4 is the dimensionless downwash velocities at
the 3

4
chord of aerodynamic boxes on the main wing, C̄

wing

p is pressure coefficients of the boxes on the main
wing.

Downwash velocities W̄
cont

3=4 and pressure coefficients C̄
cont

p for the aerodynamic boxes on control surfaces
can be expressed as

W̄
cont

3=4 ¼

W̄
LEI

3=4

W̄
TEI

3=4

W̄
LEO

3=4

W̄
TEO

3=4

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; C̄

cont

p ¼

C̄
LEI

p

C̄
TEI

p

C̄
LEO

p

C̄
TEO

p

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
. (9)

The DLM yields the pressures in each of the boxes in the form:

C̄
wing

p

C̄
cont

p

8<
:

9=
; ¼ Āaic

W̄
wing

3=4

W̄
cont

3=4

8<
:

9=
; ¼ Āss Āsc

Ācs Ācc

" #
W̄

wing

3=4

W̄
cont

3=4

8<
:

9=
;, (10)

where Āaic ¼ D̄
�1

aic .
With harmonic motion assumption, the dimensionless downwash velocities W̄

wing

3=4 can be written as

W̄
wing

3=4 ¼
q
qx

u
wing
3=4 þ

ik

bR

u
wing
3=4 , (11)

where k ¼ obR=V is the reduced frequency, bR is the reference semi-chord length, o is the vibration frequency,

u
wing
3=4 is the deflection at the 3

4
chord point of each box on the main wing. Note that the terms in the right hand

side of Eq. (11) are related to structural displacement w as follows:

q
qx

u
wing
3=4 ¼ Daw

3=4w; u
wing
3=4 ¼ Taw

3=4w. (12)

Substituting Eq. (12) into Eq. (11), one obtains:

W̄
wing

3=4 ¼ Daw
3=4 þ

ik

bR

Taw
3=4

� �
w ¼ Eaw

3=4ðkÞw. (13)
V

x

y

Fig. 3. Aerodynamic boxes on the lifting surface.
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The dimensionless downwash velocities W̄
cont

3=4 can be written as

W̄
cont

3=4 ¼

W̄
LEI

3=4

W̄
TEI

3=4

W̄
LEO

3=4

W̄
TEO

3=4

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

q
qx

ucont3=4 þ
ik

bR

ucont3=4 ¼
q
qx

uLEI3=4

uTEI3=4

uLEO3=4

uTEO3=4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
þ

ik

bR

uLEI3=4

uTEI3=4

uLEO3=4

uTEO3=4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (14)

where ucont3=4 is the deflection at the 3
4 chord point of each box on control surfaces.

From Eq. (1), we have the following expressions:

uLEI3=4 ¼ hLEI3=4 �DLEI
3=4aa

LEI
3=4 �DLEI

3=4bb
LEI
� D̄

LEI

3=4bf
LEI
3=4 ;

uTEI3=4 ¼ hTEI3=4 �DTEI
3=4aa

TEI
3=4 �DTEI

3=4bb
TEI
� D̄

TEI

3=4bf
TEI
3=4 ;

uLEO3=4 ¼ hLEO3=4 �DLEO
3=4aa

LEO
3=4 �DLEO

3=4bb
LEO
� D̄

LEO

3=4bg
LEO
3=4 ;

uTEO3=4 ¼ hTEO3=4 �DTEO
3=4aa

TEO
3=4 �DTEO

3=4bb
TEO
� D̄

TEO

3=4bg
TEO
3=4 :

8>>>>>>><
>>>>>>>:

(15)

herein the matrices in Eq. (15) are given in Appendix B. Note that the following expressions hold true:

q
qx

uLEI3=4 ¼ �aLEI
3=4 � ILEIb bLEI � fLEI3=4 ;

q
qx

uTEI3=4 ¼ �aTEI
3=4 � ITEIb bTEI � fTEI3=4 ;

q
qx

uLEO3=4 ¼ �aLEO
3=4 � ILEOb bLEO � gLEO3=4 ;

q
qx

uTEO3=4 ¼ �aTEO
3=4 � ITEOb bTEO � gTEO3=4 ;

8>>>>>>>>>><
>>>>>>>>>>:

(16)

where

ILEIb ¼

1

1

..

.

1

2
66664

3
77775

nLEI�1

; ITEIb ¼

1

1

..

.

1

2
66664

3
77775

nTEI�1

; ILEOb ¼

1

1

..

.

1

2
66664

3
77775

nLEO�1

; ITEOb ¼

1

1

..

.

1

2
66664

3
77775

nTEO�1

.

From Eqs. (14), (15) and (16), the downwash velocities of control surfaces can be expressed as

W̄
LEI

3=4 ¼ �aLEI
3=4 � fLEI3=4 þ

ik

bR

ðhLEI3=4 �DLEI
3=4aa

LEI
3=4 � D̄

LEI

3=4bf
LEI
3=4 Þ � ILEIb þ

ik

bR

DLEI
3=4b

� �
bLEI;

W̄
TEI

3=4 ¼ �aTEI
3=4 � fTEI3=4 þ

ik

bR

ðhTEI3=4 �DTEI
3=4aa

TEI
3=4 � D̄

TEI

3=4bf
TEI
3=4 Þ � ITEIb þ

ik

bR

DTEI
3=4b

� �
bTEI;

W̄
LEO

3=4 ¼ �aLEO
3=4 � gLEO3=4 þ

ik

bR

ðhLEO3=4 �DLEO
3=4aa

LEO
3=4 � D̄

LEO

3=4bg
LEO
3=4 Þ � ILEOb þ

ik

bR

DLEO
3=4b

� �
bLEO;

W̄
TEO

3=4 ¼ �aTEO
3=4 � gTEO3=4 þ

ik

bR

ðhTEO3=4 �DTEO
3=4aa

TEO
3=4 � D̄

TEO

3=4bg
TEO
3=4 Þ � ITEOb þ

ik

bR

DTEO
3=4b

� �
bTEO:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(17)



ARTICLE IN PRESS
Y.H. Zhao / Journal of Sound and Vibration 324 (2009) 490–513 497
Displacement of each box on control surfaces can be expressed by structural displacement w, given by

aLEI
3=4 ¼ ALEI

3=4aw; hLEI3=4 ¼ ALEI
3=4hw; fLEI3=4 ¼ ALEI

3=4f w;

aTEI
3=4 ¼ ATEI

3=4aw; hTEI3=4 ¼ ATEI
3=4hw; fTEI3=4 ¼ ATEI

3=4f w;

aLEO
3=4 ¼ ALEO

3=4aw; hLEO3=4 ¼ ALEO
3=4hw; gLEO3=4 ¼ ALEO

3=4gw;

aTEO
3=4 ¼ ATEO

3=4aw; hTEO3=4 ¼ ATEO
3=4hw; gTEO3=4 ¼ ATEO

3=4gw:

8>>>>>><
>>>>>>:

(18)

Substituting Eq. (18) into Eq. (17), one obtains:

W̄
cont

3=4 ¼ Dha
3=4ðkÞw�D

b
3=4ðkÞb, (19)

where the matrices Dha
3=4ðkÞ and D

b
3=4ðkÞ are given in Appendix C.

Based on Eqs. (10), (13) and (19), the aerodynamic forces acting on the main wing and the control surfaces
can be written as

f̄
wing

f ¼ qdS
wing½ðĀssE

aw
3=4ðkÞ þ ĀscD

ha
3=4ðkÞÞw� ĀscD

b
3=4ðkÞb�;

f̄
cont

f ¼ qdS
cont½ðĀcsE

aw
3=4ðkÞ þ ĀccD

ha
3=4ðkÞÞw� ĀccD

b
3=4ðkÞb�:

8<
: (20)

where diagonal matrices Swing and Scont denote the area of aerodynamic boxes on the main wing and control
surfaces, respectively. qd ¼ 0:5raV 2 is dynamic pressure, ra is air density. So the virtual work done by
aerodynamic forces can be written as

dW a ¼ dðuwing
1=4 Þ

T f̄
wing

f þ dðucont1=4 Þ
T f̄

cont

f , (21)

where u
wing
1=4 and ucont1=4 are deflections at the 1

4
chord point of the aerodynamic boxes on the main wing and

control surfaces, respectively.

Note that the deflections u
wing
1=4 and ucont1=4 are related to the structural displacements w and the relative

deflections of control surfaces b, given by

u
wing
1=4 ¼ Taw

1=4w; ucont1=4 ¼ Dha
1=4w�D

b
1=4b, (22)

where

Dha
1=4 ¼

ALEI
1=4h �DLEI

1=4aA
LEI
1=4a � D̄

LEI

1=4bA
LEI
1=4f

ATEI
1=4h �DTEI

1=4aA
TEI
1=4a � D̄

TEI

1=4bA
TEI
1=4f

ALEO
1=4h �DLEO

1=4aA
LEO
1=4a � D̄

LEO

1=4bA
LEO
1=4g

ATEO
1=4h �DTEO

1=4aA
TEO
1=4a � D̄

TEO

1=4bA
TEO
1=4g

2
66666664

3
77777775
; D

b
1=4 ¼

DLEI
1=4b 0 0 0

0 DTEI
1=4b 0 0

0 0 DLEO
1=4b 0

0 0 0 DTEO
1=4b

2
666664

3
777775.

Substituting Eq. (20) and (22) into Eq. (21), we have:

dW a ¼ dwTfa, (23)

where

fa ¼ qdQ
s
wwðkÞwþ qdQ

s
wcðkÞb, (24)

Qs
wwðkÞ ¼ ðT

aw
1=4Þ

TSwingðĀssE
aw
3=4ðkÞ þ ĀscD

ha
3=4ðkÞÞ þ ðD

ha
1=4Þ

TScontðĀcsE
aw
3=4ðkÞ þ ĀccD

ha
3=4ðkÞÞ, (25)

Qs
wcðkÞ ¼ �ðT

aw
1=4Þ

TSwingĀscD
b
3=4ðkÞ � ðD

ha
1=4Þ

TScontĀccD
b
3=4ðkÞ. (26)
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It can be seen from Eq. (24) that the total aerodynamic forces acting on the wing include two parts. The first
part is the aerodynamic force induced by structural displacements and the second part represents the
aerodynamic force due to the deflections of control surfaces.

Substituting Eq. (24) into Eq. (7), one obtains:

Ms
ww €wþDs

ww _wþ Ks
www ¼ �M

s
wc
€bþ qdQ

s
wwðkÞwþ qdQ

s
wcðkÞb. (27)

After taking the boundary conditions of the wing into consideration, we obtain the equations of motion for
the wing in physical space:

Ma
ww €w

a
þDa

ww _w
a þ Ka

www
a ¼ �Ma

wc
€bþ qdQ

a
wwðkÞw

a þ qdQ
a
wcðkÞb. (28)
4. Open-loop aeroelastic equations in the time domain

Introducing modal transformation wa ¼ Uq, where U is modal shape matrix, q is modal displacement, then
Eq. (28) can be written as

Mww €qþDww _qþ Kwwq ¼ �Mwc
€bþ qdQwwðkÞqþ qdQwcðkÞb, (29)

where

Mww ¼ UTMa
wwU; Dww ¼ UTDa

wwU; Kww ¼ UTKa
wwU; Mwc ¼ UTMa

wc,

QwwðkÞ ¼ UTQa
wwðkÞU; QwcðkÞ ¼ UTQa

wcðkÞ.

For the design of the flutter suppression system, it is necessary to transform the equations of motion into the
state-space form. Here, the minimum state method is used for the rational function approximation. It is
known that in minimum state method, the increase in the size of the augmented aerodynamic states is much
smaller than any other methods. For this purpose, we write Eq. (29) into the following form:

½Mwws2 þDwwsþ Kww�qðsÞ ¼ �Mwcs2bðsÞ þ qd ½QwwðsÞ QwcðsÞ�
qðsÞ

bðsÞ

( )
, (30)

where s is the Laplace variable, sbR=V ¼ ik.
Minimum state method approximates the aerodynamic force matrices by:

½QwwðsÞ QwcðsÞ� ¼ A0 þ
b

V
A1sþ

b2

V2
A2s

2 þDs Is�
V

b
Rs

� ��1
Ess, (31)

where

Es ¼ ½Eww Ewc�; Aj ¼ ½Awwj
Awcj
�; j ¼ 0; 1; 2 (32)

Introducing the following aerodynamic states:

XaðsÞ ¼ Is�
V

b
Rs

� ��1
ðEwwqðsÞ þ EwcbðsÞÞs. (33)

Now we can obtain the state-space open-loop aeroelastic equation of motion, given by

_XaeðtÞ ¼ AaeXaeðtÞ þ BaeUaeðtÞ, (34)

where the matrices in Eq. (34) are given in Appendix D.
The outputs of the aeroelastic plant are taken as acceleration signals, so the output equation used in the

design of the control law can be written as

YaeðtÞ ¼ CaeXaeðtÞ þDaeUaeðtÞ, (35)
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where

Cae ¼ SaccUM̄
�1

ww �ðKww � qdAww0
Þ � Dww � qd

b

V
Aww1

� �����
����qdDs

� �
;

Dae ¼ SaccUM̄
�1

ww qdAwc0 qd

b

V
Awc1

����
����� Mwc � qd

b2

V2
Awc2

� �� �
;

8>>><
>>>:

(36)

Sacc is the matrix whose elements are related to the locations of sensors.
The dynamic models of the actuators driving the control surfaces are specified by transfer functions having

the form:

bLEIðsÞ

bLEIac ðsÞ
¼

kLEI
ac ðo

LEI
b Þ

2

ðsþ aLEI
ac Þðs

2 þ 2zLEIac oLEI
b sþ ðoLEI

b Þ
2
Þ
¼

āLEI
3

s3 þ aLEI
1 s2 þ aLEI

2 sþ aLEI
3

;

bTEIðsÞ

bTEIac ðsÞ
¼

kTEI
ac ðo

TEI
b Þ

2

ðsþ aTEI
ac Þðs

2 þ 2zTEIac oTEI
b sþ ðoTEI

b Þ
2
Þ
¼

āTEI
3

s3 þ aTEI
1 s2 þ aTEI

2 sþ aTEI
3

;

bLEOðsÞ

bLEOac ðsÞ
¼

kLEO
ac ðo

LEO
b Þ

2

ðsþ aLEO
ac Þðs

2 þ 2zLEOac oLEO
b sþ ðoLEO

b Þ
2
Þ
¼

āLEO
3

s3 þ aLEO
1 s2 þ aLEO

2 sþ aLEO
3

;

bTEOðsÞ

bTEOac ðsÞ
¼

kTEO
ac ðo

TEO
b Þ

2

ðsþ aTEO
ac Þðs

2 þ 2zTEOac oTEO
b sþ ðoTEO

b Þ
2
Þ
¼

āTEO
3

s3 þ aTEO
1 s2 þ aTEO

2 sþ aTEO
3

:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(37)

where the parameters in Eq. (37) are given in Appendix E.
In the design of the controller, in fact, we can specify a two-output controller to reduce the number of

output signals of the controller. For this purpose, we use output signal bEIac ðtÞ to drive the LEI and TEI
actuator and output signal bEOac ðtÞ to drive the LEO and TEO actuator. Hence, we have the following
relationships:

bLEIac ¼ kLEIbEIac ; bTEIac ¼ kTEIbEIac ; bLEOac ¼ kLEObEOac ; bTEOac ¼ kTEObEOac . (38)

where kLEI, kTEI, kLEO and kLE0 are proportional coefficients. From Eq. (37) and Eq. (38), a state-space
realization of the actuator dynamics can be written as

_XacðtÞ ¼ AacXacðtÞ þ BacUacðtÞ;

YacðtÞ ¼ XacðtÞ ¼ UaeðtÞ:

(
(39)

where the matrices in Eq. (39) are given in Appendix F.

5. Control law design

The modern approach to characterizing closed-loop performance objectives is to measure the size of certain
closed-loop transfer function matrices using various matrix norms. Matrix norms provide a measure of how
large output signals can get for certain classes of input signals. Optimizing these types of performance
objectives over the set of stabilizing controllers is the main thrust of recent optimal control theory, such as
H2 and HN control.
In this paper, the control law for flutter suppression is designed using HN synthesis. Fig. 4 shows a block

diagram of the HN control design interconnection for the present problem. In Fig. 4, KconðsÞ is the dynamic
controller to be determined, P̄sysðsÞ defines the aeroelastic plant of the wing, ḠactðsÞ the actuator system, YperðtÞ

the performance signal, YaeðtÞ the measurement signal. In the design of the control system, performance
requirements on the closed-loop system are transformed into the HN framework with the help of weighting or
scaling functions. Weights are selected to account for the relative magnitude of signals, their frequency
dependence, and their relative importance. The weighting function Wact is used to limit the magnitude and
frequency content of the actuator inputs because the actuator usually works well only in the limited frequency
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Fig. 4. Block diagram of the HN control.
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band and can only provide limited power to actuate the control surface. In a word, Wact is used to shape the
penalty on control signal to be used. Wnoise represents frequency domain models of sensor noise. Each sensor
measurement feedback to the controller has some noise, which is often higher in one frequency range than
another. The Wnoise weight tries to capture this information, derived from laboratory experiments or based on
manufacturer measurements, in the control problem. For example, medium grade accelerometers have
substantial noise at low frequency and high frequency. Therefore the corresponding Wnoise weight would be
larger at low and high frequency and have a smaller magnitude in the mid-frequency range. Wper is the
performance weighting function, which can be designed as a low-pass transfer function in order to give a good
disturbance rejection performance in the low-frequency region. UacðtÞ is the actual input signal to the
actuators.

Since time delay effects play a important role in the stability of the closed-loop system, they are included in
the present study. In the frequency domain, time delays can be modeled by the following second order Padé
approximation:

ḠPadeðsÞ ¼
GPadeðsÞ 0

0 GPadeðsÞ

" #
, (40)

where

GPadeðsÞ ¼ e�ts �

1�
t
2

sþ
t2

12
s2

1þ
t
2

sþ
t2

12
s2
. (41)

and t denotes time delay. Now the delayed output signal of the controller can be written as

Uacðt� tÞ ¼ ḠPadeUacðtÞ. (42)

The state–space representations for system P̄sysðsÞ are:

_XaeðtÞ ¼ AaeXaeðtÞ þ BaeUaeðtÞ;
YperðtÞ

YaeðtÞ

n o
¼

Cper

Cae

h i
XaeðtÞ þ

0
Dae

h i
UaeðtÞ:

8<
: (43)

where Cper ¼ SperU½I 0 0�, matrix Sper is used to select displacements and twist angle signals at the
performance points from displacement vector Wa. YperðtÞ is a set of virtual signals used for performance
computation.
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The state and output equations of the actuator system ḠactðsÞ are given by

_XacðtÞ ¼ AacXacðtÞ þ BacUacðt� tÞ;

YacðtÞ ¼ XacðtÞ ¼ UaeðtÞ:

(
(44)

The open-loop system is obtained by augmentation of the aeroelastic model Eq. (43) with the state–space
model of the actuator system Eq. (44), given by

_XpðtÞ ¼ ApXpðtÞ þ BpUacðt� tÞ;

YpðtÞ ¼ YaeðtÞ ¼ CpXpðtÞ;

(
(45)

where

Ap ¼
Aae Bae

0 Aac

" #
; Bp ¼

0

Bac

" #
; Cp ¼ ½Cae Dae�; Xp ¼

Xae

Xac

( )
.

The dynamic HN controller KconðsÞ can be written as

_XconðtÞ ¼ AconXconðtÞ þ BconYaeðtÞ;

YconðtÞ ¼ UacðtÞ ¼ CconXconðtÞ þDconYaeðtÞ:

(
(46)

Thus, the equations of motion for the closed-loop system are given by

_XpðtÞ

_XconðtÞ

� �
¼

XpðtÞ

XconðtÞ

� �
þ

Xpðt� tÞ
Xconðt� tÞ

� �
. (47)

On the basis of the HN interconnection model, an equivalent transfer function of the whole system can be
constructed and is denoted by PsysðsÞ, as shown in Fig. 5. The HN control of the present aeroelastic system can
be stated as: find a dynamic controller KconðsÞ such that the closed-loop system is stable and the performance
jjTedðsÞjj1og is achieved, where g40 is the prescribed constant, and jjTedðsÞjj1 defines the HN norm of the
closed-loop system transfer function from the disturbance d to the performance signal e.

6. The rightmost eigenvalues of the controlled system with time delays

From Eq. (47), we see that the closed-loop system is described by a set of linear delay differential equations.
Therefore, to investigate the performance of the designed control system, an efficient algorithm for the
computation of the stability of this time delay system should be developed. Here we focus on the computation
of the critical time delay of the closed-loop system.

In theoretical aspects of the time delay systems, it is well known that a controlled system is asymptotically
stable if all the roots of the corresponding characteristic equation have negative real parts. For a linear time-
invariant system with time delays, however, the characteristic equation becomes transcendental due to the
exponential functions associated with time delays. The transcendentality brings an infinite number of
characteristic roots, which are cumbersome to handle. Due to the high dimensional nature of the present
system, the generalized Sturm method described in Ref. [6] is hardly to use. Besides, the perturbation approach
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[5] to trace the evolution of the eigenvalues usually gives the wrong result because we can not trace the
eigenvalues emerging form infinity.

Delay equations always lead to an infinite number of characteristic roots. However, only a finite number
have real parts greater than a given constant. Therefore, stability of the time-delayed system can be
determined by computing the rightmost eigenvalues of the DDEs. In this section, the rightmost roots of the
controlled aeroelastic system with time delays are computed through the infinitesimal generator
approximation. In this section we consider the following linear time-invariant, retarded multiple time-delayed
system:

_XðtÞ ¼
Pm
k¼0

AkXðt� tkÞ; t40;

XðtÞ ¼ uðtÞ; t 2 ½�tm; 0�;

8><
>: (48)

where 0 ¼ t0ot1o . . .otm; Ak 2 R
n�n

The characteristic equation of the system in Eq. (48) is:

detðTðlÞÞ ¼ det �lIþ
Xm

k¼0

Ake
�tkl

 !
¼ 0. (49)

For the purpose of stability analysis, a numerical method that automatically computes the rightmost roots
of Eq. (49) would be of interest. We briefly recall that the solution operator S(t), tX0,associated to Eq. (48) is
defined by

SðtÞuðyÞ ¼ XtðyÞ; u 2 Ds, (50)

where, Ds ¼ CBð½�tm; 0�;R
nÞ, CB is Banach space, and XtðyÞ ¼ Xðtþ yÞ; y 2 ½�tm; 0�. The meaning of the

solution operator S(t) is shown in Fig. 6. Note that the solution operator S(t) maps uð�tmÞ, u(0) into
Xðt� tmÞ and X(t), respectively. The infinitesimal generator A of the solution operator S(t) is given by

A/ðyÞ ¼ _uðyÞ; u 2 DgðAÞ;

DgðAÞ ¼ u 2 Dsj _u 2 Ds and _uð0Þ ¼
Pm
k¼0

Akuð�tkÞ

� �
:

8><
>: (51)

So, Eq. (48) can be restated as the abstract Cauchy problem of the form:

dXt

dt
¼ AXt; tX0;

X0 ¼ u:

8<
: (52)

From the above equations, one can obtain the following result:

detðTðlÞÞ ¼ 03l 2 sðAÞ, (53)

where s( � ) is the spectrum operator. Since the spectrum of the solution generator consists of the characteristic
roots, such roots can be computed as the eigenvalues of suitable matrices approximating this infinitesimal
generator.
0

X(t)

−�m

�

Xt
S(t)

tt − �m

Fig. 6. The solution operator S(t).



ARTICLE IN PRESS
Y.H. Zhao / Journal of Sound and Vibration 324 (2009) 490–513 503
To make a matrix approximation to the infinitesimal generator A, let us consider the following Chebyshev
division points in [�tm, 0]:

yN;i ¼
tm

2
cos i

p
N

	 

� 1

	 

; i ¼ 0; 1; . . . ;N, (54)

where �tm ¼ yN;NoyN;N�1o � � �oyN;1oyN;0 ¼ 0. Let uN be an approximation of u, and can be written as

uNðyÞ ¼
XN

j¼0

½ljðyÞ � In�f j, (55)

where � denotes Kronecker products, ljð�Þ is the Lagrange interpolating polynomial, and f j ¼ uðyN;jÞ.
On the basis of splicing condition and Eq. (51), one obtains:

ðAuÞð0Þ ¼ _uð0Þ ’
Pm
k¼0

AkuNð�tkÞ ¼ ðANfÞ0;

ðAuÞðyN;iÞ ¼ _uðyN;iÞ ’ _uN ðyN;iÞ ¼ ðANfÞi; i ¼ 1; 2; . . . ;N ;

8><
>: (56)

where AN denotes the discrete form of A, and f ¼ ½fT0 ; f
T
1 ; . . . ; f

T
N �

T. Obviously, Eq. (56) can be recast as

AN

f0

f1

..

.

fN

8>>>><
>>>>:

9>>>>=
>>>>;
¼

e0 e1 � � � eN

g10 g11 � � � g1N

..

. ..
. . .

. ..
.

gN0 gN1 � � � gNN

2
666664

3
777775

f0

f1

..

.

fN

8>>>><
>>>>:

9>>>>=
>>>>;
¼

Pm
k¼0

AkuN ð�tkÞ

_uN ðyN;1Þ

..

.

_uN ðyN;N Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
. (57)

The elements in matrix AN can be obtained as

ej ¼
Xm

k¼0

Ak½ljð�tkÞ � In�; gij ¼
_ljðyN;iÞ � In; i ¼ 1; . . . ;N; j ¼ 0; 1; . . . ;N. (58)

Thus, the rightmost eigenvalues of the above system can be obtained by solving the corresponding
eigenvalue problem for matrix AN. The time delays at which the rightmost eigenvalues become purely
imaginary are called critical time delays, they generate potential points for a stability switch of the system.
7. Numerical simulations

7.1. Aerodynamic forces induced by harmonic motions of control surfaces

The wing employed in simulations has a rectangular planform, with a 0.2m chord and a 1.2m span. The
wing has 20 chord-wise boxes consisting of the lifting surfaces of the main wing (8 boxes), the leading-edge
control surface (6 boxes), and the trailing-edge control surface (6 boxes). The wing has 96 span-wise boxes, so
a total of 192 aerodynamic boxes are used in simulations.

To validate the developed aerodynamic module for this multiple control surfaces configuration, we attempt
to compute the unsteady aerodynamic forces induced by the harmonic pitching motion of control surfaces.
For this purpose, we introduce the following four pitching modes of control surfaces:

Model-1 : bðtÞ ¼

þ1�

þ1�

þ1�

þ1�

8>>><
>>>:

9>>>=
>>>;
eiot; Model-2 : bðtÞ ¼

þ1�

þ1�

�1�

þ1�

8>>><
>>>:

9>>>=
>>>;
eiot. (59a)
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Model-3 : bðtÞ ¼

�1�

þ1�

þ1�

þ1�

8>>><
>>>:

9>>>=
>>>;
eiot; Model-4 : bðtÞ ¼

�1�

þ1�

�1�

þ1�

8>>><
>>>:

9>>>=
>>>;
eiot. (59b)

For this simulation, the reduced frequency k is taken as 0.3, and the mach number MN is taken as 0
(incompressible flow). Figs. 7, 8, 9 and 10 illustrate the distribution of the unsteady pressure coefficients
induced by the above four pitching modes of control surfaces are computed by using the developed technique
in Section 3. It can be seen that due to the complexity of the downwash velocity field, the aerodynamic forces
induced by multiple control surfaces are more complex than those by single control surface. Multiple control
surfaces can be used to suppress the complex flutter modes due to their different locations in span. Besides, the
Fig. 7. Distribution of pressure coefficients (Mode-1): (a) real part of the pressure coefficients and (b) imaginary part of the pressure

coefficients.

Fig. 8. Distribution of pressure coefficients (Mode-2): (a) real part of the pressure coefficients and (b) imaginary part of the pressure

coefficients.
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Fig. 10. Distribution of pressure coefficients (Mode-4): (a) real part of the pressure coefficients and (b) imaginary part of the pressure

coefficients.

Fig. 9. Distribution of pressure coefficients (Mode-3): (a) real part of the pressure coefficients and (b) imaginary part of the pressure

coefficients.
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leading-edge control surface may be used to counteract the tendency of a trailing-edge control surface to
undergo aeroelastic reversal [13].

7.2. Open-loop stability analysis

Fig. 11 shows a finite element mesh for the wing model consisting of 12 beam-rod elements. The first six
natural frequencies of the wing are 1.76, 8.71, 11.2, 25.03, 31.57 and 43.78Hz, respectively. The transfer
function of the discrete actuator is given in Appendix G.

Since the open-loop aeroelastic equation is expressed in the time domain form, flutter analysis can be
performed by tracing the eigenvalues of the system matrix at various flow speeds. Here, Mach number is taken
as 0.0. Sixteen generalized aerodynamic force matrices at reduced frequency values between k ¼ 0.0 and
k ¼ 1.0 are computed, and the six aerodynamic poles are used in the minimum state approximation. The first
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Fig. 11. Finite element model of the wing.
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Table 1

Parameters used for controller design.

Controller Design speed Output node Performance node Design time delay

K̄conðsÞ Vd ¼ 23ms�1 node 7 and node 12 node 11 td ¼ 0.014 s
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six modes of the wing structure are retained in order to obtain a set of reduced order equations of motion in
modal space. So the resulting open-loop aeroelastic model includes 12 structural states, representing 6 low-
frequency modes, 6 aerodynamic states, 12 actuator states, leading to a total of 36 states. The root-locus plot
for the open-loop flutter analysis is shown in Fig. 12. Obviously, the wing flutters at approximately
VF ¼ 19.2ms�1 with frequency of fF ¼ 5.0Hz.

7.3. Stability of the closed-loop aeroelastic system with time delay

The parameters used in synthesizing control law are shown in Table 1. The HN controller is synthesized at
the design speed Vd ¼ 23ms�1. The acceleration signals taken from node 7 and node 12 in the present finite
element model are used as the feedback signals to HN controller. Node 11 is used as a performance node to
account for the performance requirement of the closed-loop system. The time delay in control loop is taken as
td ¼ 0.014 s.

Since the complexity of the control law is not explicitly constrained, the order of the resultant controller is
likely to be considerably greater than is truly needed. Therefore, a reduction algorithm applied to the control
law can be used to reduce control law complexity with little change in control system performance. In control



ARTICLE IN PRESS
Y.H. Zhao / Journal of Sound and Vibration 324 (2009) 490–513 507
theory, eigenvalues define the system stability, whereas Hankel singular values define the ‘‘energy’’ of each
state in the system. Keeping larger energy states of a system preserves most of its characteristics in terms of
stability, frequency, and time responses. Model reduction technique presented here is based on the Hankel
singular values of a system [15]. It can achieve a reduced-order model that preserves the majority of the system
characteristics. In this paper, the model reduction technique reduce the original 44-state controller KconðsÞ to a
5-state model, denoted by K̄conðsÞ. The state space form of this reduced order controller K̄conðsÞ is given in
Appendix H.

In practical situations, the delay-independently stable region is usually a very small part in the parameter
space of system. If the system parameters do not fall into the delay-independent stable region, the real part of
at least one characteristic root changes its sign when the time delay varies. That is, the stability of the
controlled system cannot keep unchanged with an increase of time delay. Such a change of stability with time
delay is referred to as the stability switch. For the aeroelastic system, the delay-independently stable region
only exists in the range of the flow speed which is less than the flutter speed of the open-loop system. Hence,
from the practical point of view, this paper only deals with the delay-dependent stability of the system.

With the computation of the rightmost roots of the time-delayed system, the critical time delay of the system
at different flow speeds is obtained. As shown in Fig. 13, with the increase of flow speed, the maximum
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Fig. 13. The rightmost eigenvalues of the closed-loop system with time delay: (a) V ¼ 20ms�1, (b) V ¼ 21ms�1, (c) V ¼ 22ms�1, and

(d) V ¼ 23ms�1.
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Fig. 14. Time histories of the system at t ¼ 0.014 s, tctrl ¼ 0.5 s, V ¼ 20ms�1: (a) responses of node 10 and (b) pitching motions of the

control surfaces.
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allowable time delay that makes the closed-loop system stable becomes small. The reason is that, with the
increase of flow speed, the needed pitching frequency to suppress flutter increases so that the pitching motion
is very sensitive to the time delay of system. For flow speed V ¼ 20ms�1, the closed-loop system is stable when
time delay tp0.0315 s, unstable when t40.0315 s. That is, the maximum allowable time delay of the system is
t ¼ 0.0315 s. In other words, the critical time delay of the closed-loop system at V ¼ 20ms�1 is t ¼ 0.0315 s, at
which the system undergoes a stability switch.

To validate the result presented in Fig. 13(a), we select a time delay value t ¼ 0.014 s in the stable interval
[0, 0.0315 s] of system, the responses of the system are shown in Fig. 14, where the control activity is initiated
at tctrl ¼ 0.5 s. It can be seen from Fig. 14 that flutter is successfully suppressed through the pitching motions
of control surfaces.

To illustrate the correctness of the obtained critical time delay values, we increase time delay gradually to
see the variations of the stability of system at V ¼ 20ms�1. For this purpose, we take time delay t as 0.02, 0.03
and 0.0325 s, respectively. As shown in Fig. 15, the closed-loop system is stable for both t ¼ 0.02 s and
t ¼ 0.03 s whereas unstable for t ¼ 0.0325 s. This demonstrates that using the infinitesimal generator
approximation of the solution operator, we get the correct critical time delay tc ¼ 0.0315 s, at which the
system undergoes a stability switch.
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8. Conclusions

A systematic approach for suppressing flutter of the high aspect-ratio wing with multiple control surfaces is
presented. The proposed approach includes unsteady aerodynamic modeling, controller design and stability of
the time-delayed aeroelastic system. A computational method suitable for predicting the unsteady
aerodynamic forces on the wing with multiple control surfaces is developed, and is validated by numerical
simulation. In the controller design, we can see that with the help of the second order Padé approximation of
time delay, a dynamic HN controller can be successfully synthesized. Numerical simulations demonstrate that
time delays in control system have strong effects on the stability of system. So the non-neglectable time delay
effects should be given much attention in the design of the aeroelastic control system for advanced aircraft.
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Appendix A. Matrices in Eq. (1)

Ucont ¼ ½ðx� c̄LEbÞULEIðx; yÞ ðx� c̄TEbÞUTEIðx; yÞ ðx� c̄LEbÞULEOðx; yÞ ðx� c̄TEbÞUTEOðx; yÞ�T, (A.1)

ULEIðx; yÞ ¼ ½U stepðxþ bÞ �U stepðx� c̄LEbÞ� � ½U stepðy� laÞ �U stepðy� lbÞ�, (A.2)

ULEOðx; yÞ ¼ ½U stepðxþ bÞ �U stepðx� c̄LEbÞ� � ½U stepðy� lcÞ �U stepðy� ldÞ�, (A.3)
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UTEIðx; yÞ ¼ ½U stepðx� c̄TEbÞ �U stepðx� bÞ� � ½U stepðy� laÞ �U stepðy� lbÞ�, (A.4)

UTEOðx; yÞ ¼ ½U stepðx� c̄TEbÞ �U stepðx� bÞ� � ½U stepðy� lcÞ �U stepðy� ld Þ�, (A.5)

bðtÞ ¼ ½bLEIðtÞ bTEIðtÞ bLEOðtÞ bTEOðtÞ�T, (A.6)

acontðy; tÞ ¼ ½f ðy; tÞ f ðy; tÞ gðy; tÞ gðy; tÞ�T. (A.7)

Appendix B. Matrices in Eq. (15)

hLEI3=4 ¼ ½hðy
LEI
3=4ð1ÞÞ hðyLEI

3=4ð2ÞÞ � � � hðy
LEI
3=4ðnLEIÞÞ�

T; hTEI3=4 ¼ ½hðy
TEI
3=4ð1ÞÞ hðyTEI

3=4ð2ÞÞ � � � hðy
TEI
3=4ðnTEIÞÞ�

T, (B.1)

hLEO3=4 ¼ ½hðy
LEO
3=4ð1ÞÞ hðyLEO

3=4ð2ÞÞ � � � hðy
LEO
3=4ðnLEOÞÞ�

T; hTEO3=4 ¼ ½hðy
TEO
3=4ð1ÞÞ hðyTEO

3=4ð2ÞÞ � � � hðy
TEO
3=4ðnTEOÞÞ�

T, (B.2)

aLEI
3=4 ¼ ½aðy

LEI
3=4ð1ÞÞ aðy

LEI
3=4ð2ÞÞ � � � aðy

LEI
3=4ðnLEIÞÞ�

T; aTEI
3=4 ¼ ½aðy

TEI
3=4ð1ÞÞ aðy

TEI
3=4ð2ÞÞ � � � aðy

TEI
3=4ðnTEIÞÞ�

T, (B.3)

aLEO
3=4 ¼ ½aðy

LEO
3=4ð1ÞÞ aðy

LEO
3=4ð2ÞÞ � � � aðy

LEO
3=4ðnLEOÞÞ�

T; aTEO
3=4 ¼ ½aðy

TEO
3=4ð1ÞÞ aðy

TEO
3=4ð2ÞÞ � � � aðy

TEO
3=4ðnTEOÞÞ�

T, (B.4)

DLEI
3=4a ¼ diag½xLEI

3=4ð1Þ � āb xLEI
3=4ð2Þ � āb � � � xLEI

3=4ðnLEIÞ � āb�T, (B.5)

DTEI
3=4a ¼ diag½xTEI

3=4ð1Þ � āb xTEI
3=4ð2Þ � āb � � � xTEI

3=4ðnTEIÞ � āb�, (B.6)

DLEO
3=4a ¼ diag½xLEO

3=4ð1Þ � āb xLEO
3=4ð2Þ � āb � � � xLEO

3=4ðnLEOÞ
� āb�, (B.7)

DTEO
3=4a ¼ diag½xTEO

3=4ð1Þ � āb xTEO
3=4ð2Þ � āb � � � xTEO

3=4ðnTEOÞ � āb�, (B.8)

DLEI
3=4b ¼ ½x

LEI
3=4ð1Þ � c̄LEb xLEI

3=4ð2Þ � c̄LEb � � � xLEI
3=4ðnLEIÞ � c̄LEb�T, (B.9)

DTEI
3=4b ¼ ½x

TEI
3=4ð1Þ � c̄TEb xTEI

3=4ð2Þ � c̄TEb � � � xTEI
3=4ðnTEIÞ � c̄TEb�T, (B.10)

DLEO
3=4b ¼ ½x

LEO
3=4ð1Þ � c̄LEb xLEO

3=4ð2Þ � c̄LEb � � � xLEO
3=4ðnLEOÞ � c̄LEb�T, (B.11)

DTEO
3=4b ¼ ½x

TEO
3=4ð1Þ � c̄TEb xTEO

3=4ð2Þ � c̄TEb � � � xTEO
3=4ðnTEOÞ � c̄TEb�T, (B.12)

D̄
LEI

3=4b ¼ diag½xLEI
3=4ð1Þ � c̄LEb xLEI

3=4ð2Þ � c̄LEb � � � xLEI
3=4ðnLEIÞ � c̄LEb�, (B.13)

D̄
TEI

3=4b ¼ diag½xTEI
3=4ð1Þ � c̄TEb xTEI

3=4ð2Þ � c̄TEb � � � xTEI
3=4ðnTEIÞ � c̄TEb�, (B.14)

D̄
LEO

3=4b ¼ diag½xLEO
3=4ð1Þ � c̄LEb xLEO

3=4ð2Þ � c̄LEb � � � xLEO
3=4ðnLEOÞ � c̄LEb�, (B.15)

D̄
TEO

3=4b ¼ diag½xTEO
3=4ð1Þ � c̄TEb xTEO

3=4ð2Þ � c̄TEb � � � xTEO
3=4ðnTEOÞ � c̄TEb�, (B.16)

fLEI3=4 ¼ ½f ðy
LEI
3=4ð1Þ; tÞ f ðyLEI

3=4ð2Þ; tÞ � � � f ðy
LEI
3=4ðnLEIÞ; tÞ�

T, (B.17)

fTEI3=4 ¼ ½f ðy
TEI
3=4ð1Þ; tÞ f ðyTEI

3=4ð2Þ; tÞ � � � f ðy
TEI
3=4ðnTEIÞ; tÞ�

T, (B.18)

gLEO3=4 ¼ ½gðy
LEO
3=4ð1Þ; tÞ gðyLEO

3=4ð2Þ; tÞ � � � gðy
LEO
3=4ðnLEOÞ; tÞ�

T, (B.19)

gTEO3=4 ¼ ½gðy
TEO
3=4ð1Þ; tÞ gðyTEO

3=4ð2Þ; tÞ � � � gðy
TEO
3=4ðnTEOÞ; tÞ�

T, (B.20)



ARTICLE IN PRESS
Y.H. Zhao / Journal of Sound and Vibration 324 (2009) 490–513 511
where nLEI, nTEI, nLEO and nTEO are the number of the aerodynamic boxes on LEI, TEI, LEO and TEO
control surfaces, respectively.
Appendix C. Matrices in Eq. (19)

Dha
3=4ðkÞ ¼

�ALEI
3=4a � ALEI

3=4f þ
ik

bR

ðALEI
3=4h �DLEI

3=4aA
LEI
3=4a � D̄

LEI

3=4bA
LEI
3=4f Þ

�ATEI
3=4a � ATEI

3=4f þ
ik

bR

ðATEI
3=4h �DTEI

3=4aA
TEI
3=4a � D̄

TEI

3=4bA
TEI
3=4f Þ

�ALEO
3=4a � ALEO

3=4g þ
ik

bR

ðALEO
3=4h �DLEO

3=4aA
LEO
3=4a � D̄

LEO

3=4bA
LEO
3=4g Þ

�ATEO
3=4a � ATEO

3=4g þ
ik

bR

ðATEO
3=4h �DTEO

3=4aA
TEO
3=4a � D̄

TEO

3=4bA
TEO
3=4g Þ

2
666666666664

3
777777777775
, (C.1)

D
b
3=4ðkÞ ¼

ILEIb þ
ik

bR

DLEI
3=4b 0 0 0

0 ITEIb þ
ik

bR

DTEI
3=4b 0 0

0 0 ILEOb þ
ik

bR

DLEO
3=4b 0

0 0 0 ITEOb þ
ik

bR

DTEO
3=4b

2
666666666664

3
777777777775
. (C.2)

Appendix D. Matrices in Eq. (34)

(D.1)

(D.2)

M̄ww ¼Mww � qd

b2

V 2
Aww2

; XaeðtÞ ¼

qðtÞ

_qðtÞ

XaðtÞ

8><
>:

9>=
>;; UaeðtÞ ¼

bðtÞ
_bðtÞ
€bðtÞ

8><
>:

9>=
>;. (D.3)

Appendix E. Parameters in Eq. (37)

āLEI3 ¼ kLEI
ac ðo

LEI
b Þ

2; āTEI
3 ¼ kTEI

ac ðo
TEI
b Þ

2; āLEO
3 ¼ kLEO

ac ðo
LEO
b Þ

2; āTEO
3 ¼ kTEO

ac ðo
TEO
b Þ

2, (E.1)

aLEI
1 ¼ aLEI

ac þ 2zLEIac oLEI
b ; aTEI

1 ¼ aTEI
ac þ 2zTEIac oTEI

b , (E.2)

aLEO
1 ¼ aLEO

ac þ 2zLEOac oLEO
b ; aTEO

1 ¼ aTEO
ac þ 2zTEOac oTEO

b , (E.3)
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aLEI
2 ¼ ðoLEI

b Þ
2
þ 2aLEI

ac zLEIac oLEI
b ; aTEI

2 ¼ ðoTEI
b Þ

2
þ 2aTEI

ac zTEIac oTEI
b , (E.4)

aLEO
2 ¼ ðoLEO

b Þ
2
þ 2aLEO

ac zLEOac oLEO
b ; aTEO

2 ¼ ðoTEO
b Þ

2
þ 2aTEO

ac zTEOac oTEO
b , (E.5)

aLEI3 ¼ aLEI
ac ðo

LEI
b Þ

2; aTEI
3 ¼ aTEI

ac ðo
TEI
b Þ

2; aLEO
3 ¼ aLEO

ac ðo
LEO
b Þ

2; aTEO
3 ¼ aTEO

ac ðo
TEO
b Þ

2, (E.6)

where bLEIac , kLEI
ac , zLEIac , and oLEI

b are the servo-commanded rotation angle, steady-state gain, damping ratio
and uncoupled natural frequency of the LEI actuator, respectively.

Appendix F. Matrices in Eq. (39)

Aac ¼

04�4 I4�4 04�4

04�4 04�4 I4�4

Aac3 Aac2 Aac1

2
64

3
75; Bac ¼

08�2

B̄ac3

" #
; B̄ac3 ¼

āLEI
3 kLEI 0

āTEI
3 kTEI 0

0 āLEO
3 kLEO

0 āTEO
3 kTEO

2
66664

3
77775, (F.1)

Aac3 ¼ diag½�aLEI
3 � aTEI

3 � aLEO
3 � aTEO

3 �, (F.2)

Aac2 ¼ diag½�aLEI
2 � aTEI

2 � aLEO
2 � aTEO

2 �, (F.3)

Aac1 ¼ diag½�aLEI
1 � aTEI

1 � aLEO
1 � aTEO

1 �, (F.4)

UacðtÞ ¼
bEIac ðtÞ

bEOac ðtÞ

( )
; XacðtÞ ¼ UaeðtÞ ¼

bðtÞ
_bðtÞ
€bðtÞ

8><
>:

9>=
>;. (F.5)

Appendix G. The transfer function of the discrete actuator

The third order transfer function of the actuator driving the control surface is defined as

bLEIðsÞ

bLEIac ðsÞ
¼

bTEIðsÞ

bTEIac ðsÞ
¼

bLEOðsÞ

bLEOac ðsÞ
¼

bTEOðsÞ

bTEOac ðsÞ
¼

3:2e6

s3 þ 420s2 þ 1:68e5sþ 3:2e6
, (G.1)

where bLEIac , bTEIac , bLEOac and bTEOac are input signals of the actuators.

Appendix H. The state space form (see Eq. (46)) of the reduced-order controller K̄conðsÞ

Acon ¼

�1:0359 1:1497 1:6354 �0:4187 2:4177

�1:1498 �0:2577 �0:4941 0:3689 �1:6363

�1:6352 �0:4947 �0:9685 0:8668 �3:5518

�0:3752 �0:3399 �0:7980 �1:2143 69:7664

�2:4070 �1:6272 �3:5395 �68:9785 �32:4435

2
6666664

3
7777775
, (H.1)

Bcon ¼

�0:1798 �0:5905

�0:0628 �0:1891

�0:1055 �0:3173

0:0461 �0:1370

�0:3056 �0:6260

2
6666664

3
7777775
, (H.2)
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Ccon ¼
�0:3992 0:1336 0:2197 �0:0358 0:5133

�0:4708 0:1478 0:2521 �0:1400 0:4710

� �
, (H.3)

Dcon ¼
0 0

0 0

� �
. (H.4)
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