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Abstract

This paper deals with the geometrically nonlinear dynamic analysis of functionally graded (FG) laminated composite

plates integrated with a patch of active constrained layer damping (ACLD) treatment. The constraining layer of the ACLD

treatment is considered to be made of the piezoelectric fiber reinforced composite (PFRC) material. Each layer of the

substrate FG laminated composite plate is made of fiber-reinforced composite material in which the fibers are

longitudinally aligned in the plane parallel to the top or bottom surface of the layer and the layer is assumed to be graded

in the thickness direction by way of varying the fiber orientation angle across its thickness according to a power-law. The

novelty of the present work is that, unlike the traditional laminated composite plates, the FG laminated composite plates

are constructed in such a way that the continuous variation of material properties and stresses across the thickness of the

plates is achieved. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTa-

vish (GHM) method. Based on the first-order shear deformation (FSDT) theory, a finite element model has been developed

to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite plates. Both symmetric

and asymmetric FG laminated composite plates are considered as the substrate plates for presenting the numerical results.

The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for

active control of geometrically nonlinear forced vibrations of FG laminated composite plates. The effect of piezoelectric

fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also

investigated.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, a new class of non-homogeneous composite materials known as ‘‘functionally graded
materials’’ (FGMs) has earned a considerable attention in structural applications. These materials are
characterized by a smooth and continuous variation of material properties particularly along the thickness
direction. In an endeavor to develop the super heat resistant materials, Koizumi [1] first proposed the concept
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of this FGM. These materials are typically made from isotropic components, such as metals and ceramics and
as a whole considered as isotropic functionally graded (FG) material. A great deal of research has already
been reported on the buckling analysis [2], exact solutions [3–6], dynamic analysis [7–12] and nonlinear
thermo-elastic analysis [13–15] of structures made of isotropic FG materials during the past few years.

The laminated composite structures can be tailored to design advanced structures but the sharp change in
properties of each layer at the interface between the two adjacent layers causes large interlaminar shear stresses
that eventually may give rise to the initiation of imperfection like delamination. Such detrimental effect can be
mitigated using the FG lamina such that the properties of the laminated structure vary in a continuous manner
along its thickness direction. The lamina of conventional unidirectional fiber-reinforced composite material
may be tailored in such a way that the fibers are longitudinally aligned in the plane parallel to its top or
bottom surface but the fiber orientation is assumed to vary in between its top and bottom surfaces according
to a power-law [13,14] in order to attain the graded material properties along the thickness direction. The
resulting lamina becomes an anisotropic lamina from analysis point of view and its properties at any point can
be determined from nine independent material properties of the orthotropic lamina made of unidirectional
fiber-reinforced composite material. Thus, this lamina may be called as a generally orthotropic FG lamina
having the graded properties along its thickness direction. If this lamina is utilized to build a laminated
composite structure such that the fiber orientation angles at the interface between two adjacent layers are
identical then the material properties of the resulting laminated composite structure vary along the thickness
direction in a continuous manner. Such a laminated composite structure may be called as a FG laminated
composite structure.

In the quest for developing lightweight high performing flexible structures with self-controlling and/or self-
monitoring capabilities, the piezoelectric materials are extensively used by exploiting its converse and direct
piezoelectric effects as distributed actuators or sensors which are mounted on or embedded in the host
structure [16,17]. Considerable interest has also been focused on investigating the performance of the
functionally graded plates integrated with the piezoelectric actuators [18–20]. Further investigation on the
efficient active control of the flexible structures using piezoelectric materials led to the development of active
constrained layer damping (ACLD) treatment [21]. The ACLD treatment consists of a layer of viscoelastic
material constrained between a host structure and an active constraining layer made of piezoelectric material.
During the flexural vibration of the host structures, the active constraining layer not only restrains the
constrained viscoelastic layer to undergo transverse shear deformations but also enhances the transverse shear
deformations to cause improved damping characteristics of the overall structure over the conventional passive
constrained layer damping (PCLD) treatment. Hence, the ACLD treatment has earned wide acceptability for
efficient and reliable control of flexible structures [22–27].

Piezoelectric composite materials have emerged as the new class of smart materials and find wide
applications as distributed actuators and sensors. Recently, Ray et al. [28,29] developed a new piezoelectric
fiber reinforced composite (PFRC). The constructional feature of this PFRC material is that the monolithic
piezoelectric fibers are longitudinally reinforced in the conventional epoxy matrix material. The effective
piezoelectric coefficient e31 of this PFRC material, which quantifies the induced normal stress in the fiber
direction due to the applied electric field in the direction transverse to the fiber direction is significantly larger
than the corresponding coefficient of the piezoelectric material of the fibers. Note that if the in-plane actuation
of the active piezoelectric constraining layer is utilized for active damping of smart structures then the
performance of the ACLD treatment mainly depends on this piezoelectric coefficient (e31).

In an attempt towards the development of new functionally graded smart structures using the isotropic FG
materials, Ray and Sachade [30] first carried out the static analysis of simply supported isotropic FG plates
integrated with a layer of this PFRC material. Panda and Ray [31] recently presented the analytical solutions
for the geometrically nonlinear deformations of simply supported smart FG plates integrated with a
distributed actuator made of PFRC material. Ray [32] carried out a linear frequency response analysis for
active constrained layer damping of smart functionally graded plates using this PFRC material as the
constraining layer of the ACLD treatment. Recently, Panda and Ray [33] investigated the ACLD of
geometrically nonlinear vibrations of smart isotropic FG plates using PFRC material. In this paper, we
consider FG laminated composite plates composed of generally orthotropic FG laminae as described earlier.
ACLD of geometrically nonlinear forced vibrations of such FG laminated composite plates is investigated



ARTICLE IN PRESS
S. Panda, M.C. Ray / Journal of Sound and Vibration 325 (2009) 186–205188
using this PFRC material. A finite element model is developed to model the open-loop and closed-loop
nonlinear dynamics of the FG laminated composite plates integrated with a patch of ACLD treatment. The
constraining layer of the ACLD patch is made of the PFRC material as mentioned above. For the time
domain analysis, the constrained viscoelastic layer of the ACLD treatment is modeled by the
Golla–Hughes–McTavish (GHM) method [34,35]. The effect of piezoelectric fiber orientation angle in the
PFRC constraining layer on the performance of the ACLD patch for controlling the nonlinear transient
forced vibrations of the FG laminated composite plates has also been investigated. Both symmetric and
asymmetric substrate FG laminated plates are considered as the numerical examples.

2. Finite element modeling

Fig. 1 illustrates a simply supported FG laminated composite plate integrated with a patch of ACLD
treatment at the top surface of the substrate plate. The constraining layer of the ACLD treatment is made of
the PFRC material. The substrate FG laminated composite plate is composed of N number of generally
orthotropic FG lamina. The middle plane of the substrate plate is considered as the reference plane and the
origin of the reference coordinate system is located at one corner of the reference plane such that the lines
x ¼ 0,a and y ¼ 0,b represent the boundaries of the substrate FG laminated composite plate. The thickness of
the host FG laminated composite plate, the viscoelastic constrained layer ((N+1)-th layer) and the PFRC
constraining layer ((N+2)-th layer) are denoted by h, hv and hp, respectively. The piezoelectric fiber
orientation in the active constraining layer of the PFRC material with respect to the reference coordinate
system is denoted by c and the fibers are longitudinally aligned in the plane parallel to the xy-plane such that
the in-plane actuation of the constraining layer causes transverse shear deformations of the constrained
viscoelastic layer. Since the thickness of the overall plate is very thin, the first-order shear deformation (FSDT)
theory is used to describe the kinematics of axial deformations as illustrated in Fig. 2. According to this
kinematics of deformations, the axial displacements u and v at any point in the domain of the overall plate
along x- and y-directions, respectively, can be expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ ðz� hz� h=2iÞyxðx; y; tÞ þ ðhz� h=2i � hz� h=2� hviÞfxðx; y; tÞ

þ hz� h=2� hvigxðx; y; tÞ

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ ðz� hz� h=2iÞyyðx; y; tÞ þ ðhz� h=2i � hz� h=2� hviÞfyðx; y; tÞ

þ hz� h=2� hvigyðx; y; tÞ (1)

where the brackets /S are used to define the appropriate singularity functions for satisfying the continuity
condition between any two continua; u0, v0 are the generalized translational displacements of a point on the
middle plane of the host FG laminated composite plate along x- and y-directions, respectively; yx;fx and gx

are the generalized rotations of the normals to the mid-planes of the substrate FG laminated composite plate,
Fig. 1. Schematic diagram of a functionally graded laminated composite plate integrated with a patch of ACLD treatment.
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Fig. 2. Deformations of transverse cross-sections of the FG laminated composite plate integrated with the ACLD treatment which are

parallel to: (a) xz- and (b) yz-planes.
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the viscoelastic layer and the PFRC layer, respectively, about the y-axis; yy;fy and gy are the generalized
rotations of these normals about the x-axis; The transverse displacement w(x, y, t) at any point in the overall
plate is assumed to be constant throughout the thickness of the overall FG laminated composite plate. For the
ease of analysis, the generalized displacement variables are seperated into translational fdtg and rotational fdrg

variables as follows:

fdtg ¼ ½u0 v0 w�T and fdrg ¼ ½yx yy fx fy gx gy�
T (2)

The state of strain at a point of the overall FG plate is defined by the following two strain vectors:

febg ¼ f�x �y �xyg
T and fesg ¼ f�xz �yzg

T (3)

where �x and �y are the normal strains along x- and y-directions, respectively; �xy is the in-plane shear strain;
�xz and �yz are transverse shear strains. Similarly, the state of stress at any point of the overall plate is described
by the following two stress vectors:

frbg ¼ fsx sy sxyg
T and frsg ¼ fsxz syzg

T (4)

in which sx and sy are the normal stresses along x- and y-directions, respectively, sxy is the in-plane shear
stress, sxz and syz are the transverse shear stresses. Considering the Green–Lagrange nonlinear
strain–displacement relations for small strains and moderate rotations [36] and the displacement field given
by Eq. (1), the strain vectors ðfebg; fesgÞ and their first variations for the k-th layer of the overall laminated
plate can be expressed as

fek
bg

fek
s g

( )
¼
½Lbt� ½Z

k
b �½Lbr�

½Lst� ½Z
k
s �½Lsr�

" #
fdtg

fdrg

( )
and

fdek
bg

fdek
s g

( )
¼
½Lbat� ½Z

k
b �½Lbr�

½Lst� ½Z
k
s �½Lsr�

" #
fddtg

fddrg

( )
(5)
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whered is an operator for first variation. Also, the operator matrices ð½Lbt�; ½Lst�; ½Lbr�; ½Lsr�; ½Lbat�Þ and the
transformation matrices ð½Zk

b �; ½Z
k
s �Þ appearing in Eq. (5) are given by

½Lbt� ¼

q=qx 0 0

0 q=qy 0

q=qy q=qx 0

2
64

3
75þ 1

2
½h�

0 0 q=qx

0 0 q=qy

" #
; ½Lst� ¼

0 0 q=qx

0 0 q=qy

" #

½Lbr� ¼

q=qx 0 0 0 0 0 q=qy 0 0

0 0 0 q=qy 0 0 q=qx 0 0

0 q=qx 0 0 0 0 0 q=qy 0

0 0 0 0 q=qy 0 0 q=qx 0

0 0 q=qx 0 0 0 0 0 q=qy

0 0 0 0 0 q=qy 0 0 q=qx

2
666666666664

3
777777777775

T

,

½Lsr� ¼

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

2
666666666664

3
777777777775
,

½Lbat� ¼

q=qx 0 0

0 q=qy 0

q=qy q=qx 0

2
64

3
75þ ½h� 0 0 q=qx

0 0 q=qy

" #
; ½h� ¼

qw=qx 0

0 qw=qy

qw=qy qw=qx

2
64

3
75,

½Zk
b � ¼ ½Ib� � fz

k
bg; ½Z

k
s � ¼ ½Is� � fz

k
s g; k ¼ 1; 2; . . . ; ðN þ 2Þ

fzk
bg ¼ ½z 0 0� and fzk

s g ¼ ½1 0 0� for k ¼ 1; 2; . . . ;N

fzk
bg ¼ ½h=2 ðz� h=2Þ 0� and fzk

s g ¼ ½0 1 0� for k ¼ ðN þ 1Þ,

fzk
bg ¼ ½h=2 hv ðz� h=2� hvÞ� and fzk

s g ¼ ½0 0 1� for k ¼ ðN þ 2Þ (6)

in which ½Ib� and ½Is� are a 3� 3 and a 2� 2 identity matrices, respectively, and � denotes the Kronecker
product. In the k-th layer of the host FG laminated composite plate, the fibers are longitudinally aligned in the
plane parallel to the xy-plane but the fiber orientation angle with respect to the x-axis is assumed to vary along
the thickness direction according to a power-law [13]. Thus, in the laminate coordinate system, the fiber
orientation angle at any point along the thickness of the k-th layer of the host FG laminated composite plate
can be expressed as

jkðzÞ ¼ ðjk
1 � jk

2Þðf
k
lðzÞÞ

r
þ jk

2 ; l ¼ 1 or 2

f k
1ðzÞ ¼

z� hk

hkþ1 � hk

and f k
2ðzÞ ¼

z� hkþ1

hk � hkþ1
(7)

where r is the power-law exponent (0prpN) and l is a positive integer. When l is even, the fiber orientation
angle at the bottom surface of the k-th layer of FG laminated composite plate is jk

1 while that at the top
surface of this layer is jk

2 and the reverse holds for odd values of l. Thus, the fiber orientation angle at the top
surface of the k-th layer of the substrate plate can be modeled as jk

1 or jk
2 according as l equals 1 or 2,
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respectively. Now, the elastic matrix for any point in the k-th layer of the substrate FG laminated composite
plate can be expressed as

½C̄
k
ðzÞ� ¼ ½TkðzÞ�½C�½TkðzÞ�T; k ¼ 1; 2; . . . ;N (8)

where ½TkðzÞ� is the transformation matrix corresponding to the fiber orientation angle jkðzÞ at any point
(Eq. (7)) in the k-th layer of the host FG laminated composite plate; ½C� is the elastic matrix when fiber
orientation angle is 01 with respect to the x-axis of the laminate coordinate system. The constitutive relations
of the k-th layer of the substrate FG laminated composite plate can be written as

frk
bg ¼ ½C̄

k

bðzÞ�fe
k
bg and frk

s g ¼ ½C̄
k

s ðzÞ�fe
k
s g; k ¼ 1; 2; . . . ;N (9)

where ½C̄
k

b � and ½C̄
k

s � are obtained from Eq. (8) as follows:

½C̄
k

bðzÞ� ¼

C̄
k

11ðzÞ C̄
k

12ðzÞ C̄
k

16ðzÞ

C̄
k

12ðzÞ C̄
k

22ðzÞ C̄
k

26ðzÞ

C̄
k

16ðzÞ C̄
k

26ðzÞ C̄
k

66ðzÞ

2
6664

3
7775 and ½C̄

k

s ðzÞ� ¼
C̄

k

55ðzÞ C̄
k

45ðzÞ

C̄
k

45ðzÞ C̄
k

44ðzÞ

2
4

3
5; k ¼ 1; 2; . . . ;N (10)

The constitutive relations for the PFRC material are given by [28,29],

frk
bg ¼ ½C̄

k

b �fe
k
bg � ½ēb�fĒg and frk

s g ¼ ½C̄
k

s �fe
k
s g � ½ēs�fĒg,

fDg ¼ ½ēb�
Tfek

bg þ ½ēs�
Tfek

s g þ ½ē�fĒg for k ¼ ðN þ 2Þ (11)

In Eq. (11), the transformed elastic coefficient matrices ½C̄
k

b � and ½C̄
k

s �, the transformed piezoelectric coefficient
matrices ½ēb�, ½ēs� and the matrix of transformed dielectric constants ½ē� referred to the laminate coordinate
system (x, y, z) are given by

½C̄
k

b � ¼

C̄
k

11 C̄
k

12 C̄
k

16

C̄
k

12 C̄
k

22 C̄
k

26

C̄
k

16 C̄
k

26 C̄
k

66

2
6664

3
7775; ½ēb� ¼

0 0 ē31

0 0 ē32

0 0 ē36

2
64

3
75; ½ē� ¼

ē11 ē12 0

ē12 ē22 0

0 0 ē33

2
64

3
75

½C̄
k

s � ¼
C̄

k

55 C̄
k

45

C̄
k

45 C̄
k

44

2
4

3
5 and ½ēs� ¼

ē15 ē25 0

ē14 ē24 0

" #
; k ¼ ðN þ 2Þ (12)

The electric field vector fĒg and the electric displacement vector fDg appearing in Eq. (11) are given by,

fĒg ¼ fEx Ey Ezg
T and fDg ¼ fDx Dy Dzg

T (13)

in which Ex;Ey and Ez are the electric fields along x-, y- and z-axes, respectively; Dx;Dy and Dz are the
corresponding electric displacements. For the problem of our investigation, the electric field is considered to
act only along the thickness of the PFRC constraining layer of the ACLD treatment. Thus, recognizing that
Ez ¼ �V=hp with V being the applied voltage difference across the thickness of the PFRC layer, the electric
field vector referred to the reference coordinate system can be expressed as

fĒg ¼ f0 0 � 1=hpg
TV (14)

Using the isothermal stress–strain relation for an isotropic linear viscoelastic material [37], the stress vector
frk

s g ðk ¼ N þ 1Þ for the viscoelastic damping material layer can be written as

frk
s g ¼ GðtÞ½Ck

ss�fe
k
s ð0Þg þ

Z t

0

Gðt� tÞ½Ck
ss�

q
qt
fek

s ðtÞgdt for k ¼ ðN þ 1Þ (15)

where GðtÞ is the material relaxation function and the strain vector fek
s ðtÞg is restricted to zero for t 2 ð�1; 0Þ

and the matrix ½Ck
ss� is a (2� 2) unit matrix. It is known that the transverse shear deformations of the

viscoelastic layer are attributed to the constrained layer damping of the host structure. Also, the extensional
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stiffness of the viscoelastic constrained layer is very small as compared to the host FG laminated composite
plate and the piezoelectric composite constraining layer. Thus, the extensional counterpart of the strain energy
for the viscoelastic layer may be neglected in the estimation of the total potential energy of the overall plate.
The first variation of the total potential energy TP and the kinetic energy TK of the host FG laminated
composite plate integrated with a patch of ACLD treatment can be written as [38]

dTP ¼
1

2

Z a

0

Z b

0

XNþ2
k¼1

kaNþ1

Z hkþ1

hk

fdek
bg

Tfrk
bgdzþ

XNþ2
k¼1

Z hkþ1

hk

fdek
s g

Tfrk
s gdz�

Z hkþ1

hk

fdĒgTfDg

����
k¼Nþ2

dz� 2pdw

2
4

3
5dxdy

(16)

dTK ¼
1

2

Z a

0

Z b

0

XNþ2
k¼1

Z hkþ1

hk

ðrkfd_dtg
Tf_dtgÞdz

" #
dxdy (17)

where pðx; y; tÞ is a uniformly distributed transverse step load and rk is the mass density of the k-th layer of the
overall laminated plate. Since the overall plate is very thin, the rotary inertia of the overall plate may be
neglected and hence, the rotational velocities are not considered to estimate the kinetic energy of the overall
plate. The overall plate is discretized by the eight-noded isoparametric quadrilateral element. Thus, the
generalized displacement vectors at any point within the element can be written as

fdtg ¼ ½Nt�fd
e
t g and fdrg ¼ ½Nr�fd

e
rg (18)

where fde
t g and fd

e
rg are the nodal generalized translational and rotational displacement vector, respectively;

and the matrices ½Nt� and ½Nr� are the shape function matrices. The equations of motion are derived by
employing the extended Hamilton’s principle for the nonconservative system [39]:Z t2

t1

ðdTk � dTpÞdt ¼ 0 (19)

Substituting Eqs. (16) and (17) into Eq. (19) and then using Eqs. (9), (11), (15), (5) and (18), the nonlinear
governing equations of motion for a typical element of the substrate FG laminated composite plate integrated
with the ACLD treatment can be derived as

½M�ef€d
e

t g þ ½Ktt�
efde

t g þ ½Ktr�
efde

rg þ ½K
v
tt�

e GðtÞfde
t ð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fde

t ðtÞg
� �

dt
� �

þ ½Kv
tr�

e GðtÞfde
rð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fde

rðtÞg
� �

dt
� �

¼ fFetg
eV þ fFmg

e (20)

½Krt�
efde

t g þ ½Krr�
efde

rg þ ½K
v
rt�

e GðtÞfde
t ð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fde

t ðtÞg
� �

dt
� �

þ ½Kv
rr�

e GðtÞfde
rð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fde

rðtÞg
� �

dt
� �

¼ fFerg
eV (21)

wherein, the elemental stiffness matrices ð½Ktt�
e; ½Ktr�

e; ½Krt�
e; ½Krr�

e; ½Kv
tt�

e; ½Kv
tr�

e; ½Kv
rt�

e and ½Kv
rr�

eÞ, the elemental
mass matrix ð½M�eÞ, the elemental electro-elastic coupling vectors ð½Fet�

e; ½Fer�
eÞ and the mechanical load vector

fFmg
e are given by

½Ktt�
e ¼

Z ae

0

Z be

0

ð½Bbat�
T½A

sp
b �½Bbt� þ ½Bst�

T½Asp
s �½Bst�Þdxdy; ½Kv

tt�
e ¼

Z ae

0

Z be

0

½Bst�
T½Av

s �½Bst�dxdy,

½Ktr�
e ¼

Z ae

0

Z be

0

ð½Bbat�
T½B

sp
b �½Bbr� þ ½Bst�

T½Bsp
s �½Bsr�Þdxdy; ½Kv

tr�
e ¼

Z ae

0

Z be

0

½Bst�
T½Bv

s �½Bsr�dxdy,

½Krt�
e ¼

Z ae

0

Z be

0

ð½Bbr�
T½S

sp
b �½Bbt� þ ½Bsr�

T½Ssp
s �½Bst�Þdxdy; ½Kv

rt�
e ¼

Z ae

0

Z be

0

½Bsr�
T½Sv

s �½Bst�dxdy,
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½Krr�
e ¼

Z ae

0

Z be

0

ð½Bbr�
T½D

sp
b �½Bbr� þ ½Bsr�

T½Dsp
s �½Bsr�Þdxdy; ½Kv

rr�
e ¼

Z ae

0

Z be

0

½Bsr�
T½Dv

s �½Bsr�dxdy,

fFetg
e ¼

Z ae

0

Z be

0

ð½Bbat�
T½Abe� þ ½Bst�

T½Ase�Þdxdy; fFerg
e ¼

Z ae

0

Z be

0

ð½Bbr�
T½Bbe� þ ½Bsr�

T½Bse�Þdxdy,

½M�e ¼

Z ae

0

Z be

0

m̄½Nt�
T½Nt�dxdy; fFmg

e ¼

Z ae

0

Z be

0

½Nt�
Tffgdxdy (22)

In Eq. (22), ae and be are the length and the width of an element in consideration while the various
strain–nodal displacement matrices, the rigidity matrices, the mass parameter ðm̄Þ and the load vector ðffgÞ are
as follows,

ð½Bbt�; ½Bbat�; ½Bst�Þ ¼ ð½Lbt�; ½Lbat�; ½Lst�Þ½Nt�; ð½Bbr�; ½Bsr�Þ ¼ ð½Lbr�; ½Lsr�Þ½Nr�,
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It is to be noted that for an element without integrated with the ACLD treatment, the electro-elastic coupling
vectors become null vectors. In the above formulation, the bending and shear counterparts of the stiffness
matrices are formulated separately and computed by the application of selective integration scheme in a
straightforward manner. In the feed back control strategy, the control voltage supplied to the ACLD patch
can be expressed in terms of the velocities of the global nodal dof as follows:

V ¼ �kd _w ¼ �kd ½U�f _Xtg (24)

in which kd is the velocity feed back control gain, ½U� is a row matrix defining the location of sensing the
velocity signal that will be fed back to the patch and fXtg is the global nodal translational dof. Assembling the
elemental governing equations, given by Eqs. (20) and (21), in the global space and then using Eq. (24),
the following nonlinear closed-loop governing equations of motion for the substrate FG laminated composite
plates activated by the ACLD treatment can be obtained:

½M�f €Xtg þ ½Ctt�f _Xtg þ ½Ktt�fXtg þ ½Ktr�fXrg þ ½K
v
tt� GðtÞfXtð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fXtðtÞg

� �
dt

� �

þ ½Kv
tr� GðtÞfXrð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fXrðtÞg

� �
dt

� �
¼ fFmg (25)
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½Crt�f _Xtg þ ½Krt�fXtg þ ½Krr�fXrg þ ½K
v
rt� GðtÞfXtð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fXtðtÞg

� �
dt

� �

þ ½Kv
rr� GðtÞfXrð0Þg þ

Z t

0

Gðt� tÞ
q
qt
fXrðtÞg

� �
dt

� �
¼ 0 (26)

where ½Ctt� ¼ kdfFetg½N�, ½Crt� ¼ kdfFerg½N�; ½Ktt�; ½Ktr�; ½Krt�; ½Krr�; ½K
v
tt�; ½K

v
tr�; ½K

v
rt� and ½K

v
rr� are the global

stiffness matrices, ½M� is the global mass matrix, fXrg is the global nodal generalized rotational displacement
vector, fFmg is the global nodal mechanical force vector, fFetg and fFerg are the global electro-elastic coupling
vectors.

In the Laplace domain, the function s ~GðsÞ is referred to as the material modulus function [34] with ~GðsÞ
being the Laplace transform of material relaxation function GðtÞ of the viscoelastic material. According to the
Golla–Hughes–McTavish (GHM) method for modeling the viscoelastic material in time domain, this modulus
function is represented by a series of mini-oscillator terms as follows [34]:

s ~GðsÞ ¼ G1 1þ
XR

q¼1

aq

s2 þ 2x̂qôqs

s2 þ 2x̂qôqsþ ô2
q

" #
(27)

where G1 corresponds to the equilibrium value of the modulus i.e. the final value of GðtÞ. Each mini-oscillator
term is a second-order rational function involving three positive constants aq; x̂q and ôq. These constants
govern the shape of the modulus function in the complex s-domain [34]. Now considering a GHM material
modulus function with one mini-oscillator term [34], i.e.,

s ~GðsÞ ¼ G1 1þ a
s2 þ 2x̂ôs

s2 þ 2x̂ôsþ ô2

" #
(28)

the auxiliary dissipation coordinates fztg, fzrg are introduced as follows [34]:

f~ztðsÞg ¼
ô2

s2 þ 2x̂ôsþ ô2
f ~XtðsÞg and f~zrðsÞg ¼

ô2

s2 þ 2x̂ôsþ ô2
f ~XrðsÞg (29)

where f~ztðsÞg and f~zrðsÞg are the Laplace transforms of fztg and fzrg, respectively. Taking inverse Laplace
transform of Eq. (29), the time domain representation of auxiliary dissipation coordinates can be written as

f€ztg þ 2ôx̂f_ztg þ ô2
fztg � ô2

fXtg ¼ 0 (30)

f€zrg þ 2ôx̂f_zrg þ ô2
fzrg � ô2

fXrg ¼ 0 (31)

Making use of Eqs. (28) and (29) in the Laplace transform of Eqs. (25) and (26) and subsequently, taking
inverse Laplace transform of the resulting equations, the following global equations of motion are obtained:

½M�f €Xtg þ ½Ctt�f _Xtg þ ½K
c
tt�fXtg þ ½K

c
tr�fXrg þ ½K

d
tt�fztg þ ½K

d
tr�fzrg ¼ fFmg (32)

½Crt�f _Xtg þ ½K
c
rt�fXtg þ ½K

c
rr�fXrg þ ½K

d
rt�fztg þ ½K

d
rr�fzrg ¼ 0 (33)

in which
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½Kd
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v
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1a; ½Kd
rr� ¼ �½K

v
rr�G

1a (34)

After imposing the boundary conditions, the global rotational dof fXrg can be condensed from Eqs. (30)–(32)
to obtain the following final global closed-loop equations of motion in terms of the global nodal translational
dofs (fXtg) and the dissipative coordinates ðfztg; fzrgÞ as follows:

½M̄�f €XðtÞg þ ½C̄�f _XðtÞg þ ½K̄�fXðtÞg ¼ fF̄g (35)
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where
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wherein, ½ ~Ott�; ½ ~Otr�; ½ ~Ort�; ½ ~Ot� and ½ ~Or� are null matrices and null vectors with the same order of
½Ktt�; ½Ktr�; ½Krt�; fztðtÞg and fzrðtÞg, respectively.

3. Numerical results and discussions

In order to investigate the performance of the PFRC material as the constraining layer of the ACLD
treatment for controlling the nonlinear forced vibrations of the FG laminated composite plates, square
symmetric and asymmetric FG laminated composite plates integrated with a square patch of the ACLD
treatment (Fig. 1) are considered for evaluating the numerical results. The patch of the ACLD treatment is
placed at the center of the substrate plate as shown in Fig. 1. The control voltage across the thickness of the
PFRC constraining layer of the ACLD patch is negatively proportional to the velocity of the mid-point (a/2,
b/2, h/2) of the substrate plate. The side-to-thickness ratio (s ¼ a/h) of the square substrate FG laminated
composite plates is considered as 100 with the thickness of the plates being 4mm. Unless otherwise mentioned,
the thickness of the viscoelastic layer and the PFRC layer of the ACLD patch are considered as 50 and
250 mm, respectively. Also, unless otherwise stated, the fiber orientation angle in the PFRC constraining layer
is 01 and the applied uniformly distributed step load acts vertically upward. The material properties of the
unidirectional fiber reinforced composite in which the fiber orientation angle is 01 with respect to the x-axis are
considered as [40]

E11 ¼ 36:2GPa; E22 ¼ 10:6GPa; G12 ¼ 5:6GPa; G13 ¼ 3:6GPa;

G23 ¼ 3:2GPa; v12 ¼ 0:26; r ¼ 1870 kg=m3

Thus, using Eqs. (7) and (8) the elastic properties ½C̄
k
ðzÞ� at any point in the k-the layer of the host FG

laminated composite plate can be computed after knowing the elastic matrix [C] from the above material
properties. The material properties of the viscoelastic layer in terms of the GHM parameters are considered as
[27]

G1 ¼ 3:887� 104 N=m2; a1 ¼ 2:3263� 104; a2 ¼ 4:1977� 101; a3 ¼ 3:5174� 101,

ô1 ¼ 6:6169� 106; ô2 ¼ 3:2854� 104; ô3 ¼ 4:7515� 104; x̂1 ¼ 3:0787,

x̂2 ¼ 1:4288� 102; x̂3 ¼ 6:1785� 102; r ¼ 789:5 kg=m3

The PZT5H/epoxy composite with 40% fiber volume fraction is considered as the material of the active
constraining layer and its effective elastic and piezoelectric coefficients are obtained from the micromechanics
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model [28] as follows:

C11 ¼ 32:6GPa; C12 ¼ 4:3GPa; C22 ¼ 7:2GPa; C44 ¼ 1:05GPa; C55 ¼ C66 ¼ 1:29GPa;

e31 ¼ �6:76C=m
2; e32 ¼ �0:076C=m

2; r ¼ 3640 kg=m3

The following simply supported boundary conditions are used to evaluate the numerical results:

v0 ¼ w0 ¼ yy ¼ 0 at x ¼ 0; a and u0 ¼ w0 ¼ yx ¼ 0 at y ¼ 0; b

The following non-dimensional quantities are used for presenting the results.

Q ¼
ps4

E2
; s̄x ¼

sxs2

E2
; s̄y ¼

sys2

E2

Two types of FG laminated composite plates considered as the substrates for the numerical examples are
described as follows:

FG laminate 1: This FG laminated substrate plate is a symmetric square plate constructed by laminating two
orthotropic FG layers such that the top and bottom surfaces of the plate have 01 fiber orientation angle while
the fiber orientation angle at the interface between the layers is 901 as shown in Fig. 3(a). The fiber orientation
angle in each FG layer of the plate varies from 01 to 901 according to Eq. (7) as shown in Fig. 3(b). The
continuity of material properties of this FG laminate across its thickness can be observed from Fig. 3(c).

FG laminate 2: This FG laminated substrate plate is an asymmetric square plate constructed by laminating
three orthotropic FG layers such that the fiber orientation angle at the top and bottom surfaces of the plate
are 01 and 901, respectively, as shown in Fig. 4(a). The fiber orientation angle at the interface between layers 1
Fig. 3. (a) Symmetric two layered FG laminated composite plate (FG laminate 1, a/h ¼ 100, a ¼ b), (b) variation of the fiber orientation

angle (j) and (c) the elastic properties (Cij) along the thickness direction of the FG laminate 1.
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Fig. 4. (a) Asymmetric three layered FG laminated composite plate (FG laminate 2, a/h ¼ 100, a ¼ b), (b) variation of the fiber

orientation angle (j) and (c) the elastic properties (Cij) along the thickness direction of the FG laminate 2.
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and 2 is 01 while that between layers 2 and 3 is 901. Fig. 4(b) illustrates the variation of the fiber orientation
angle according to Eq. (7) in each FG layer of the plate. Fig. 4(c) displays that the elastic properties of this
laminate varies continuously across its thickness.

In order to verify the continuity of the stresses across the thickness of the substrate FG laminated composite
plates as described above, the static responses of the laminates without integrated with the ACLD patch are
first studied. The static response of the FG laminate 1 are compared with that of a conventional symmetric
laminated composite plate (01/901/01) whose thickness (h) and side-to-thickness ratio (s ¼ a/h) are identical to
those of this FG laminated plate. Fig. 5(a) illustrates the variation of dimensionless nonlinear center deflection
of the FG laminated composite plate with the dimensionless intensity of the uniformly distributed load. It may
be observed from this figure that the nonlinear center deflections of the FG laminated composite plate do not
differ significantly for different values of power-law index r. Also, the center deflections are almost
indistinguishable from those of the laminated composite plate (01/901/01) when the value of power-law index r

equals 0.2. For a particular mechanical load having the numerical value as 2000N/m2, Figs. 5(b) and (c)
illustrate the distributions of the dimensionless in-plane normal stresses ðs̄x; s̄yÞ across the thickness of this
symmetric FG laminated composite plate. It may be observed from these figures that unlike the discontinuous
stresses across the thickness of the laminated composite plate (01/901/01), the stresses across the thickness of
the FG laminated composite plate are smooth and continuous. Similar static responses of the FG laminate 2
are demonstrated in Fig. 6 indicating the continuity of stresses across its thickness.

So far, no literature is available for comparing the results for the problem being analyzed in this paper.
Hence, to verify the implementation of the GHM method, the linear dynamic responses of the simply
supported two-layered FG laminated composite plate shown in Fig. 3(a) are computed in the frequency
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Fig. 5. (a) Variation of nonlinear center deflections of the symmetric two layered FG laminated composite plate and the laminated

composite plate (01/901/01) (a/h ¼ 100, a ¼ b) with the dimensionless intensity (Q) of uniformly distributed load and (b, c) distributions of

dimensionless in-plane normal stresses ðs̄x; s̄yÞ across the thickness of the plates.
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domain using both the GHM method and the conventional complex modulus approach when the patch is
passive. It should be noted here that in the finite element formulation when [h] is considered as a null matrix,
the governing equations of motion and hence Eq. (35) become linear describing the linear behavior of the
overall FG laminated composite plate. In the GHM method, the frequency response function can be
computed from the following equation:

fXg ¼ ð½K̄� � io½C̄� � o2½M̄�Þ�1fF̄g (37)

while, in the complex modulus approach, the same can be obtained from the following equation:

fXtg ¼ ð½KðioÞ � o2½M��Þ�1fFmg (38)

where

½KðioÞ� ¼ ð½Ktt� þ ½K
v
tt�GðioÞÞ � ð½Ktr� þ ½K

v
tr�GðioÞÞð½Krr� þ ½K

v
rr�GðioÞÞ

�1
ð½Krt� þ ½K

v
rt�GðioÞÞ (39)

in which GðioÞ is the complex shear modulus of the constrained viscoelastic layer. Considering a point
transverse load ð1 e�i$tNÞ at the point (a/4, b/4, h/2) with o being the driving frequency, the frequency
response for the deflection at the point (a/4, b/4, h/2) of the overall plate computed by the two approaches are
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Fig. 6. (a) Variation of nonlinear center deflections of the asymmetric three layered FG laminated composite plate and the laminated

composite plate (01/901/01/901) (a/h ¼ 100, a ¼ b) with the dimensionless intensity (Q) of uniformly distributed load and (b, c)

distributions of dimensionless in-plane normal stresses ðs̄x; s̄yÞ across the thickness of the plates.
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shown in Fig. 7(a). It may be observed that the frequency response by the GHM method with a single term
GHM expression ða1 ¼ 2:3263� 104; ô1 ¼ 6:6169� 106; x̂1 ¼ 3:0787Þ is in excellent agreement with that
obtained by the complex modulus approach. Thus the present modeling of the constrained viscoelastic layer of
the ACLD treatment by the GHM method accurately predicts the damping characteristics of the overall FG
laminated composite plate. For further verification of the present finite element model and the numerical
integration scheme implemented to compute the nonlinear transient responses, a nonlinear transient vibration
analysis is carried out considering the substrate plate as an isotropic FG plate integrated with the passive
ðkd ¼ 0Þ and negligibly thin ððhp þ hvÞ � 0Þ ACLD patch. Using the material properties, boundary conditions
and mechanical loading considered by Praveen and Reddy [13], the transient responses at the center of this FG
substrate plate are computed and compared with those of an identical FG plate without integrated with the
ACLD patch. This comparison is illustrated in Fig. 7(b). Excellent matching of the results can be observed
from this figure verifying the present finite element model as well as the numerical integration scheme. Note
that the responses presented by Praveen and Reddy [13] include the consideration of rotary inertia of the plate
while the present responses do not include the effect of the rotary inertia. Thus, the comparison shown in
Fig. 7 corroborates our consideration that the rotational velocities are not included in estimating the kinetic
energies of the plates.
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Fig. 7. Verification of the FE model: (a) the implementation of the GHM method (FG laminate 1, a/h ¼ 100, a ¼ b, r ¼ 0.5) and (b) the

numerical integration scheme [13].
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In order to cause the nonlinear forced vibrations of the host FG laminated composite plates, it is required to
choose the magnitude of the applied mechanical load. Such a value of the applied mechanical load can be
predicted from the plots for the variation of the center deflection of the host FG laminated composite plate
with the static applied mechanical load as shown in Figs. 5(a). Thus, for the computation of nonlinear
transient responses of simply supported thin FG laminated composite plates, the dimensionless intensity (Q)
of the uniformly distributed step load should be considered as 10 or more. To investigate the performance of
the PFRC material as the active constraining layer of the ACLD treatment, the nonlinear transient responses
at the mid-point of the simply supported two layered FG laminated composite plate (FG laminate 1) are
computed and plotted in Fig. 8(a). As displayed in this figure, the active ðkda0Þ patch of the ACLD treatment
significantly increases the damping characteristics of this overall FG laminated composite plate over the
passive ðkd ¼ 0Þ damping characteristics and this suggests the potential use of the PFRC material as the
constraining layer of the ACLD treatment for controlling the nonlinear dynamics of the FG laminated
composite plates. The control voltage presented in Fig. 8(b) corresponding to the gain used for the transient
responses shown in Fig. 8(a), is quite low. Since the control voltage is proportional to the velocity at the center
of the plate, Fig. 8(b) reveals that as the transient vibrations of the plate reduces, the velocity of the plate
decays with time. The phase plot shown in Fig. 8(c) also corroborates this observation indicating the stability
of the plate. Fig. 9 demonstrates that the active patch significantly annuls the geometrically nonlinear forced
vibrations of the asymmetric three layered FG laminated composite plate (FG laminate 2) described in
Fig. 4(a). For the constant values of the mechanical load and the velocity feed back control gain (kd), Figs. 10
and 11 illustrate the nonlinear transient responses at the center of the FG laminates 1 and 2, respectively, for
different values of power-law index r. Displayed in these figures are the corresponding responses of the
conventional laminated cross-ply plates. It may be observed from these figures that for both symmetric
two layered and asymmetric three layered FG laminates, the time period and amplitude of forced vibrations
decrease as the power-law index r increases when compared with the conventional cross-ply plates for c ¼ 0�.

To quantify the performance of the ACLD patch for controlling the geometrically nonlinear
forced vibrations of the substrate FG laminated composite plates being studied here, a performance index
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Fig. 8. Nonlinear transient responses for: (a) the center deflection of the simply supported overall symmetric FG laminated composite

plate (FG laminate 1, a/h ¼ 100, a ¼ b, r ¼ 1.0), (b) the corresponding control voltage and (c) the corresponding phase plot (‘‘S’’ is the

starting point of motion).
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is defined as follows:

Id ¼
At¼0 � At¼0:2 s

At¼0
� 100 (40)

where Id measures the percentage diminution of amplitude of nonlinear transient vibrations of the overall
plate after 0.2 s. For the constant values of mechanical load and gain, Fig. 12 illustrates the variation of this
index with the piezoelectric fiber orientation angle in the constraining PFRC layer when the substrate is the
FG laminate 1. Fig. 13 illustrates the same when the substrate plate is the FG laminate 2. It may be observed
from these figures that in contrast to the conventional cross-ply composite plates, the performance of the
ACLD patch for controlling the geometrically nonlinear forced vibrations of the overall FG
laminated composite plates (ra0) is dependent on the sign of the piezoelectric fiber orientation angle c in
the constraining PFRC layer. The maximum values of the performance index and the corresponding
value of c vary with the values of the power-law index (r). For r ¼ 0.2, the performance of the ACLD patch
becomes maximum to control both the laminates when the value of c is �751. For r ¼ 1.0, if the values of c
are �301 and �601 then the performance of the patch becomes maximum to control the geometrically
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Fig. 9. Nonlinear transient responses for: (a) the center deflection of the simply supported overall asymmetric FG laminated composite

plate (FG laminate 2, a/h ¼ 100, a ¼ b, r ¼ 1.0), (b) the corresponding control voltage and (c) the corresponding phase plot (‘‘S’’ is the

starting point of motion).

Fig. 10. Controlled transient responses at the center of the symmetric FG laminated composite plate and the laminated composite plate

(01/901/01) (a/h ¼ 100, a ¼ b, p ¼ 4 kN/m2, kd ¼ 150).
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nonlinear forced vibrations of FG laminates 1 and 2, respectively. Figs. 12 and 13 also reveal that the
controllability of the ACLD patch can be significantly improved if the substrate FG laminated plate is
optimally designed.
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Fig. 11. Controlled transient responses at the center of the asymmetric FG laminated composite plate and the laminated composite plate

(01/901/01/901) (a/h ¼ 100, a ¼ b, p ¼ 4 kN/m2, kd ¼ 150).

Fig. 12. Effect of piezoelectric fiber orientation angle c in the PFRC constraining layer of the ACLD patch on the performance of

the patch for controlling geometrically nonlinear forced vibrations of the host symmetric FG laminated composite plate (FG laminate

1, a/h ¼ 100, a ¼ b, p ¼ 4 kN/m2, kd ¼ 150).

Fig. 13. Effect of piezoelectric fiber orientation angle c in the PFRC constraining layer of the ACLD patch on the performance of the

patch for controlling geometrically nonlinear forced vibrations of the host asymmetric FG laminated plate (FG laminate 2, a/h ¼ 100,

a ¼ b, p ¼ 4 kN/m2, kd ¼ 150).
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4. Conclusion

In this paper, a finite element model has been developed to model the open-loop and closed-loop nonlinear
dynamics of the FG laminated composite plates integrated with a patch of ACLD treatment. The active
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constraining layer of the ACLD treatment is made of the PFRC material in order to investigate its
performance as the constraining layer of the ACLD patch for controlling the nonlinear forced vibrations of
the FG laminated composite plates. Each layer of the substrate FG laminated composite plate is made of
generally orthotropic FG composite material in which the fibers are longitudinally aligned in the plane parallel
to the top and bottom surfaces of the layer . In order to attain the graded properties along the thickness
direction, the fiber orientation angle in each layer of the FG laminated plates is assumed to vary along the
thickness direction according to a simple power-law. The FG layers are stacked together to form the FG
laminated composite plates such that fiber orientation angles at the interface between two adjacent FG
composite layers become identical and thus the continuous variation of material properties along the thickness
direction is achieved. Symmetric two layered and asymmetric three layered FG laminated plates are
considered for evaluating the numerical results. For the time domain analysis, the viscoelastic constrained
layer of the ACLD patch is modeled by implementing the Golla–Hughes–McTavish method. The kinematics
of deformations of the overall plate is based on the first-order shear deformation theory while small strains
and moderate rotations are assumed for the geometric nonlinearity. The numerical results reveal that, unlike
the conventional laminated composite plates, the variations of stresses across the thickness of the FG
laminated composite plates are smooth and continuous. The numerical results for the dynamic analysis reveal
that the patch of ACLD treatment significantly improves the damping characteristics of the FG laminated
composite plates over the passive damping for controlling geometrically nonlinear forced vibrations of the
plates. If the value of power-law index increases then the time period and the amplitudes of the controlled
response of the FG laminated composite plates decreases for c ¼ 0�. The damping characteristics of the
overall composite plate vary for different values of power-law index of the substrate FG laminated composite
plate. More importantly, unlike the conventional laminated cross-ply composite plates, the performance of the
ACLD patch for controlling the nonlinear forced vibrations of the FG laminated composite plates is sensitive
to the variation of sign of the piezoelectric fiber orientation angle in the active PFRC constraining layer. The
present investigations reveal that the optimization of the fiber orientation angle in the FG orthotropic layers
should be accomplished to design FG laminated composite plates such that the controllability of the ACLD
patch to control such FG laminated composite plates becomes significantly larger than that to control the
conventional cross-ply composite plates of identical geometry and material.
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