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Abstract

Dynamic behavior of smooth hysteretic systems subjected to harmonic parametric excitation is investigated. Wen’s

differential equation model for hysteresis, which can describe a large class of hysteretic systems, is used. Employing the

piecewise power series expression for hysteresis proposed in the previous paper, the method of multiple scales is applied for

the case of principal parametric resonance to obtain the second-order approximate solutions and their stability. It is shown

that the hysteretic systems are unstable inside the principal resonance region but the responses are bounded having

symmetric periodic solutions. It is also shown that the systems are stable outside the region even if viscous damping does

not exist because of Hopf bifurcation. Numerical integrations are also performed to illustrate the nonlinear resonant

characteristics of the systems and confirmed that trivial stationary solutions and stable symmetric periodic solutions in

principal resonance region bifurcate to produce a pair of non-symmetric periodic solutions. Stability regions with regard to

excitation parameters are also illustrated. The theoretical and numerical results are compared to examine the validity of the

present analysis.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical and structural systems under severe dynamic loads often exhibit hysteretic characteristics so
that the relationship between displacement and restoring force depends on their past histories. Nonlinear
dynamics of hysteretic systems need to be understood for the reliability and safety of mechanical and
structural systems.

Resonant characteristics and nonlinear phenomena of bilinear or smooth hysteretic systems subjected to
external harmonic excitation have been studied by employing averaging method [1], method of harmonic
balance [2,3], method of multiple scales [4] and numerical integration [5]. Resonant characteristics of a bilinear
hysteretic system subjected to harmonic parametric excitation were investigated with averaging method [6].
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Bifurcations and chaos of a bilinear hysteretic system subjected to external and parametric periodic impulse
were studied in Refs. [7–10]. On the other hand, the behavior of parametrically excited nonlinear systems such
as Mathieu’s equation with cubic nonlinearity [11–13], Mathieu’s equation with quadratic and cubic
nonlinearities [14–16] and parametrically excited nonlinear pendulum [17–20] has been widely investigated by
theoretical and numerical analyses as well as experiments. It is generally shown that nonlinearity can stabilize
unstable Mathieu zones and generate rich bifurcation and chaotic behavior. However, little has been studied
on the nonlinear dynamics of smooth hysteretic systems under parametric excitation.

The authors proposed a piecewise power series expression for smooth hysteretic restoring force based on
Wen’s differential equation model [21,22] which can describe a large class of smooth hysteretic systems [4].
Multiple time scale analysis [23] of the primary and secondary resonance under external harmonic excitation
was conducted and the first- and second-order approximate solutions and the systems of differential equations
describing the modulation of the amplitudes and phases of the solutions were obtained. Phase plane
trajectories, resonance curves and the unstable regions of symmetric solutions obtained from the analyses were
compared with the results of numerical integration and the validity of the analysis was confirmed.

In the present paper, multiple time scale analysis of smooth hysteretic systems under principal parametric
resonance [16] is performed up to the second order by employing the piecewise power series expression. The
differential equations which describe the modulation of the amplitude and phase of the second-order
approximate solution are obtained and the stability and bifurcation of a trivial stationary solution is analyzed.
Numerical integration is also performed to illustrate the nonlinear response and stability regions of the system
and the validity of the analysis is examined.

2. Equations of motion

By using Wen’s differential model, the equation of motion for the single-degree-of-freedom hysteretic
system subjected to parametric excitation is written as follows [4]:

€xþ d̄ _xþ ðk þ p̄ cos 2otÞxþ z ¼ 0, (1)

_z ¼ A _x� ðb̄j _xjzþ ḡ _xjzjÞ, (2)

where x is the displacement, z is the hysteretic restoring force, d̄ is the damping coefficient, k is the linear
stiffness coefficient, p̄ is the amplitude of the parametric forcing, o is a half of the excitation frequency, and A,
b̄ and ḡ are the parameters to control the scale and general shape of hysteretic loop, respectively. Depending
on whether b̄þ ḡ is positive or not, this system exhibits softening or hardening hysteretic characteristics,
respectively.

3. The piecewise power series expression for hysteretic restoring force

In the following analysis, it is assumed that the displacement of response is described with the periodic
solution which contains constant and superharmonic components and that hysteretic restoring force draws a
single loop. Fig. 1 illustrates an example of hysteretic loops of periodic solutions. Depending on the signs of
velocity _x and hysteretic restoring force z, hysteretic loop can be divided into four intervals as shown in Fig. 1.
Let t0; . . . ; t3 denote the time for each division point and let u0; . . . ; u3 denote the displacements at those points.
It is also assumed that the nonlinearity of restoring force is weak. Introducing small positive scaling parameter
e, the parameters b̄ and ḡ are replaced by eb and eg, respectively. Hysteretic restoring force z can be described
with piecewise power series as follows [4]:

z ¼ A x�
u0 þ u2

2

� �
þ ez1 þ e2z2 þOðe3Þ. (3)

The coefficients of e in the expressions of z for intervals (i)–(iv), z11 � z14, are described as

z11 ¼
A

8
fðb� gÞðu0 þ u2Þ

2
� bðu0 � u2Þ

2
� 4ðb� gÞðu0 þ u2Þxþ 4ðb� gÞx2g, (4)



ARTICLE IN PRESS

x

z

(i)

(ii)

(iii)

(iv)

t0

t1

t2

t3

0 u0

u2

Fig. 1. An example of hysteretic loops divided into four divisions.

N. Okuizumi, K. Kimura / Journal of Sound and Vibration 324 (2009) 940–953942
z12 ¼
A

8
fðbþ gÞðu0 þ u2Þ

2
� bðu0 � u2Þ

2
� 4ðbþ gÞðu0 þ u2Þxþ 4ðbþ gÞx2g, (5)

z13 ¼ �
A

8
fðb� gÞðu0 þ u2Þ

2
� bðu0 � u2Þ

2
� 4ðb� gÞðu0 þ u2Þxþ 4ðb� gÞx2g, (6)

z14 ¼ �
A

8
fðbþ gÞðu0 þ u2Þ

2
� bðu0 � u2Þ

2
� 4ðbþ gÞðu0 þ u2Þxþ 4ðbþ gÞx2g. (7)

The times when z ¼ 0 are t1 and t3 which satisfy the following equations:

xðt1Þ ¼
u0 þ u2

2
þ e

b
8
ðu0 � u2Þ

2
þOðe2Þ, (8)

xðt3Þ ¼
u0 þ u2

2
� e

b
8
ðu0 � u2Þ

2
þOðe2Þ. (9)

Considering the second order of e, the equation of motion is described as

€xþ d̄ _xþ ðk þ Aþ p̄ cos 2otÞx�
A

2
ðu0 þ u2Þ þ ez1 þ e2z2 ¼ 0. (10)

The linear natural frequency of this system is
ffiffiffiffiffiffiffiffiffiffiffiffi
k þ A
p

.

4. Multiple time scale analysis

The second-order multiple time scale analysis is applied to the present system (10) in order to obtain
approximate solutions and their stability.

4.1. Expansion of the equation of motion

Introducing multiple time scales Tn and their time derivatives Dn, displacement x as well as its maximum
and minimum values, u0 and u2, are expanded to the power series as follows:

Tn ¼ ent;Dn ¼ q=qDn; n ¼ 0; 1; 2; . . . , (11)

x ¼ x0 þ ex1 þ e2x2 þ � � � , (12)

u0 ¼ u00 þ eu01 þ e2u02 þ � � � , (13)
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u2 ¼ u20 þ eu21 þ e2u22 þ � � � , (14)

where x0, u00 and u20 are Oðe0Þ, x1, u01 and u21 denote Oðe1Þ, x2, u02 and u22 are Oðe2Þ.
Under the assumption that the damping coefficient d̄ and the excitation amplitude p̄ are small, detuning

parameter s for principal parametric resonance is introduced:

d̄ ¼ ed; p̄ ¼ ep; k þ A� o2 ¼ es. (15)

Expanding the equations of motion (10) into the power series of e and equating the coefficient of each power
of e to zero yield

e0 : €x0 þ o2x0 ¼
A

2
ðu00 þ u20Þ, (16)

e1 : €x1 þ o2x1 ¼
A

2
ðu01 þ u21Þ � sx0 � dD0x0 � px0 cos 2ot� 2D0D1x0 � z01, (17)

e2 : €x2 þ 4o2x2 ¼
A

2
ðu02 þ u22Þ � sx1 � px1 cos 2oT0 �D2

1x0 � dðD1x0 þD0x1Þ

� 2D0D2x0 � 2D0D1x1 � z02, (18)

where z01 and z02, respectively, denote the coefficients of order e and e2 in the expression of z that is obtained by
substituting Eqs. (12)–(14) into Eq. (3) and re-expanding z to the power series of e. z01 and z02 are given in
piecewise manner.

4.2. First-order approximation

In this section the first-order approximate solution x0 and the differential equation describing the
modulation of the displacement and phase of the solution are derived.

By solving Eq. (16), the first-order solution x0 is given as follows:

x0 ¼ a cosðoT0 þ yÞ þ
A

2o2
ðu00 þ u20Þ. (19)

The times when the displacement reaches its maximum and minimum values, t0 and t2 respectively, are
obtained as follows:

t0 ¼ �
y
o
; t2 ¼

p
o
�

y
o
. (20)

Solving equations x0ðt0Þ ¼ u00 and x0ðt2Þ ¼ u20 to obtain u00 and u20 gives the first-order approximate solution
as

x0 ¼ a cosðoT0 þ yÞ. (21)

Substituting Eq. (21) into Eq. (17) yields

€x1 þ o2x1 ¼ � z01 � sa cosðoT0 þ yÞ � pa cos 2oT0 cosðoT0 þ yÞ

þ doa sinðoT0 þ yÞ � 2oa cosðoT0 þ yÞD1y� 2o sinðoT0 þ yÞD1a. (22)

In order not to produce secular terms, the components of cosoT0 and sinoT0 included in the right-hand
side of Eq. (22) should be zero. In this evaluation, zeroth-order approximation of t1 and t3 is used which are
given by solving Eqs. (8), (9) and (21) as follows:

t1 ¼
p
2o
�

y
o
; t3 ¼

3p
2o
�

y
o
. (23)
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The differential equations governing the modulation of the amplitude and phase of the first-order
approximate solution is derived as

_a ¼ eD1a ¼ e �
da

2
þ

pa sin 2y
4o

�
2Aba2

3op

� �
, (24)

_y ¼ eD1y ¼ e
s
2o
þ

p cos 2y
4o

�
2Aga

3op

� �
. (25)

4.3. Second-order approximation

In this section, the second-order approximate solution x0 þ ex1 and the differential equations which
describe the modulation of amplitude a and phase y of the solution are obtained.

From Eqs. (24) and (25), D1a and D1y are derived. Substituting them and z01 into Eq. (22) gives four
differential equations of x1 corresponding to intervals (i)–(iv). By solving these equations, four solutions with
constants of integration are obtained. Making these solutions to be continuous at each division point and not
to have components with frequency o in a whole period, the expressions of x1 for intervals (i)–(iv), x11; . . . ;x14

are obtained.
Substituting x0 and x1 into Eq. (18) and formulating the condition of removing secular terms in the same

way as in Section 4.2 give the differential equations which describe the modulation of amplitude a and phase y.

_a ¼ e �
da

2
þ

pa sin 2y
4o

�
2Aba2

3op

� �

þ e2 �
Adga2

6o2p
þ

Absa2

3o3p
þ

Abpa2 cos 2y
40o3p

þ
Agpa2 sin 2y

15o3p
þ

4A2bga3

9o3p2
�

A2bga3

3o3p

� �
, (26)

_y ¼ e
s
2o
þ

p cos 2y
4o

�
2Aga

3op

� �
þ e2 �

d2

8o
þ

3p2

64o3
�

s2

8o3
þ

Abda

6o2p

�

þ
Agsa

3o3p
� n

Agpa cos 2y
40o3p

�
11Abpa sin 2y

60o3p
þ

7A2b2a2

48o3
�

5A2g2a2

48o3

�
3Ab2a2

16o
þ

Ag2a2

16o
�

26A2b2a2

27o3p2
þ

22A2g2a2

27o3p2

�
. (27)

4.4. Stability analysis

Eqs. (24) and (25) or Eqs. (26) and (27) have one trivial solution a ¼ 0 which corresponds to x ¼ 0 and non-
trivial solutions ða; yÞ ¼ ða0; y0Þ which corresponds to periodic solutions. In this section, the first-order
approximate analysis is demonstrated as follows. The second-order analysis is omitted because it is tedious
and qualitatively similar to the first-order analysis.

The stability of non-trivial solutions can be determined by the eigenvalues of Jacobian matrix around
equilibrium points in Eqs. (24) and (25). In order to examine the stability of the trivial solution, the next
transformation of state variables is useful because fixed value of y may not be determined for a ¼ 0:

u ¼ a cos y; v ¼ �a sin y. (28)

Applying Eq. (28) to Eqs. (24) and (25) yields

_u

_v

� �
¼ e

�
d
2

s
2o
�

p

4o

�
s
2o
�

p

4o
�
d
2

0
BB@

1
CCA u

v

� �
þ e

�
2Abu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

3op
�

2Agv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

3op

�
2Abv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

3op
þ

2Agu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

3op

0
BBB@

1
CCCA. (29)
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Fig. 2. Effects of shape parameter b̄ in softening hysteretic system: ḡ ¼ 0:1, d̄ ¼ 0, p̄ ¼ 0:3, A ¼ 0:95, k ¼ 0:05. (a) Multiple scale analysis,

(b) numerical integration. ——, stable; – – – –, unstable.
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The eigenvalues of the first term of the right-hand side of Eq. (29) are

l ¼
�d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4s2

p
4o

. (30)

When d40, the trivial solution is stable for jsj4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � d2

q
=2 (two negative real eigenvalues or a pair of

complex eigenvalues) and unstable for jsjo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � d2

q
=2 (positive and negative real eigenvalues).

When d ¼ 0, the trivial solution is unstable for jsjop=2 (one positive and one negative eigenvalues). When
d ¼ 0 and jsj4p=2, the system has a pair of complex eigenvalues and the stability cannot be determined by the
eigenvalues. Therefore, the next transformation from ðu; vÞ to ðr;fÞ is introduced which corresponds to the
solution of linear parts of Eq. (29):

u

v

� �
¼

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s� p
p

cosðOtþ fÞ

�r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ p
p

sinðOtþ fÞ

 !
, (31)
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where

O ¼
1

4o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 � p2

p
. (32)

Substituting Eq. (31) into Eq. (29) yields

_r ¼ �
ed
2

r�
2eA
3op

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s� p cosð2Otþ 2fÞ

p
b�

gpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 � p2

p sinð2Otþ 2fÞ

( )
rjrj, (33)

_f ¼
e
4o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 � p2

p
�

2eAg
3po

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s� p cosð2Otþ 2fÞ

p 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 � p2

p jrj. (34)

Averaging the right-hand side of Eq. (33) and substituting s2 ¼ jrj gives

_s ¼ �
ed
4

s�
eAb
3op

Iðs; pÞs3, (35)
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where

Iðs; pÞ ¼
O
p

Z p=O

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s� p cosð2Otþ 2fÞ

p
dt. (36)

From Eq. (35), d ¼ 0 is shown to be a Hopf bifurcation [24] point. As a result, the trivial solution is
asymptotically stable even when d ¼ 0. This is due to the hysteretic restoring force characteristics.

It is noted that the system (29) undergoes codimension 1 bifurcation when d40 and jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � d2

q
=2 and

codimension 2 bifurcation when d ¼ 0 and jsj ¼ p=2. These bifurcations cannot be analyzed by the present
analysis because the analysis is limited to symmetric approximate solutions and non-symmetric solutions need
to be considered to deal with the bifurcations as will be described in Section 5.

5. Numerical integration

Resonance curves obtained by both the second-order multiple scale analysis and the numerical integration
of Eqs. (1) and (2) are compared to examine the validity of the analysis and the stability and bifurcations of the
system are discussed.
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In the following results, A ¼ 0:95 and k ¼ 0:05 are used to consider the case that the hysteretic restoring
force is predominant over the linear one and d̄ ¼ 0; 0:05; 0:1 and p̄p0:5 for weak damping and excitation.

5.1. Resonant characteristics

Figs. 2 and 3 show the effects of b on the resonant characteristics of the softening and hardening systems,
respectively. Figs. 2(a) and 3(a) shows the result of the second-order multiple scale analysis and Figs. 2(b) and
3(b) the results of numerical integration. Horizontal and vertical axes represent o, which is a half of the
excitation frequency, and the amplitude of steady-state response, respectively. Solid and dashed lines represent
stable and unstable solutions, respectively.

In the results of the multiple scale analysis as well as the numerical integration, there exist the regions where
the trivial solution is unstable, which is similar to Mathieu’s equation. Unlike Mathieu’s equation, the
responses are bounded because non-trivial symmetric periodic solutions exist. The branches of the symmetric
solutions have saddle-node bifurcation points. In the numerical integration, further bifurcations are
confirmed. At the right ends of the unstable regions of the trivial solution, not only the symmetric periodic
solutions but also non-symmetric solutions appear. The non-symmetric solutions diverge in pairs because the
system is symmetric. The maximum displacement of one of the pair in the steady state is shown in Figs. 2(b)
and 3(b).
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5.2. Effects of hysteretic loop parameters

In Figs. 2 and 3, b increases, the amplitude of non-trivial solutions decreases while the unstable regions of
the trivial solutions remain unchanged in both softening and hardening systems. Figs. 4 and 5 shows the
effects of g on the resonant characteristics of the softening and hardening systems, respectively. Figs. 4(a) and
5(a) show the results of the second-order multiple scale analysis and Figs. 4(b) and 5(b) show the results of
numerical integration. As jgj increases, the slopes of resonant curves decrease while the amplitude of the non-
trivial solutions remain almost constant in both softening and hardening systems.
5.3. Effects of excitation amplitude and damping

Figs. 6 and 7 show the effects of excitation amplitude p and damping coefficient d on resonant
characteristics in the softening and hardening hysteretic systems, respectively. As p increases or d decreases,
the unstable region of trivial solution enlarges and the amplitude of non-trivial solution increases, which is
similar to Mathieu’s equation. Aforementioned bifurcations remain when d40.
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5.4. Stability regions

Stability regions of different stable and unstable solutions in o2p plane for softening and hardening
hysteretic systems are illustrated in Figs. 8 and 9, respectively. Solid lines display stability boundaries by
numerical integration and dashed lines display theoretical stability boundaries of trivial solution described
with Eq. (30).

In the case of softening hysteretic system (Fig. 8), trivial solution is stable in regions I, IV and III. Although
the trivial solution becomes unstable in regions II and V as in the case of Mathieu equation, a stable symmetric
periodic solution exists across regions II and IV. The solution coexists with an unstable solution in region IV
because of saddle-node bifurcation. In region V where excitation amplitude p is large inside the region II, the
stable symmetric solution becomes unstable and a pair of stable non-symmetric periodic solutions are
generated.

In the case of hardening hysteretic system (Fig. 9), similar characteristics are found. The trivial solution is
stable in regions I, III, IV and V and unstable in region II. Stable symmetric periodic solution exists across
regions II, IV and V and coexists with unstable symmetric solution in regions IV and V. A pair of unstable
non-symmetric periodic solutions exists in region V.
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Similar to other nonlinear parametric systems, hysteretic nonlinearity can limit the response and generate
periodic solutions in principal resonance region. However, chaotic or quasi-periodic solution which is
observed in other nonlinear systems cannot be found in the present hysteretic systems.

5.5. Comparison with the analytical results

Concerning the unstable regions of the trivial solution and the amplitude and saddle-node bifurcation point
of the non-trivial symmetric periodic solution, fairly good agreement is found between the results of the
second-order multiple scale analysis and the numerical integration. Stability analysis described in Section 4.4
explains the reason why the unstable region of the trivial solution is independent of b and g. Analytical
explanation of the bifurcation by which non-symmetric periodic solutions appear is the subject in future.
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6. Conclusion

Nonlinear vibrations of a smooth hysteretic systems subjected to principal parametric harmonic excitation
was investigated. As a model for hysteresis, Wen’s differential equation was used. By employing the piecewise
power series expression for hysteretic restoring force, the method of multiple time scales was applied to obtain
the second-order approximate solutions and their stability. Numerical integration was also performed so as to
illustrate the stability and bifurcations of the system. The conclusions are summarized as follows:
(1)
 Independently of the extent of viscous damping, the trivial solution is asymptotically stable outside the
principal resonance region due to Hopf bifurcation.
(2)
 The trivial solution is unstable inside the principal resonance region but the response is bounded because
non-trivial periodic solutions exist.
(3)
 The unstable region of trivial solution is dependent on detuning, amplitude of excitation and damping and
independent of hysteretic loop characteristics.
(4)
 Saddle-node bifurcation of non-trivial symmetric periodic solution occurs in both softening and hardening
systems.
(5)
 There exists the bifurcation by which a pair of non-symmetric solutions diverge from non-trivial symmetric
solution.
(6)
 The validity of the present analysis was confirmed concerning the stability of the trivial solution and the
amplitude of symmetric periodic solution.
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