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Abstract

This paper addresses the analysis of multi-layered plates with embedded/surface bonded piezoelectric/magnetostrictive

layers using layer-wise mixed finite element method. The Reissner mixed variational theorem (RMVT) for composite/

piezoelectric plates has been extended to the static and dynamic analysis of coupled magneto-electro-elastic problems.

Transverse stress assumptions are made in the framework of RMVT and the resulting finite element describes a priori

interlaminar continuous transverse shear and normal stresses. Numerical examples are solved to validate the present

formulation using a code developed in C-language and the results obtained with the present model are in good agreement

with the analytical solutions available in literature.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Composite structures composed of piezoelectric and piezomagnetic materials possess the original
piezoelectric and piezomagnetic properties along with a magneto-electric coupling effect that is not present
in the constituents. Due to the ability of converting energy from one form to the other (among magnetic,
electric, and mechanical energies), these materials have extensive applications in various sensors, actuators,
hydrophones, medical ultrasonic imaging, etc.

Recent development of smart materials has stimulated considerable studies on the electric, magnetic, and
mechanical behaviours of smart structures. A review of one-dimensional, two-dimensional, and three-
dimensional approaches for the analysis of plates can be found in the articles by Saravanos et al. [1,2].
Recently, Pan [3], Guan and He [4], and Pan and Heyliger [5] presented exact solutions for the static analysis
of simply supported, magneto-electro-elastic plates. Pan and Han [6] presented the exact solution for
functionally graded anisotropic magneto-electro-elastic plate. Pan and Heyliger [7] also presented exact
solution for the free-vibration analysis of simply supported, magneto-electro-elastic plates. Using state-space
formulations, Chen et al. [8], Wang et al. [9], and Chen et al. [10] analysed magneto-electro-elastic plates
whereas Chen and Lee [11] analysed functionally graded magneto-electro-elastic plates. Aimin et al. [12] made
use of boundary contour method for the analysis of magneto-electro-elastic media. Bhangale and Ganesan
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a shorter length of the plate
b longer length of the plate
b (subscript) parameters related to layer bottom
B ¼ [B1, B2, B3]

T magnetic flux vector
C rigidity matrix of a lamina
dxy magneto-electric coefficients
D ¼ [D1, D2, D3]

T electric displacement vector
exy piezoelectric constants
E ¼ [E1, E2, E3]

T electric field vector
Ft ¼ [Ft, Fb, Fr]

T functions of coefficients of
Legendre polynomial

g nodal transverse stress vector
G (subscript) values calculated from geometrical

relations
h thickness of the plate
hk thickness of kth layer
H ¼ [H1, H2, H3]

T magnetic field vector
H (subscript) values calculated from Hooke’s

law
i, j (sub/superscript) number of node’s expan-

sions
k (sub/superscript) parameters related to kth

layer
kxy permittivity of material
K stiffness matrices
Le work done due to external loads

M (subscript) values calculated from assumed
model

M mass matrix
n (subscript) out-of-plane values
p (subscript) in-plane values
pz amplitude of transverse applied pressure
P load vector
Pr coefficients of Legendre polynomial
q nodal displacement vector
qxy magneto-electric constants
r (subscript) parameters related to intermediate

sub-layers
t (subscript) parameters related to layer top
u ¼ [u, v, w]T displacement vector
V plate volume
x, y, z cartesian coordinate system
e ¼ ½�11 �22 �12 �13 �23 �33�

T strain vector
mxy permeability of material
xk non-dimensional local layer coordinate
r density of the material
r ¼ ½s11 s22 s12 s13 s23 s33�T stress vector
t, s (sub/superscript) expansion of parameters

along thickness direction
u Poisson’s ratio
U nodal electric potential vector
w nodal magnetic potential vector
o angular frequency
O plate reference surface
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[13,14] presented static and free vibration analysis of functionally graded, anisotropic, and linear magneto-
electro-elastic plates using semi-analytical finite element method. Few more relevant literature are also
available in magneto-electric-elastic field particularly on the development of micro-mechanics model to
evaluate the effective properties of a layered piezoelectric/piezomagnetic [15], extension of the potential theory
method for the mixed boundary value problems [16], analysis of elliptical Hertzian contact [17], free vibration
studies for Euler–Bernoulli beam [18] and approximate solution for the free vibration [19].

The applications of the Reissner mixed variational theorem (RMVT) for the analysis of multilayered
composites can be found in the articles by Toledano [20] and Carrera [21–23]. A detailed review on the
application of the Reissner mixed variational principle for composite plates can be seen in Ref. [24].
Formulation and numerical assessment of coupled multifield problems in piezoelectric structures can be found
in the articles by Carrera et al. [25] and Carrera and Boscolo [26]. Carrera et al. [27] also presented variational
statements and computational models for multifield problems. Benjeddou and Andrianarison [28], Ottavio
and Kroplin [29], and Yang and Batra [30] presented mixed formulations for the laminated plates embedded
with piezoelectric layers. Lage et al. [31] presented a partial mixed layer-wise finite element model based on the
RMVT for static analysis of magneto-electro-elastic laminated plate structures.

In this paper, the RMVT as developed for composite/piezoelectric plates by Carrera and Demasi [32] has
been extended to the static and dynamic analysis of coupled magneto-electro-elastic problems. A finite element
model based on the RMVT for the analysis of magneto-electro-elastic plates is proposed and implemented
which satisfies continuity of transverse stresses through the thickness direction. Mechanical displacements,
electric potential, magnetic potential, and transverse stresses are considered as degrees of freedom. No post
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processing procedure is required for the calculation of transverse stresses. The performance of the proposed
mathematical formulation for static and forced vibration analysis of magneto-electro-elastic plates has been
examined using computer code developed in C-language.

2. Finite element formulation

A multi-layered plate is a laminate obtained by stacking layers until the desired thickness and stiffness are
obtained. Each lamina (piezoelectric, piezomagnetic or purely elastic) is considered homogeneous, perfectly
bonded with each other and operating in the linear elastic range. The geometry and coordinate system used for
the analysis of the laminated plate is shown in Fig. 1. xk ¼ 2 zk/hk is the non-dimensional local layer
coordinate.

2.1. The RMVT for magneto-electro-elastic plates

This section discusses the derivation of the RMVT for magneto-electro-elastic plates. The energy function
for a magneto-electro-elastic continuum can be written as the sum of mechanical, electric, and magnetic
energy.

G ¼ 1
2
eTCe� 1

2
ETkE� 1

2
HTlH� ETee�HTqe�HT dE (1)

Differentiation of the energy function as given in Eq. (1) with respect to strain electric field and magnetic
field gives the stress vector, electric, and magnetic displacement vectors which are expressed as

r ¼
qG

qe
; D ¼ �

qG

qE
; B ¼ �

qG

qH
(2)

The constitutive equations are therefore obtained as

r ¼ Ce� eE� qH; D ¼ eTeþ kEþ dH; B ¼ qTeþ lHþ dE (3)

For the sake of convenience from computational point of view, the stresses and strains are broken into in-
plane and out-of-plane components as

rp ¼ ½s11 s22 s12�T; rn ¼ ½s13 s23 s33�T (4)

ep ¼ ½�11 �22 �12�
T; en ¼ ½�13 �23 �33�

T (5)

Hence, the constitutive equations for a magneto-electro-elastic material can be written as

rn ¼ cTpnep þ cnnen � enE� qnH; rp ¼ cppep þ cpnen � epE� qpH (6)

D ¼ eTp ep þ enen þ kEþ dH; B ¼ qTp ep þ qnen þ lHþ dE (7)
Layer reference
surface Ωk

x, y

zk1

k = 2

k = 1

k zk

Plate
reference
surface Ω

h

hk

z

h2

Fig. 1. Geometry and coordinate system of laminated plates.
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The explicit form of the introduced matrices in Eqs. (6) and (7) is as follows:

cpp ¼

c11 c12 c16

c12 c22 c26

c16 c26 c66

2
64

3
75; cnn ¼

c55 c45 0

c45 c44 0

0 0 c33

2
64

3
75; cpn ¼

0 0 c13

0 0 c23

0 0 c36

2
64

3
75 ¼ cTnp (8)

ep ¼

0 0 e31

0 0 e32

0 0 e36

2
64

3
75; en ¼

e15 e25 0

e14 e24 0

0 0 e33

2
64

3
75; k ¼

k11 k12 0

k12 k22 0

0 0 k33

2
64

3
75 (9)

l ¼

m11 m12 0

m12 m22 0

0 0 m33

2
64

3
75; d ¼

d11 d12 0

d12 d22 0

0 0 d33

2
64

3
75; qp ¼

0 0 q31

0 0 q32

0 0 q36

2
64

3
75 (10)

qn ¼

q15 q25 0

q14 q24 0

0 0 q33

2
64

3
75; ET ¼ ½E1 E2 E3�; DT ¼ ½D1 D2 D3� (11)

BT ¼ ½B1 B2 B3�; HT ¼ ½H1 H2 H3�; ukT
ti ¼ ½u v w� (12)

The strain–displacement relationship is

epG ¼ Dpu; enG ¼ Dnu ¼ ðDnO þDnzÞu (13)

The differential matrices are

Dp ¼

q
qx

0 0

0
q
qy

0

q
qy

q
qx

0

2
66666664

3
77777775
; Dnz ¼

q
qz

0 0

0
q
qz

0

0 0
q
qz

2
6666664

3
7777775
; DnO ¼

0 0
q
qx

0 0
q
qy

0 0 0

2
66664

3
77775 (14)

ET ¼ ½�qx � qy � qz�U; HT ¼ ½�qx � qy � qz�w (15)

E ¼ ðDep þDezÞU; H ¼ ðDep þDezÞw; DT
ep ¼ ½�qx � qy 0�; DT

ez ¼ ½0 0 � qz� (16)

The variation of potential energy for a magneto-electro-elastic continuum can be written as the sum of
variation of mechanical energy, electric energy, magnetic energy and the variation of work done by applied
loadings. An extension of the RMVT to magneto-electro-elastic material is presented in this section. Since the
transverse stresses are also taken as nodal degrees of freedom in the mixed theories rnM should be introduced
into the PVD equations.

The potential energy of a system can be expressed as

dL� dU ¼ d
Z

V

½GðepG; enG;E;HÞ þ rnM ðenG � enH Þ�dV

¼

Z
V

deTpG

qG

qepG

þ deTnG

qG

qenG

þ dET qG

qE
þ dHT qG

qH
þ drT

nM ðenG � enH Þ

� �
dV

¼
XNl

k¼1

Z
Ak

Z
Ok

½dekT
pGrk

pH þ dekT
nGrk

nM � dEkTDk � dHkTBk þ drT
nM ð�nG � �nH Þ�dOk dz (17)
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where subscripts G, H, and M denote values calculated from geometrical relations, Hooke’s law, and assumed
model, respectively. The left hand side terms of Eq. (17) are expressed as

dU ¼
XNl

k¼1

Z
V

ðrkduT €uÞdV (18)

dL ¼ dLel þ dLe þ dLm (19)

here the work done due to the applied surface charge, Le and work done due to the applied surface magnetic
charges, Lm are taken as zeroes, and Lel is the work done due to external load of intensity pz.

The constitutive equations for rpH , enH , D, and B can be directly obtained by taking out en from Eq. (6) and
substituting in Eq. (7). The resulting constitutive equations are rearranged and are given below:

rpH ¼ c̄ppepG þ c̄pnrnM þ c̄seEþ c̄sqH; enH ¼ c̄npepG þ c̄nnrnM þ c̄deEþ c̄dqH (20)

D ¼ c̄edepG þ c̄esrnM þ c̄eeEþ c̄eqH; B ¼ c̄qdepG þ c̄qsrnM þ c̄qeEþ c̄qqH (21)

where

c̄pp ¼ cpp � cpnc
�1
nn cnp; c̄pn ¼ cpnc

�1
nn ; c̄se ¼ cpnc

�1
nn en � ep; c̄sq ¼ cpnc

�1
nn qn � qp

c̄np ¼ �c
�1
nn cnp; c̄nn ¼ c�1nn ; c̄de ¼ �c

�1
nn en; c̄dq ¼ c�1nn qn; c̄ed ¼ eTp � eTn c

�1
nn cnp

c̄es ¼ eTn c
�1
nn ; c̄qd ¼ qTp � qTn c

�1
nn cnp; c̄qs ¼ qTn c

�1
nn ; c̄ee ¼ eTn c

�1
nn en þ k

c̄eq ¼ eTn c
�1
nn qn þ d; c̄qq ¼ qTn c

�1
nn qn þ l; c̄qe ¼ qTn c

�1
nn en þ d

In the present model each layer is considered as independent layer and continuity of field variables are
imposed as constraints. For Taylor type expansions of field variables along the thickness requires additional
conditions for satisfying top and bottom continuity. Hence combinations of legendry polynomials are used for
the expansion of field variables through thickness direction. The displacement, transverse stress, electric, and
magnetic fields along thickness direction are assumed as follows:

uk ¼ Ftut þ Fbub þ Frur ¼ F tut ¼ F tNiqti

rk
nM ¼ Ftsk

nt þ F bsk
nb þ Frsk

nr ¼ F tst ¼ F tNigti

/k
¼ F tft þ Fbfb þ Frfr ¼ F tft ¼ F tNifti

ck
¼ F tct þ Fbcb þ Frcr ¼ F tct ¼ F tNicti;

t ¼ t; b; r and i ¼ 0; 1; . . . ;N

9>>>>>>=
>>>>>>;

(22)

where N is the number of nodes per element, Ni the shape function for the eight-noded isoparametric element,
and

Fb ¼
ðP0 þ P1Þ

2
¼
ð1þ xkÞ

2
; Ft ¼

ðP0 � P1Þ

2
¼
ð1� xkÞ

2
; and Fr ¼ ðPr � Pr�2Þ (23)

The number of sub-layers in each layer is taken as one number higher than the order of variation of the
degrees of freedom considered. Hence ‘r’ in the function Fr will take values from 2 onwards according to the
number of sub-layers. The function Pr is the respective coefficient of Legendre polynomial. In the present
formulation, order of polynomials along thickness direction can be varied independently. For example, if the
order of variation of degrees of freedom along thickness direction is taken as 4 there will be 5 sub-layers in
each layer and ‘r’ in the function Fr will take values 2, 3, 4 and F b ¼ F 1; Ft ¼ F 5.

The function chosen have the following properties:

xk ¼
1; Ft ¼ 1; F b ¼ 0; F r ¼ 0

�1; Ft ¼ 0; F b ¼ 1; F r ¼ 0

(
(24)
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It may be noted that the layer-wise description does not require any zig-zag function for the simulation of
zig-zag effects. The continuity of the displacement at each interface can be linked using Eq. (25).

uk
t ¼ u

ðkþ1Þ
b ; k ¼ 1; Nl � 1 and rk

nt ¼ rkþ1
nb (25)

On substitution of Eqs. (16), (18), (23), (24), (25) in Eq. (20), one gets Eq. (26) (similar formulation for
composite plates can be found in Carrera and Demasi [32]).

dL� dU ¼ dqkT ðKktsij
uu qk þ Kktsij

us gk þ Kktsij
ue /k

þ Kktsij
uq wk

Þ

þ dgkT ðKktsij
su qk þ Kktsij

ss gk þ Kktsij
se /k

þ Kktsij
sq wk

Þ

þ d/kT
ðKktsij

eu qk þ Kktsij
es gk þ Kktsij

ee /k
þ Kktsij

eq wk
Þ

þ dwkT
ðKktsij

qu qk þ Kktsij
qs gk þ Kktsij

qe /k
þ Kktsij

qq wk
Þ (26)

The equilibrium and compatibility equations obtained from the above equation for a magneto-electro-
elastic material are given below:

Kktsij
uu qk þ Kktsij

us gk þ Kktsij
ue /k

þ Kktsij
uq wk

¼ pk (27)

Kktsij
su qk þ Kktsij

ss gk þ Kktsij
se /k

þ Kktsij
sq wk

¼ 0 (28)

Kktsij
eu qk þ Kktsij

es gk þ Kktsij
ee /k

þ Kktsij
eq wk

¼ 0 (29)

Kktsij
qu qk þ Kktsij

qs gk þ Kktsij
qe /k

þ Kktsij
qq wk

¼ 0 (30)

where Kktsij
su ;Kktsij

ss ;Kktsij
se ;Kktsij

sq Kktsij
uu ;Kktsij

ue ;Kktsij
uq , etc. are the stiffness matrices arising due to coupled and

uncoupled terms of magneto-elastic-electro material and the same are provided in Appendix A.
In the present analysis an eight-noded isoparametric plate element is used for the finite element

discretization. Each lamina in a laminate is divided into a number of sub-layers according to the order of
variations of displacement and transverse stress fields across thickness. The degrees of freedom corresponding
to transverse stress parameters are eliminated at element level. Stiffness matrices are calculated separately for
each sub-layer combination. Each sub-layer has its own unique value of the stiffness matrices depending upon
their interpolation function values along the thickness direction. After obtaining the stiffness matrix, Kmixed

and mass matrixM for an element extended over the full thickness of the plate it has to be assembled along the
in-plane direction to form the overall stiffness matrix and mass matrix of the whole system. Then the
governing equation for dynamic response is solved by direct time integration scheme following Newmark’s b
method [33].
3. Numerical examples

A number of examples are solved in this section to study the static and transient vibration behaviour of
linear magneto-electro-elastic laminates. In all the cases the magnetic and the electric potentials at the
boundaries are assumed as zero. First, a three-layered sandwich magneto-electro-elastic plate with known
analytical solution [3] is examined in order to validate the mixed finite element model code based on the
RMVT which has been presented in the previous section. Analysis of a three-layered sandwich magneto-
electro-elastic plate under different types of loadings is considered in the first example. In the second example,
a two-layer magneto-electro-elastic plate made of BaTiO3/CoFe2O4 is studied under different span to depth
ratios and boundary conditions. To the best of the authors’ knowledge, the results are not readily available in
the literature for transient analysis of magneto-electro-elastic plates. Hence the present example results are
validated for piezoelectric plate with that of Ray et al. [34]. In the third example forced vibration analysis of a
three-layer simply supported plate having different span to depth ratios is presented along with the
convergence study results. As a final example, dynamic transient analysis of a sandwich smart plate is
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presented. The various quantities used in tables and figures are as follows:

ðu�; v�Þ ¼ ðu; vÞ=ða=hÞ3; w� ¼ w100=ða=hÞ4; ðD�x;D
�
y;B
�
x;B
�
yÞ ¼ ðDx;Dy;Bx;ByÞ=ða=hÞ

ðs�xx;s
�
yy; s

�
xy;F

�;c�Þ ¼ ðsxx; syy;sxy;F;cÞ=ða=hÞ2; ðs�zx;s
�
zyÞ ¼ ðsxx;syyÞ=ða=hÞ

The following material properties are used for the computation of the results unless mentioned otherwise:
Table 1

Convergence and

Present

4� 4

z ¼ 0.00

z ¼ 0.15

z ¼ 0.30

8� 8

z ¼ 0.00

z ¼ 0.15

z ¼ 0.30

12� 12

z ¼ 0.00

z ¼ 0.15

z ¼ 0.30

Pan [3]

z ¼ 0.00

z ¼ 0.15

z ¼ 0.30
validation study fo

B/F/B

U

8.010� 1

1.355� 1

1.043� 1

8.007� 1

1.358� 1

1.049� 1

8.006� 1

1.358� 1

1.050� 1

7.874� 1

1.359� 1

1.053� 1
r j and W at

0�4

0�3

0�3

0�4

0�3

0�3

0�4

0�3

0�3

0�4

0�3

0�3
x ¼ 0.75, y ¼ 0.25.

C

�2.515� 1

�2.570� 1

�2.180� 1

�2.517� 1

�2.570� 1

�2.181� 1

�2.520� 1

�2.570� 1

�2.183� 1

�2.527� 1

�2.600� 1

�2.188� 1
0�6

0�6

0�6

0�6

0�6

0�6

0�6

0�6

0�6

0�6

0�6

0�6
F/B/F

U

1.895� 10�3

2.292� 10�3

2.144� 10�3

1.897� 10�3

2.293� 10�3

2.147� 10�3

1.897� 10�3

2.294� 10�3

2.148� 10�3

1.900� 10�3

2.297� 10�3

2.154� 10�3
C

�1.181

�1.670

�8.648

�1.182

�1.670

�8.650

�1.184

�1.670

�8.653

�1.246

�1.670

�8.692
c11 ¼ c22
 c33
 c12
 c13 ¼ c23
 c44 ¼ c55
 c66 ¼ (c11�c12)0.5

BaTiO3
 166
 162
 77
 78
 43
 44.5

CoFe2O4
 286
 173
 170.5
 269.5
 45.3
 56.5
e13 ¼ e23
 e33
 e24 ¼ e15
 k11 ¼ k22
 k33
 m11 ¼ m22
 m33

BaTiO3
 �4.4
 18.6
 11.6
 11.2
 12.6
 5
 10
q13 ¼ q23
 q33
 q24 ¼ q15
 k11 ¼ k22
 k33
 m11 ¼ m22
 m33

CoFe2O4
 580.3
 699.7
 550
 0.08
 0.093
 �590
 157
The units of material properties given above are: cij in GPa, qij in N/(Am), eij in C/m2, kij in 10�9 C2/(Nm2),
and mij in 10�6Ns2/C2.

3.1. Static analysis

3.1.1. Example-1

In this example sandwich plate made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 as reported in
Pan [3] is analysed for the validation of the present finite element based RMVT model. The thickness (h) of the
plate having three layers of equal thickness is given as 0.3m. The simply supported boundary conditions and
bi-sinusoidal loading (p ¼ sin (px/a) sin (py/b) where a and b are shorter and longer dimensions of the plate at
the top surface of the plate are considered [3]. Two different stacking sequences namely (BaTiO3/CoFe2O4/
BaTiO3 (B/F/B) and CoFe2O4/BaTiO3/CoFe2O4 (F/B/F)) are taken. The values of electric and magnetic
potentials at coordinates x ¼ 0.75, y ¼ 0.25 with the analytical solution of Pan [3] are tabulated in Table 1 for
different mesh sizes. From the table it is observed that the results converge very well and the results with 4� 4
mesh size show good convergence and accuracy. It is also observed that the present results are in good
agreement with that of Pan [3].
� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6

� 10�6
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0.0

0.1

0.2

0.3

0.0003

B/F/B F/B/F Pan [3]

Ф

h

0.00280.00230.00180.00130.0008

Fig. 2. Variation of U across the thickness under bi-sinusoidal loading.

0.0

0.1

0.2

0.3

-3.
00

E-06

B/F/B F/B/F Pan [3]

ψ

h

-5.
00

E-07

-1.
00

E-06

-1.
50

E-06

-2.
00

E-06

-2.
50

E-06

Fig. 3. Variation of c across the thickness under bi-sinusoidal loading.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.600.400.200.00

B/F/B F/B/F Pan [3]

σzz

h

Fig. 4. Variation of szz across the thickness under bi-sinusoidal loading.
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In another validation study, the variations of F, c, szz, Dx, and Bx across the thickness under bi-sinusoidal
loading along with the results of Pan [3] are plotted in Figs. 2–6. It can be seen from the figures that the cross-
thickness distributions (evaluated at coordinates x ¼ 0.75, y ¼ 0.25) for primary and secondary variables are
in good agreement with those of Pan [3]. The variation of electric and magnetic potentials shown in Figs. 2 and
3 are found to be continuous at layer interfaces but their slopes are discontinuous. Normal stress across the
thickness as shown in the Fig. 4 has a continuous positive slope throughout the thickness. It can also be seen
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Fig. 7. Plate subjected to localized uniformly distributed load at the centre.

S.S. Phoenix et al. / Journal of Sound and Vibration 324 (2009) 798–815806
from the Fig. 4 that the stacking sequence (F/B/F or B/F/B) has not much influence in the variation pattern of
normal stresses except at the top layer, where it shows a slight difference in nature of slope. Fig. 5 shows that
the electric displacement varies drastically across the BaTiO3 layer, whereas its value is more or less zero in
CoFe2O4. Similarly, in Fig. 6 the magnetic displacement varies drastically across the CoFe2O4 layer, whereas
its value is more or less than zero in BaTiO3.

Some new results are presented for this example. As defined earlier, a simply supported sandwich plate
made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 is analysed. The plate has three layers of equal
thickness h ¼ 0.3m. Two different stacking sequences considered are B/F/B and F/B/F. The plate is analysed
with two different types of loadings namely uniformly distributed load (p ¼ 3N/m2) and a bi-sinusoidal
potential applied at the top surface of the plate as shown in Figs. 7 and 8, respectively. The results for u, v, w,
F, c, s, D, and B evaluated at coordinates (x ¼ 0.75, y ¼ 0.25, z ¼ 0.0) for the plate under external potential
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Fig. 8. Plate subjected to bi-sinusoidal loading for F/B plate.

Table 2

Results for simply supported plate for applied potential and line loading.

Potential loading Line loading

B/F/B F/B/F B/F/B F/B/F

u*10
13

�248.26 �4.2094 21.408 16.505

v*10
13 248.26 4.2094 �17.772 �13.902

w*10
12

�28.895 �2.0689 5.1499 4.2779

U 0.5000 0.5000 0.00119 0.00174

C*10
7 23.126 1.4603 �41.853 �36.346

szx 0.8662 0.0336 0.4837 0.4690

szy �0.8657 �0.0336 �0.2681 �0.2586

szz �0.4489 �0.0116 0.0421 0.0383

Dz*10
10

�137.32 �4.7884 �0.02848 �0.00212

Bz*10
8

�0.0801 0.0041 0.9956 1.5353

sxx �5.1013 0.3230 �0.7688 �0.8069

syy �5.1014 0.3230 �1.0300 �1.0393

sxy 6.9426 0.1495 �0.5443 �0.5387

Dx*10
12

�23328.0 �759.32 �44.720 �8.7010

Dy*10
12 21726.0 694.78 22.533 2.2195

Bx*10
8 0.71429 0.0333 �1.4724 �2.5332

By*10
8

�0.6653 �0.0304 0.5817 2.0529

S.S. Phoenix et al. / Journal of Sound and Vibration 324 (2009) 798–815 807
loading and localized uniformly distributed line loading are tabulated in Table 2. It is observed that the
potential loading gives in general more values as compared to line loading in case of B/F/B plate. However,
the trend is reversed in the case of F/B/F plate. It is interesting to note that the B/F/B plate under potential
loading always shows critical values except B in which F/B/F plate shows critical values under line loading.
3.1.2. Example-2

The second example is a two-layered plate with piezoelectric BaTiO3 is in the bottom layer and the
magnetostrictive CoFe2O4 is in the top layer. Both the layers are assumed to have equal thickness. Starting
from the top, this two-layered plate is named as F/B plate. The analysis is done with different a/h ratios under
all edges simply supported (SSSS) as well as with two opposite edges simply supported and other two clamped
(CSCS). A bi-sinusoidal external load with maximum value of 1N/m2 at the centre and zero values at edges
has been applied at the top surface of the plate as shown in the Fig. 8 (a ¼ b ¼ 0.8mm). In Figs. 9–13, the
variations of F, sxy, Dx, szx, and w across the thickness under bi-sinusoidal loading with 4� 4 mesh size are
plotted. In Fig. 9, it can be seen that for a plate having a/h ratio 2, slope of electric potential is positive at the
bottom layer and is negative at the top layer. But as the value of a/h ratio increases, the slope of electric
potential at the top layer is changing from negative to positive. The pattern of variation is found to be same on
both the boundary conditions. Fig. 10 shows that as a/h ratio increases, variation of in-plane shear stress is
having almost similar nature. Fig. 11 shows that the electric displacement varies drastically across the BaTiO3

layer and its value is zero in CoFe2O4 layer. The values of electric displacement are found to be decreasing
with increase in the rigidity of the support and the pattern of variation is found to be the same for all a/h
ratios. In Fig. 12, transverse shear stress shows a parabolic variation across the thickness of the plate.
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Its maximum value is found to be increasing with increase in a/h ratio for all edges simply supported case and
decreases with increase in a/h ratio for the case with two opposite edges clamped and the other two simply
supported. It can be seen from Fig. 13 that the value of w is constant for a/h ratio greater than or equal to
4 and its value is slightly decreasing from top to bottom layer for plate having a/h ratio 2.

3.2. Dynamic analysis

3.2.1. Example-3

The problem of a simple supported square smart (p/0/90/0/p) laminate subjected to dynamic electric load in
the form of applied voltage V ¼ V0 sin(px/a) sin (py/b) sin (ot) at the plate top surface as studied by Ray et al.
[34] is considered in this example. The thickness of each surface bonded piezoelectric (PVDF) layer is 0.1mm
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and that of each layer in cross-ply (0/90/0) laminated core is 2.0mm. The material properties and boundary
conditions of the core layers and piezoelectric layers are taken as same as those given in Ray et al. [34]. In the
present study, the plate is analysed with mesh size 4� 4 based on the convergence, second-order variation for
all degrees of freedom along thickness, taking V0 ¼ 100V, o ¼ 100p rad/s, span to depth ratios a/h ¼ 10, 20,
and 30. The interfaces between the piezoelectric layers and core are grounded. The deflection values are
normalized according to the following relationship: (w*, u*) ¼ E2 (w, u)/V0 e31. The normalized values of
centre deflection (w*) are plotted along with the exact solutions [34] and finite element solutions [35] in Fig. 14.
It is observe that the results are in overall good agreement.
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3.2.2. Example-4

In this example sandwich plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 considered by
Pan [3] is analysed with three different h/a ratios, i.e., h/a ¼ 0.3, 0.1, and 0.01.The three layers have equal
thickness of h/3 with a span of 1mm. The analysis has been done under a bi-sinusoidal dynamic load
(p ¼ p0 sin(px/a) sin(py/b) sin(ot)) as shown in Fig. 15 and a uniformly distributed dynamic load
(p ¼ p0 sin(ot)). The value of o is taken as 200p, which less than the natural frequency of the same plate
presented in the article by Pan and Heyliger [7]. The results for convergence study for the first maximum value
of deflection, w at centre (x ¼ 0.5, y ¼ 0.5, z ¼ 0.3) for h/a ratio of 0.3 at time ¼ 0.0025 s are tabulated in
Table 3. Based on this convergence study, a (8� 8) mesh for the quarter plate has been used for the
computation of the results. The time history of deflection at centre of the plate obtained in the present analysis
for a B/F/B plate is plotted in Figs. 16 and 17 and for F/B/F plate it is plotted in Figs. 18 and 19.The central
deflection of both F/B/F and B/F/B plates shows similar pattern of variation for a/h ratios considered. But the
curves are found to be smooth for plates having a/h ratio less than or equal to 10. It is observed that the
deflection is more in general in case of uniformly distributed loading as compared to bi-sinusoidal loading for
both the stacking sequences considered.
Fig. 15. Three layered plate subjected to bi-sinusoidal loading.

Table 3

Convergence study for w at centre (x ¼ 0.5, y ¼ 0.5, z ¼ 0.3) of the plate (a/h ¼ 0.3) at t ¼ 0.0025 s.

No. of elements w Difference

16 1.226� 10�11

36 1.249� 10�11 1.226–1.249 ¼ �0.024

64 1.257� 10�11 1.249–1.257 ¼ �0.007

100 1.260� 10�11 1.257–1.260 ¼ �0.003

144 1.261� 10�11 1.260–1.261 ¼ �0.001

196 1.262� 10�11 1.261–1.262 ¼ �0.001
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Fig. 16. Variation of w at centre for B/F/B plate under bi-sinusoidal loading.
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3.2.3. Example-5

In this example, the behaviour of a square magneto-electro-elastic laminate under mechanical and magnetic
loading has been studied for different span to depth ratios (10 and 100). The plate has four magnetic
(CoFe2O4)/piezoelectric (BaTiO3) layers each having thickness of 0.025mm and two composite layers each
having thickness of 0.1mm. The material properties of the composite layers considered are given below

c11 ¼ 134:9GPa; c22 ¼ 14:35GPa; c33 ¼ 14:35GPa; c12 ¼ 5:156GPa; c13 ¼ 5:156GPa;

c23 ¼ 7:133GPa; c44 ¼ 3:606GPa; c55 ¼ 5:654GPa; c66 ¼ 5:654GPa; k11=k0 ¼ 3:5;

k22=k0 ¼ 3:0; k33=k0 ¼ 3:0; k0 ¼ 8:85� 10�12 C2=Nm2
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Both the loadings (mechanical and magnetic) considered have sinusoidal variation in x and y directions with
peak value of 1.0N/m2 at the centre of the plate and zero values at the boundaries. The results for this case
have also been computed with a (8� 8) mesh size for a quarter of the plate with second-order variation for
degrees of freedom along thickness (Table 3). However, the mesh size (4� 4) also gives satisfactory results
with first-order variation of degrees of freedom. The electric and magnetic potential at the bottom of the plate
is taken as zero. Table 4 presents the transverse deflection, w at centre (x ¼ 0.5, y ¼ 0.5) of the simply
supported plate subjected to potential and line loading as defined earlier with z/h ratios for the two stacking
sequences namely F/F/0/90/F/F and F/B/0/90/B/F having a/h ¼ 10 and 100. It is observed that the deflection
decreases as a/h ratio increases for the plate subjected to potential loading. However, the trend is reversed for
the plate subjected to line loading. It is also observed that the deflection decreases in case of potential loading
and increases in case of line loading when the stacking sequence changes from F/F/0/90/F/F to F/B/0/90/B/F
for both the a/h ratios considered. It is interesting to note that there is definite significant first and second-
order variation of the deflection across thickness direction for moderately thick plate (a/h ¼ 10) in parti-
cular stacking sequence F/F/0/90/F/F. However, these variations are very small for other stacking sequence.
Table 4

Results for simply supported plate for applied potential and line loading.

z/h Deflection at the centre of the plate (w)

Magnetic load Load

F/F/0/90/F/F F/B/0/90/B/F F/F/0/90/F/F F/B/0/90/B/F

a/h ¼ 10 a/h ¼ 100 a/h ¼ 10 a/h ¼ 100 a/h ¼ 10 a/h ¼ 100 a/h ¼ 10 a/h ¼ 100

�0.5 �2.38E�09 �1.85E�09 �1.60E�09 �5.42E�10 9.80E�11 6.71E�07 1.03E�10 7.29E�07

�0.45833 �2.36E�09 �1.85E�09 �1.58E�09 �5.42E�10 9.82E�11 6.71E�07 1.04E�10 7.29E�07

�0.41667 �2.34E�09 �1.85E�09 �1.56E�09 �5.42E�10 9.83E�11 6.71E�07 1.04E�10 7.29E�07

�0.375 �2.31E�09 �1.85E�09 �1.56E�09 �5.42E�10 9.85E�11 6.71E�07 1.04E�10 7.29E�07

�0.33333 �2.29E�09 �1.85E�09 �1.56E�09 �5.42E�10 9.86E�11 6.71E�07 1.04E�10 7.29E�07

�0.16667 �2.32E�09 �1.85E�09 �1.57E�09 �5.42E�10 9.89E�11 6.71E�07 1.04E�10 7.29E�07

�1.5E�15 �2.35E�09 �1.85E�09 �1.58E�09 �5.42E�10 9.91E�11 6.71E�07 1.04E�10 7.29E�07

0.166667 �2.37E�09 �1.85E�09 �1.59E�09 �5.42E�10 9.92E�11 6.71E�07 1.05E�10 7.29E�07

0.333333 �2.35E�09 �1.85E�09 �1.59E�09 �5.42E�10 9.93E�11 6.71E�07 1.05E�10 7.29E�07

0.375 �2.39E�09 �1.85E�09 �1.59E�09 �5.42E�10 9.92E�11 6.71E�07 1.04E�10 7.29E�07

0.416667 �2.38E�09 �1.85E�09 �1.59E�09 �5.42E�10 9.91E�11 6.71E�07 1.04E�10 7.29E�07

0.458333 �2.24E�09 �1.85E�09 �1.56E�09 �5.42E�10 9.89E�11 6.71E�07 1.04E�10 7.29E�07

0.5 �2.23E�09 �1.85E�09 �1.53E�09 �5.42E�10 9.87E�11 6.71E�07 1.04E�10 7.29E�07
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Fig. 20. Variation of s�zz at centre of the simply supported plate.
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The variations of normalized transverse normal stress across the thickness of the plate are shown in Fig. 20.
It can be seen that for both the plates, variation of normalized transverse stress shows similar variation under
mechanical loading for plates having a/h ratio 10 and 100. But, it varies considerably in each layer under
magnetic loading with a similar pattern of variation for plates having a/h ratio 10 and 100.

4. Conclusions

In this paper an extension of the RMVT for the static and dynamic analysis of magneto-electro-elastic plate
problem is presented and implemented. A finite element for the proposed RMVT model is also presented.
Gaussian selective reduced integration scheme is adopted for terms related to transverse shear energy to avoid
shear locking. In the present formulation, the C0

z requirements are satisfied a priori and no post processing
operations are required to calculate transverse stresses. The static and transient forced vibration analysis of
magneto-electro-elastic plates with different boundary conditions and span to depth ratios are solved with the
code written in C-language. The both static and dynamic results are compared with those available in the
literature and are found to be in good agreement. The results demonstrate the importance of the RMVT
model for the problem.

Appendix A
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Z
z

ðF tF s;F tFs;z ;F t;z F s;F t;z Fs;z Þdz (A.15)

I�T ¼ ½0 0 � 1� (A.16)
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