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Abstract

The primary and parametric resonances of a directly and parametrically excited nonlinear cantilever beam of varying

orientation with time-delay in the linear state feedback are investigated. The time-delay is presented in the proportional

feedback and the derivative feedback, respectively. The method of multiple scales is used to obtain the first-order approximation

of response. The effect of the feedback gains and time-delay on the steady state responses of two type resonances is investigated.

It is found that a proper selection of the feedback gains and time-delay can enhance the control performance.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Engineering structures are subjected to vibrations caused by wind, rotating engines and cars, or other
environmental disturbances. As a consequence, undesirable bifurcations and high amplitude vibrations may
occur and cause failure of the structures. The task of suppressing the dangerous vibrations is very important
for engineering science. Plaut and Hsieh [1] studied the effect of a damping time-delay on nonlinear structural
vibrations and analyzed six resonance conditions. They presented the results in a number of figures for the
steady state response amplitude versus the excitation frequency and amplitude. Hu et al. [2] studied the
primary and subharmonic resonances of a harmonically forced Duffing oscillator with two identical time-
delays in the state feedback. The concept of an equivalent damping was proposed, and an appropriate choice
of the feedback gains and time-delay was discussed from the viewpoint of vibration control. Ji [3] investigated
the saddle-node bifurcation control of a forced single degree of freedom Duffing oscillator with damping for
the cases of primary and superharmonic resonances, by means of feedback control without time-delay. Ji and
Leung [4] discussed the primary, subharmonic and superharmonic resonances of a Duffing system with
damping under linear feedback control with two time-delays. Ji and Leung [5] demonstrated that in
parametrically excited Duffing systems the stable region of the trivial solution can be broadened, a
discontinuous bifurcation can be transformed into a continuous one and the jump phenomenon in the
response can be removed, if an appropriate feedback control is used. Maccari [6] dealt with the principal
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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parametric resonance of a van der Pol oscillator with time-delay linear state feedback. He also investigated the
vibration control for the primary resonance of a forced van der Pol oscillator using time-delay linear state
feedback [7] and concluded that the suppression of quasiperiodic motion can be accomplished by appropriate
choices for feedback gains and time-delay. Ji and Hansen [8] studied the effect of time-delay nonlinear state
feedback on the stability of trivial equilibrium of a van der Pol-Duffing oscillator using linear stability
analysis, center manifold technique, normal forms and perturbation method. Morrison and Rand [9]
investigated the dynamic of the delayed nonlinear Mathieu equation in the neighborhood of 2:1 resonance.

Qian and Tang [10] studied the primary and subharmonic resonances of a nonlinear dynamic beam under a
moving load with the time-delay feedback control. The perturbation method was used to obtain the
bifurcation equation of the nonlinear dynamic system. They pointed out that time-delay feedback controller
may work well on this system, but the selection of a proper time-delay and its coefficient may depend on the
engineering condition.

In this paper, the nonlinear dynamical behavior of a directly and parametrically excited nonlinear cantilever
beam of varying orientation with time-delay is analyzed under primary and parametric resonance conditions.
This paper mainly focused on the effect of the time-delay and feedback gains on the steady state response of
the cantilever beam of varying orientation. The dynamics of the first mode are modeled with a second-order
nonlinear ordinary-differential equation. A control law based on time-delay feedback is used. In the remainder
of this paper, the method of multiple scales is used to obtain an approximate solution to the differential
equation. Two resonance conditions are examined.

2. Model of the system and perturbation analysis

A uniform cantilever beam carrying a mass at free end and subjected to sinusoidal base motion which is
ygðtÞ ¼ yg sinðOtÞ is shown in Fig. 1. The beam is assumed to be initially straight, of length L, and of constant
mass rA per unit length and constant stiffness. The quantity EI, where E is Young’s modulus of the material
and I is the principal cross-sectional area moments of inertia, is the bending stiffness of the beam, and c is the
orientation angle of the beam, s is used to denote arc-length along the beam. The equation of motion of the
beam is given by Yaman and Sen [11]

rA €wþ c _wþ EIfw0000 þ ðw0ðw0w00Þ0Þ0g þ f½w0rAðL� sÞ�0 þmðw0Þ0gð €ygu þ g sinðcÞÞ

�
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w02dsds
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� �0
þ ðrAþ d½s� ðL� �Þ�mÞ €ygv ¼ 0 (1)

subjected to the boundary conditions:

wð0; tÞ ¼ 0 and w0ð0; tÞ ¼ 0 (2)

EIw000ðL; tÞ þmg sinðaÞw0ðL; tÞ ¼ m €wðL; tÞ and EIw00ðL; tÞ ¼ 0 (3)

where ð Þ0 ¼ @ð Þ=@s, ð:Þ ¼ @ð Þ=@t and ygu; ygv are the projection of the ygðtÞ on x and y axes. w(s, t) denotes the
component along the inertial direction (y) of the displacement of the beam. After the non-dimensionalization
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Fig. 1. A schematic of the cantilever beam under consideration.
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procedure is carried out, equation of motion becomes

€vþ
cL2ffiffiffiffiffiffiffiffiffiffiffiffi
rAEI
p _vþ v0000 þ ðv0ðv0v00Þ0Þ0 �
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� 1þ
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rAL
d x� 1�

�

L

� �h i� �
y0O

2
0 sinðO0t̄Þ cosðcÞ

þ ½v0ð1� xÞ�0 þ
m

rAL
ðv0Þ0

� �
ðg0 � y0O

2
0 sinðO0 t̄ÞÞ sinðcÞ ¼ 0 (4)

subjected to the boundary conditions:

vð0; t̄Þ ¼ 0 and v0ð0; t̄Þ ¼ 0 (5)

v000ð1; t̄Þ þ
mgL2

EI
sinðcÞv0ð1; t̄Þ ¼

m

rAL
€vð1; t̄Þ and v000ð1; t̄Þ ¼ 0 (6)

where dots are the derivatives with respect to the non-dimensional time t̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

q
, v ¼ w=L, y0 ¼ y=L,

g0 ¼ gðrAL3=EIÞ, O0 ¼ OðrAL4=EIÞ1=2 and x ¼ s=L. The governing Eq. (4) is nonlinear, and does not admit a
closed-form solution. Therefore, an approximate solution will be sought that satisfies both the equation and
the boundary conditions. The Galerkin method is used to obtain an ordinary differential equation form of
given partial differential equation for an approximate solution. In this study, it is assumed that most of the
energy excites the first mode of the system, thus the first mode is dominant. Therefore, the truncated
displacement function for the first mode becomes

vðx; t̄Þ ¼ fðxÞzðt̄Þ (7)

where f(x) is the shape function of the linear mode, and zðt̄Þ is the time modulation of the mode. The
undamped linear free vibration problem under axial loading is governed by

€vþ v0000 þ
rAgL3

EI
sinðcÞ½ð1� xÞv0�0 þ

mgL2

EI
sinðcÞv00 ¼ 0 (8)

The governing Eq. (8) is a variable coefficient fourth-order partial differential equation, and there is no any
closed-form solution. Therefore, an approximate solution has been obtained, which satisfies both the equation
and the boundary conditions. The solution of this problem is obtained by applying Adomian decomposition
method [12]

fðxÞ ¼ 0:5x2 � 0:013324 sinðcÞx4 þ 0:18151� 10�2 sinðcÞx5 þ ½0:14204� 10�3sin2ðcÞ

þ 0:13888� 10�2o2�x6 � 0:41463� 10�4sin2ðcÞx7 þ . . .C2=C1f0:16x3 � 0:26649� 10�2 sinðcÞx5

þ 0:45379� 10�3sinðcÞx6 þ ½0:19841� 10�3o2 þ 0:20291� 10�4sin2ðcÞ�x7

� 0:69105� 10�5sin2ðcÞx8 . . .g (9)

where

C2=C1 ¼ � ½1þ 0:2684� 10�2sin2ðcÞ þ 0:41666� 10�1o2 � 0:12359 sinðcÞ � 0:45423� 10�4sin3ðcÞ

� 0:88832� 10�3sinðcÞo2�=½1þ 0:4652� 10�3sin2ðcÞ � 0:3968� 10�1sinðcÞ þ 0:8333� 10�2o2�

(10)

By substituting Eq. (7) into the partial differential Eq. (4) and orthogonalizing the error with respect to the
eigenfunction, the following ordinary differential equation is obtained for the beam

k1 €zþ mk1 _zþ ðk2 þ k10Þzþ k5z
3 � k11z

@2

@t2
ðz2Þ � k12O2

0 sinðO0 t̄Þ cosðcÞ � zk13O2
0 sinðO0 t̄Þ sinðcÞ ¼ 0 (11)

where ki ¼ 1,2,y,13 are constant coefficients as defined in Appendix A. To simplify, Eq. (11) is rescaled so as
to make coefficients of the linear inertia and linear restoring terms equal to unity. This is achieved by defining
the dimensionless parameters t� ¼ y2t̄, Ō ¼ O0=y

2 and u ¼ yz, where t* is a new time scale and
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y4 ¼ ðk2 þ k10Þ=k1. In terms of these dimensionless parameters Eq. (11) becomes the dimensionless equation:

€uþ uþ 2�m̄ _uþ �a1u3 � �a2u2 €u� �a2u _u2 ¼ �f 2Ō
2
sinðŌt�Þ cosðcÞ þ �uf 1Ō

2
sinðOt�Þ sinðcÞ (12)

where u is the generalized coordinate, m̄ is the viscous damping coefficient, ai are the constants, fi and Ō are the
forcing amplitude and frequency, respectively, e is a non-dimensional bookeeping parameter. By adding a
linear time-delayed state feedback to system, one can obtain the following new closed-loop system:

€uþ uþ 2�m̄ _uþ �a1u3 � �a2u2 €u� �a2u _u2 ¼ �f 2Ō
2
sinðŌt�Þ cosðcÞ

þ �uf 1Ō
2
sinðOt�Þ sinðcÞ þ �g1uðt

� � tÞ þ �g2 _uðt
� � tÞ (13)

To analyze the primary resonance of the system by using the method of multiple scales [13,14], one assumes
an approximate solution of Eq. (13) in the form

uðT0;T1Þ ¼ u0ðT0;T1Þ þ u1ðT0;T1Þ þ � � � (14)

where Tn ¼ ent, n ¼ 0, 1, 2. The time derivatives are recast in terms of the new time scales as

d

dt�
¼ D0 þ �D1 þ � � � and

d2

dt�2
¼ D2

0 þ 2�D0D1 þ � � � (15)

where Dk � @=@Tk. Substituting Eqs. (14) and (15) into Eq. (13) and equating the same power of e, we obtain a
set of partial differential equations

D2
0u0 þ u0 ¼ 0 (16)

D2
0u1 þ u1 ¼ � 2D0D1u0 � 2mD0u0 � a1u3

0 þ a2u2
0D2

0u0 þ a2u0ðD0u0Þ
2

þ g1u0ðT0 � t;T1Þ þ g2D0u0ðT0 � t;T1Þ þ u0f 1Ō
2
sinðcÞsinðŌT0Þ þ f 2Ō

2
cosðcÞsinðŌT0Þ (17)

The solution of Eq. (16) is written as follows

u0 ¼ AðT1Þe
iT0 þ ĀðT1Þe

�iT0 (18)

where A(T1) is a complex-valued quantity that will be determined by imposing the solvability condition at the
next level of approximation. In the case of primary resonance (i.e.,Ō � 1), to express the nearness of Ō to 1, a
detuning parameter s is introduced such that

Ō ¼ 1þ �s (19)

Substituting Eqs. (18) and (19) into (17), and eliminating secular terms lead to

2iðD1Aþ m̄A� 1
2
g2Ae�itÞ þ ð3a1 þ 2a2ÞA2Ā� g1Ae�it þ 1

2
if 2e

isT1 cosðcÞ ¼ 0 (20)

Substituting the polar form

A ¼ 1
2
aðT1Þe

ibðT1Þ (21)

into Eq. (20), performing the integration and separating real and imaginary parts the followings are obtained:

a0 ¼ �ðm̄þ 1
2

g1 sinðtÞ �
1
2

g2 cosðtÞÞa�
1
2

f 2 cosðcÞ cosðfÞ (22)

af0 ¼ ðsþ 1
2
g2 sinðtÞ þ

1
2
g1 cosðtÞÞa� ð

1
4
a2 þ 3

8
a1Þa3 þ 1

2
f 2 cosðcÞ sinðfÞ (23)

where f ¼ sT1 � b and the prime represents differentiation with respect to T1. Steady-state solutions of
Eq. (13) correspond to the fixed points of Eqs. (22) and (23), which are obtained by setting a0 ¼ f0 ¼ 0. The
result is

�ðm̄þ 1
2
g1 sinðtÞ �

1
2
g2 cosðtÞÞa�

1
2

f 2 cosðcÞ cosðfÞ ¼ 0 (24)

ðsþ 1
2

g2 sinðtÞ þ
1
2

g1 cosðtÞÞa� ð
1
4
a2 þ 3

8
a1Þa3 þ 1

2
f 2 cosðcÞ sinðfÞ ¼ 0 (25)
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Eliminating f from Eqs. (24) and (25), we obtain the bifurcation equation

½m2t þ ðst � ata
2Þ

2
�a2 ¼

f 2 cosðcÞ
2

� �2
(26)

where

at ¼
1
4
a2 þ 3

8
a1; mt ¼ m̄þ 1

2
g1 sinðtÞ �

1
2
g2 cosðtÞ; st ¼ sþ 1

2
g2 sinðtÞ þ

1
2
g1 cosðtÞ (27)

The amplitude of the response is a function of the external detuning, orientation angle, feedback gains, time-
delay and the amplitude of the excitation. The peak amplitude of the primary resonance response, obtained
from Eq. (26), is given by

ap ¼
f 2

2mt

cosðcÞ (28)

The real solution a of Eq. (26) determines the primary resonance response amplitude. There can be either one
or three real solutions. Three real solutions exist between two points of vertical tangents (saddle-node
bifurcation), which are determined by differentiation of Eq. (26) implicitly with respect to a2. This leads to the
condition

s2t � 4aa2st þ 3a2t a4 þ m2t ¼ 0 (29)

The solution of Eq. (29) is written as follows

st12 ¼ 2ata
2 	 ða2t a4 � m2t Þ

1=2 (30)

For a2t a44m2t there is an interval st1ostost2 in which three real and positive solutions amplitude a of Eq. (26)
exist. In the limit a2t a4! m2t , this interval becomes a point st ¼ 2ata

2. The stability of the solutions is
determined by the eigenvalues of the corresponding Jacobian matrix of Eqs. (22) and (23). The corresponding
eigenvalues are the root of

l2 þ 2mtlþ m2t þ ðst � ata
2Þðst � 3ata

2Þ ¼ 0 (31)

As can be seen from Eq. (31) the sum of the two eigenvalues is �2mt. For the uncontrolled system, the sum
of the two eigenvalues is �2m̄ which is negative. The addition of the feedback gains and time-delay changes the
sum of the two eigenvalues. Depending on the values of the feedback gains and time-delay, three cases such as
mto0; mt ¼ 0; and mt40 may occur. If the feedback gains and time-delay are selected in such a way that the
sum of the two eigenvalues is positive ðmto0Þ, at least one of the two eigenvalues will always have a positive
real part. The system will be unstable. The selection of the feedback gains and time-delay is not possible. On
the other hand, when the sum of the two eigenvalues is zero ðmt ¼ 0Þ for a certain value of the feedback gains
and time-delay, a pair of purely imaginary eigenvalues may occur, thus yielding a Hopf bifurcation. Therefore,
the above two cases should be avoided from the viewpoint of bifurcation control. The feedback should be
provided at least in such a way that mt40 is satisfied. The sum of the two eigenvalues is always negative, under
such feedback gains and time-delay. Accordingly, at least one of the two eigenvalues will always have a
negative real part. The other eigenvalue is zero when Eq. (32) is satisfied

m2t þ ðst � ata
2Þðst � 3ata

2Þ ¼ 0 (32)

where a saddle-node bifurcation occurs. It has been shown that the feedback gains and time-delay can change
the quantities of mt and st, which govern the peak amplitude of the primary resonance response, and the
stability of steady state motions. The peak amplitude of the response ap is inversely proportional to mt and
directly proportional to orientation angle c. Thus, the peak amplitude of the response ap decreases (or
increases) as mt and c increases (or decreases). On the other hand, if the resulting mt and st maintain the
inequality m2t þ ðst � ata

2Þðst � 3ata
2Þ40, there is not an unstable solution. The system will not show jump

and hysteresis phenomenon. Thus, the appropriate feedback gains and time-delay can improve the control
performance.

In the case of principal parametric resonance (i.e., Ō � 2), the excitation frequency can be expressed
as Ō ¼ 2þ �s, where the parameter s is called the external detuning. Substituting Eqs. (18) and Ō ¼ 2þ �s
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into (17) and after the secular terms are eliminated, the solvability condition yields,

2iðD1Aþ m̄A� 1
2
g2Ae�itÞ þ ð3a1 þ 2a2ÞA2Ā� g1Ae�it þ i2f 1e

isT1Ā sinðcÞ ¼ 0 (33)

The amplitude a and the phase f are governed by the following polar form of modulation equations

a0 ¼ �mta� af 1 sinðcÞ cosðfÞ (34)

af0 ¼ ast � ata
3 þ 2af 1 sinðcÞ sinðfÞ (35)

where f ¼ sT1 � 2b

at ¼
1
2
a2 þ 3

4
a1; mt ¼ m̄þ 1

2
g1 sinðtÞ �

1
2
g2 cosðtÞ; st ¼ sþ g1 cosðtÞ þ g2 sinðtÞ (36)

Steady-state solutions of Eq. (13) correspond to the fixed points of Eqs. (34) and (35), which are obtained by
setting a0 ¼ f0 ¼ 0. There are two possibilities: either a trivial solution a ¼ 0, or non-trivial solutions

a2 ¼
1

at

st 
 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1sin

2
ðcÞ � m2t

q� �
; f ¼ arccos �

mt

f 1 sinðcÞ

� �
(37)

when the right-hand side of the first formula is real and positive. Depending on the sign of the quantity stat,
one or two solutions for the amplitude are available. For stat 4 0, non-trivial fixed points are possible for
f 2
1sin

2
ðcÞ4m2t . There are two different non-trivial solutions for a40. One exists for f 2

1sin
2
ðcÞ4m2t , which is

obtained as

a ¼
1

jatj
jstj þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1sin

2
ðcÞ � m2t

q� �� �1=2
(38)

The other exists for m2tof 2
1sin

2
ðcÞom2t þ s2t =4, which is given by

a ¼
1

jatj
jatj � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1sin

2
ðcÞ � m2t

q� �� �1=2
(39)

For stato0, for the existence of real solutions of amplitude a it is required that f 2
1sin

2
ðcÞ4m2t þ s2t =4. The only

single solution a40 is given by

a ¼
1

jatj
�jatj þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1sin

2
ðcÞ � m2t

q� �� �1=2
(40)

In the investigation of the stability of the trivial solutions, it is necessary to express Eqs. (34) and (35) in
Cartesian form. For this purpose, A is described in the Cartesian form

A ¼ 1
2
ðpþ iqÞeið1=2ÞsT1 (41)

where p and q are real. Substituting Eq. (41) into (33) and separating real and imaginary parts, the followings
are obtained:

p0 ¼ �½mt þ f 1 sinðcÞ�pþ
1
2
stq (42)

q0 ¼ �1
2
stp� ½mt � f 1 sinðcÞ�q (43)

The stability of the fixed points is determined by the eigenvalues of the corresponding Jacobian matrix of
Eqs. (42) and (43). The eigenvalues for the trivial solutions are the roots of

l2 þ 2mtlþ m2t þ
1
4
s2t � f 2

1sin
2
ðcÞ ¼ 0 (44)

while the eigenvalues for non-trivial solutions are the roots of

l2 þ 2mtlþ atð�st þ ata
2Þa2 ¼ 0 (45)

As can be seen from Eq. (45) the sum of the two eigenvalues is �2mt. For the uncontrolled system, the sum
of the two egivalues becomes �2m̄, which is negative. The introduction of feedback control changes the sum of
the two eigenvalues. Depending on the values of the feedback gains and time-delay, three cases, such as mto0,
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mt ¼ 0 and mt40, may occur. From the viewpoint of bifurcation control, the feedback control should be
implemented at least in such a way that mt40 is satisfied. As a result, at least one of the two eigenvalues will
always have a negative real part. The other eigenvalue for the trivial solutions is zero if f 2

1sin
2
ðcÞom2t þ s2t =4,

where a pitchfork bifurcation occurs. In particular, for stato0, a supercritical pitchfork bifurcation occurs,
while for stat40, a subcritical pitchfork bifurcation takes place. The addition of feedback control varies the
value of quantity m2t þ s2t =4, and thus can enlarge the stable region of the trivial solutions. For stat40,
the non-trivial solution amplitude a, given by Eq. (38), is stable, while the other given by Eq. (39) is unstable.
A saddle-node bifurcation occurs at f 2

1sin
2
ðcÞ ¼ m2t . For stato0, the only non-trivial solution a, given by

Eq. (40), is stable.
Fig. 2. The peak amplitude of the primary resonance response a as a function of the time-delay — for c ¼ 01, - - - - - for c ¼ 401 and

� � � � � � � for c ¼ 801.

Fig. 3. Frequency-response curves for primary resonance for two sets of the time-delay, curves for t ¼ 0 and p/2 (a) c ¼ 01 (b) c ¼ 301

and (c) c ¼ 601.
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3. Results and discussion

This section illustrates the effect of the feedback gains and time-delay on the nonlinear dynamical behavior
of the controlled system. The results of this study are presented for the system parameters: rA ¼ beam
density ¼ 0.3925 kg/m, m ¼ tip mass ¼ 0.266 kg, L ¼ length of the beam ¼ 0.35m, h ¼ thickness of the
beam ¼ 0.002m, EI ¼ beam flexural rigidity ¼ 1.5158Nm2, c ¼ 0.2Ns/m.

In Fig. 2, the peak amplitude of the primary resonance response is plotted as a function of the time-delay for
three different orientation angles. It is easy to see that when the orientation angle is increased the selection
interval of the time-delay extends. So the proper value of t may take into account the requirement of
engineering.

Fig. 3 shows the frequency-response curves for the primary resonance response in various orientation of the
directly excited beam with gp ¼ 0.05, gd ¼ 0.05 and t (time-delay) ¼ p/2. The thick line is corresponding to the
original system and thin line corresponding controlled system with time-delay. Obviously, Fig. 3(a) shows that
the saddle-node bifurcation and jump phenomenon can be eliminated by an appropriate selection of the time-
delay. Figs. 3(b) and (c) show the frequency-response curves for the beam oriented 301 and 601. As can be seen
from these figures, even if the beam is oriented, both the saddle-node bifurcation and jump phenomenon can
be still eliminated.

Fig. 4 shows the forcing amplitude-response diagram of parametrically excited beam when yg is used
as a control parameter for different orientation angles with gp ¼ 0.2, gd ¼ 0.2 and t (time-delay) ¼ p/2. In
Fig. 4(a), the bifurcation diagrams for the uncontrolled system which is illustrated by thick line and controlled
system which is illustrated by thick line in the figure are illustrated for s ¼ 0.1. In this and the subsequent
figures, the solid and broken lines correspond to the stable and unstable fixed points, respectively. It is clearly
seen that the region of excitation amp litude yg for stable trivial fixed points of the controlled system is much
Fig. 4. Bifurcation diagram when yg is used as a control parameter for so0 (a) c ¼ 301 (b) c ¼ 501 and (c) c ¼ 901.



ARTICLE IN PRESS

Fig. 5. Bifurcation diagram when yg is used as a control parameter for s40 (a) c ¼ 301 (b) c ¼ 501 and (c) c ¼ 901.
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larger than that of the uncontrolled system. This suggests that the occurrence of a supercritical pitchfork
bifurcation can be delayed in the controlled system. Figs. 4(b) and (c) show bifurcation diagram curves for the
beam oriented 501 and 901. It is clearly seen from the figures that when the beam is oriented, the control system
still maintains its same performance. However, when the orientation angle is increased, the region of excitation
amplitude yg for stable trivial fixed points of the controlled system decreases.

Fig. 5 shows the bifurcation diagrams for s ¼ �0.1. For the uncontrolled system shown in Fig. 5(a) with
thick line, as the excitation amplitude yg is gradually increased from zero, the trivial fixed point loses its stability
at yg ¼ yg2, where a subcritical pitchfork bifurcation originates. This discontinuous bifurcation leads to a jump
from the lower branch to the upper branch. On the other hand, as yg is decreased gradually, the non-trivial
fixed point remains stable until yg ¼ yg1 is reached. Here, a saddle-node bifurcation, which is another example
of discontinuous bifurcation, occurs and the system suddenly jumps to the lower branch. In contrast, for the
controlled system as displayed by thin line in Fig. 5(a), as the excitation amplitude yg is gradually increased
from zero, the trivial fixed point loses its stability at yg ¼ yg3, where a supercritical pitchfork bifurcation occurs.
For yg4yg3, a stable non-trivial fixed point is produced. No jump phenomenon can be observed. Due to the
presence of the feedback control, the subcritical pitchfork bifurcation is transformed into a supercritical one,
and the saddle-node bifurcation is excluded. Figs. 5(b) and (c) show bifurcation diagram curves for the beam
oriented 501 and 901. When the orientation angle is increased, the time-delay feedback control is still effective,
but the region of excitation amplitude yg for stable trivial fixed points of the controlled system decreases.

4. Conclusions

The nonlinear response of a directly and parametrically excited nonlinear cantilever beam of varying
orientation with time-delay is investigated under primary and parametric resonances. The effect of the
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feedback gains and time-delay on the nonlinear response of the system is discussed. It is found that an
appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-
delay can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place
in the corresponding uncontrolled system for primary resonance.

The steady-state response of a parametrically excited system can exhibit a jump and hysteresis phenomenon
under the principal parametric resonance. It is found that an appropriate linear time-delayed feedback control
is effective in delaying the occurrence of the pitchfork bifurcations, stabilizing the subcritical pitchfork
bifurcations, and eliminating the saddle-node bifurcations.

Appendix A
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