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Abstract

This paper investigates under which conditions dynamic train–bridge interaction should be considered for the dynamic

analysis of a bridge during a train passage. The results of a moving load model are compared to those of an analysis of

dynamic train–bridge interaction considering different vehicle models with a varying degree of sophistication. The effect of

several parameters related to the train and the bridge is studied. The ratio of the mass of the vehicle and the bridge and the

ratio of the natural frequency of the vehicle and the bridge, the train speed and the damping ratio of the bridge are

identified as significant factors that determine the effect of dynamic train–bridge interaction on the bridge response.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response of railway bridges under moving trains has been a topic of research interest for many
years. The basic quantity to evaluate dynamic effects due to moving traffic on bridges is the dynamic
amplification factor (DAF), which represents the increase in the dynamic response with respect to the static
one for a single moving load [1]. The dynamic amplification factor, however, does not take into account
resonance effects due to repeated loading by a series of axles. The Eurocode 1 [1] specifies under which
conditions a dynamic analysis is required.

In the dynamic analysis of the bridge, a moving train is traditionally represented as a series of moving axle
loads. Timoshenko [2] developed the classical solution for a simply supported beam subjected to a moving
load. An elaborate discussion of beam structures subjected to moving loads is presented by Frýba [3].

Considerable experimental and theoretical research has recently been performed on train–bridge interaction
[4–7]. In the analysis of dynamic train–bridge interaction, a distinction is made between the subsystems for the
train and the bridge. Both subsystems are coupled by the compatibility of displacements and equilibrium of
forces at the contact points [8–10]. Different vehicle models with a varying degree of sophistication have
been developed to account for the dynamic properties of the vehicle. The simplest model for a train is a series
of 2 degree-of-freedom (DOF) mass–spring–damper systems that account for the suspension of the vehicle.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Chu et al. [11] studied train–bridge interaction with a 3-DOF vehicle model consisting of the car body and
wheel–axle sets. A time domain integration method is used to solve the dynamic equations of the coupled
train–bridge system. Tan et al. [12] presented a vehicle model that has 7-DOF and is capable of
accommodating both roll and pitch modes. The influence of various parameters on the behavior of the
coupled system is studied in three numerical examples. Xia et al. [13] proposed a 15-DOF vehicle model and
analyzed the passage of the Thalys high speed train on a concrete box–girder bridge in Antoing on the high
speed line between Paris and Brussels. The model is validated by comparing the results of computations with
in situ measurements.

In the literature, however, it is not very clear in which case a moving load model suffices for the prediction
of the bridge response and under which conditions it is necessary to account for the dynamic interaction
between the train and bridge. Liu et al. used both approaches for the particular case of the dynamic response
of the Sesia viaduct during the passage of the Italian high speed train ETRY500. In this case, both approaches
give predictions that are in good agreement with the experimental results [15].

The main purpose of this paper is to provide a better understanding of train induced bridge vibration and to
investigate under which conditions dynamic train–bridge interaction analysis should be accounted for. It is
organized in the following manner. Section 2 presents the numerical model developed for the analysis. Two
methodologies are considered to represent the action of the vehicle on the bridge: (1) a moving load model and
(2) a model that takes into account dynamic train–bridge interaction. In Section 3, a parametric study is
performed to identify the parameters that determine the dynamic response of the bridge.

2. Numerical model

2.1. Bridge subsystem

When a finite element model of the bridge is used to study its dynamic behavior, the equation of motion of
the bridge can be expressed as

Mb
€Vb þ Cb

_Vb þ KbVb ¼ Pb (1)

where Mb, Cb and Kb are the mass matrix, damping matrix and stiffness matrix of the bridge, respectively; Vb,
_Vb and €Vb represent the displacement, velocity and acceleration vectors of the bridge; and Pb is the vector with
the external forces.

In the following, the modal superposition method [14] is adopted to solve the equation of motion of the
bridge. It is assumed that only the first N0 modes of the bridge are contributing to the response. The equation
of motion of the bridge can be now rewritten as follows:

€qþ C�b _qþ K�bq ¼ P�b (2)

where it has been assumed that the eigenvectors are normalized with respect to the mass matrixMb. The vector
q collects the modal coordinates. The matrices C�b, K

�
b and P�b are defined as follows:

C�b ¼ 2zO; K�b ¼ O2; P�b ¼ UTPb

where U is the N0 �NDOF matrix of eigenvectors and O is the NDOF �NDOF diagonal matrix of eigenvalues
of the considered modes. The modal damping ratio z is assumed to be equal for all considered modes.

2.2. Train load modeling

The first attempt to represent the action of the vehicle on the bridge is the so-called moving load model,
where the train is modeled as a series of moving loads. The force vector Pb can be written as follows:

PbðtÞ ¼ P
qs
b ðtÞ ¼

Xn

i¼1

yiðtÞF Gi (3)
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Fig. 1. (a) a 1-DOF (b) a 2-DOF and (c) a 3-DOF vehicle model for dynamic train–bridge interaction analysis.
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where the superscript qs in P
qs
b ðtÞ refers to the fact that only the quasi-static loading of the bridge is accounted

for. The vector yiðtÞ is the NDOF � 1 vector that transfers a moving unit load to nodal loads according to the
position of the ith axle. The load amplitude F Gi is equal to the weight of the ith axle of the train.

To account for the dynamic effect of the train on the bridge, vehicle models with a varying degree of
sophistication are considered (Fig. 1). Vehicle model c is an elaborate model that considers both the vertical
motion of the car body and the bogie, while vehicle models a and b are simplified versions of vehicle model c.

In a similar way as for the bridge, the equation of motion of the vehicle can be written as

Mv
€Vv þ Cv

_Vv þ KvVv ¼ Pdy
v (4)

where Mv, Cv and Kv are the mass, damping and stiffness matrices; Vv, _Vv and €Vv are the displacement,
velocity and acceleration vectors of the vehicle system; and Pdy

v is the force vector that collects the dynamic
force on the vehicle [15].

The coupling of the vehicle and bridge subsystems by the compatibility of the displacements at the contact
points is now illustrated for the case of vehicle model c [15]. The equation of motion of the vehicle can be
derived from the dynamic force equilibrium (Fig. 2).

The mass matrix of the vehicle can be expressed as

Mv ¼ diag½M1;M2;M1� (5)

where M1 and M2 are the mass of the bogie and the car body, respectively.
The stiffness matrix of the vehicle system is expressed as

Kv ¼

2KV þ KVV �KVV 0

�KVV 2KVV �KVV

0 �KVV 2KV þ KVV

2
64

3
75 (6)

where KV and KVV are the spring stiffness coefficients of the primary and secondary suspension system,
respectively.

The damping matrix is derived from the stiffness matrix by replacing the stiffness coefficients (KV , KVV ) by
the damping coefficients (CV , CVV ) of the primary and secondary suspension system.

The displacement vector Vv is expressed as

Vv ¼ ½V1;V 2;V 3�
T (7)

where V 1 and V3 are the vertical displacements of the front and back bogie, respectively, while V2 is the
vertical displacement of the car body.

The force vector Pdy
v is expressed in terms of the displacements and velocities of the wheel sets:

Pdy
v ¼

KV ðV W1 þ VW2Þ þ CV ð _V W1 þ _V W2Þ

0

KV ðV W3 þ VW4Þ þ CV ð _V W3 þ _V W4Þ

2
64

3
75 (8)

where V Wi and _VWi (i ¼ 1,2,3,4) represent the displacement and velocity of the ith wheel set, respectively.
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Fig. 2. A simply supported beam subjected to a moving vehicle.
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With vehicle model c, the force Pb transferred to the bridge can be written as

PbðtÞ ¼ P
qs
b ðtÞ þ P

dy
b ðtÞ ¼

X4
i¼1

yiðtÞFGi þ
X4
i¼1

yiðtÞð�MWi
€V Wi þ KV ðVj � V WiÞ þ CV ð _Vj � _V WiÞÞ (9)

where Pqs
b ðtÞ and P

dy
b ðtÞ are referred to as the quasi-static and the dynamic part of the force, respectively; €V Wi

(i ¼ 1,2,3,4) represents the acceleration of the ith wheel set; V j (j ¼ 1ji¼1;2, j ¼ 3ji¼3;4) represents the
displacement of the bogie and MWi and F Gi ði ¼ 1; 2; 3; 4Þ represent the mass and the axle load of the ith wheel
set, respectively.

The equations of motion are integrated according to the Newmark-b method with values b ¼ 0:25 and
g ¼ 0:5 corresponding to the trapezoidal rule [18]. The integration procedure is described more elaborately
in Ref. [15].
3. Parametric study

For simply supported bridges, the results of ERRI D214 showed that resonance is unlikely for spans longer
than 40m [16]. This study has been limited, however, to the case of simply supported bridges of relatively short
span without consideration of transverse effects. The simply supported bridge in Ref. [17] is chosen as the
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Table 1

The dynamic characteristics of the Italian ETR500Y high speed train.

Item Unit Locomotive Passenger car

Mass of the car body (M2) kg 55; 976 34; 231
Mass of the bogie (M1) kg 3896 2760

Mass of the wheel set (Mw) kg 2059 1583

Vertical stiffness of the primary suspension system (KV ) kN/m 1; 792; 200 808; 740
Vertical damping of the primary suspension system (CV ) kN s=m 15,250 7500

Vertical stiffness of the secondary suspension system (KVV ) kN/m 472,060 180; 554
Vertical damping of the secondary suspension system (CVV ) kN s=m 36; 250 16; 250
Carriage length (d) m 19:7 26:1
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reference case in the present parametric study. The characteristics of the bridge are as follows. The bridge has
a length L of 34m, a mass per unit length mb ¼ 11400 kg=m, a bending stiffness EI ¼ 9:92� 1010 Nm2, and a
modal damping ratio z of 2% for all considered modes. The fundamental natural frequency f b ¼ 4:01Hz.

The train type considered in this study is the Italian ETR500Y high speed train. The main characteristics of
the train are listed in Table 1. It is composed of a locomotive followed by eight passenger cars and another
locomotive. The length of the locomotive is 19.7m, while the length of the passenger cars is 26.1m. The
average static axle loads for the locomotives and passenger cars are 176.4 and 112.9 kN, respectively. The
natural frequencies of the car body and the bogie can be estimated from the following equations:

f vc ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1

Kvv
þ

1

2Kv
M2

vuuuut
(10)

f vb ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kvþ Kvv

M1

r
(11)

The values for KV and KVV of ETR500Y are used to estimate the frequencies of the car body and the bogie as
0.49 and 4.06Hz, respectively.

In order to investigate the conditions under which dynamic train–bridge interaction needs to be taken into
account, a parametric study is performed. The following dimensionless parameters are defined: the speed
parameter a, the frequency parameter k and the mass parameter g. Apart from these parameters, the influence
of the bending stiffness EI and the modal damping ratio of the bridge z is investigated as well.

The dimensionless speed parameter a is defined as

a ¼
v

f bd
(12)

where v is the train speed, d is the characteristic length of a car and f b is the fundamental natural frequency of
the bridge. The critical speed caused by a long series of regularly spaced axles is reached at a ¼ 1. For the
Italian high speed train ETR500Y, the characteristic length d ¼ 26:1m, so that with a value of f b ¼ 4:01Hz
for the fundamental natural frequency, the critical speed is reached at 377 km/h.

The dimensionless frequency parameter k is

k ¼
f v

f b

(13)

where f v and f b are the frequency of the vehicle and the first bending frequency of the bridge, respectively. Due
to the low value of the natural frequency f vc of the car body, this part of the vehicle is dynamically uncoupled
from the bridge. Therefore the natural frequency f vb of the bogie is considered for f v in Eq. (13). For the train
and the bridge in the current study f vb ¼ 4:06Hz while f b ¼ 4:01Hz, so that the value of k is 1.01 in the
reference case.
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The dimensionless mass parameter g is defined as

g ¼
Mv

Mb

(14)

where Mv is the total mass of the train and Mb is the mass of the bridge. With Mv ¼ 445; 544 kg and
Mb ¼ 387; 600 kg, the value of g is therefore 1.1495 in the reference case.

3.1. Influence of the speed parameter on the dynamic response of the bridge

According to Eurocode 1 [1], the frequency range considered in the determination of the maximum deck
acceleration should have an upper limit of 30Hz or 1.5 times the frequency of the first eigenmode of the
structural element being considered. The frequency range should at least include the first three modes. For the
present bridge with a fundamental natural frequency of 4.01Hz, the threshold for low-pass filtering is
therefore 30Hz.

Figs. 3 and 4 present the dynamic amplification factor DAFu and the maximum vertical acceleration at
mid-span, respectively, as a function of the dimensionless speed parameter a. The dynamic amplification factor
DAFu is defined as

DAFu ¼
udynðl=2Þ

ustaðl=2Þ
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Fig. 3. The dynamic amplification factor DAFu as a function of the dimensionless speed parameter a for the moving load model (solid

black line), vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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Fig. 4. Maximum vertical acceleration at mid-span as a function of the dimensionless speed parameter a for the moving load model (solid

black line), vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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Fig. 5. (a) Time history and (b) frequency content of the acceleration at mid-span of the moving load model (dashed gray line) and vehicle

model c (solid black line).

K. Liu et al. / Journal of Sound and Vibration 325 (2009) 240–251246
where udynðl=2Þ is the maximum dynamic displacement and ustaðl=2Þ is the maximum static displacement at
mid-span of the bridge.

For low values of a, there is no significant difference between the different train load models. The difference,
however, gets larger when the speed parameter a approaches a value of 1, which corresponds to the resonant
speed. In general, the moving load model produces the largest dynamic amplification, while the vehicle models
a, b and c generate a lower dynamic amplification. This is due to the presence of the suspension system which
results in a reduction of the contact force applied to the bridge.

Fig. 5 depicts the acceleration at mid-span in the time domain and frequency domain for a train passage at
resonant speed for the moving load model and vehicle model c. In both models, a peak occurs at 4.01Hz,
which corresponds to the first bending frequency of the bridge. A reduction of the peak magnitude is observed
when dynamic train–bridge interaction is taken into account.
3.2. Influence of the frequency parameter on the dynamic response of the bridge

The dynamic train–bridge interaction is affected by the natural frequencies of the two subsystems. In the
following, the stiffness of the suspension system is modified to investigate the influence of the frequency
parameter k in the range from 0.1 to 2.0.

Figs. 6 and 7 show the dynamic amplification factor DAFu and the acceleration, respectively, at resonant
speed as a function of the frequency parameter k. When the value of the parameter k is close to 0, there is a
small difference between the moving load model and vehicle models a, b and c. Due to the low stiffness of the
suspension system, the vehicle is dynamically uncoupled from the bridge and the static load is the only
component that affects the response of the bridge. In this case, a moving load model satisfactorily represents
the vehicle. In the case where the stiffness of the suspension system is relatively high, corresponding to a high
value for k, the train can be represented by a moving mass. It is also observed that when the natural frequency
of the vehicle is slightly higher than the natural frequency of the bridge, the dynamic response of the bridge at
resonant speed reaches its minimum value when dynamic train–bridge interaction is accounted for.
3.3. Influence of the mass parameter on the dynamic response of the bridge

A modification of the vehicle mass changes both the quasi-static force and the dynamic force and therefore
affects the dynamic response of the bridge. In this subsection, the response of the bridge to a moving train is
considered for different values of the mass parameter g between 0.1 and 3.

The parameter g is modified by changing the mass of the vehicle, while the stiffness of the suspension system
is adjusted correspondingly to maintain a constant value of 1.01 for the frequency ratio k.
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Fig. 6. The dynamic amplification factor DAFu at resonant speed as a function of the dimensionless frequency parameter k for the

moving load model (solid black line), vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed

gray line).
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Fig. 7. Maximum vertical acceleration at mid-span at resonant speed versus dimensionless frequency parameter k for the moving load

model (solid black line), vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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Figs. 8 and 9 show that the dynamic response increases linearly with the increase of the mass ratio g for the
moving load model. For low values of the mass parameter, there is a small difference between the three vehicle
models and the moving load model. With an increasing mass ratio, however, dynamic train–bridge interaction
becomes more important, and reduces the dynamic amplification factor DAFu. Fig. 9 shows that for a mass
parameter g of 3, the acceleration at mid-span is reduced by 32% by dynamic train–bridge interaction.

3.4. Influence of the bending stiffness of the bridge on the dynamic response of the bridge

A parametric study is carried out to investigate the effect of the bending stiffness of the bridge on the
dynamic response of the bridge. The stiffness of the suspension system of the vehicle is adjusted so that both
dimensionless parameters k and g have a constant value. Two additional values of 0.5EI and 2.0EI are
considered for the bending stiffness of the bridge.

Figs. 10 and 11 show the dynamic amplification factor DAFu and the maximum acceleration, respectively,
at resonant speed as a function of the speed parameter a for the three values of the bending stiffness. As has
been observed previously, dynamic train–bridge interaction hardly affects the dynamic response of the bridge
at low values of the speed parameter a. At resonant speed (a ¼ 1) the response is reduced in a similar way for
the three values of the bending stiffness of the bridge.
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Fig. 8. The dynamic amplification factor DAFu at resonant speed as a function of the dimensionless mass parameter g for the moving load

model (solid black line), vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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Fig. 9. Maximum vertical acceleration at mid-span at resonant speed as a function of the dimensionless mass parameter g for the moving

load model (solid black line), vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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Fig. 10. The dynamic amplification factor DAFu as a function of the speed parameter a for the moving load model (solid line) and vehicle

model c (dashed line) with a bending stiffness for the bridge of 1.0EI (black line), 0.5EI (thin gray line), and 2.0EI (thick gray line).
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3.5. Influence of the damping ratio on the dynamic response of the bridge

In this subsection, the influence of the modal damping ratio of the bridge is analyzed. The following values
of the modal damping ratio z are considered: z ¼ 1%, 1:5%, 2%, 2:5% and 3%.
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Fig. 11. Maximum vertical acceleration at mid-span as a function of the speed parameter a for the moving load model (solid line) and

vehicle model c (dashed line) with a bending stiffness for the bridge of 1.0EI (black line), 0.5EI (thin gray line), and 2.0EI (thick gray line).
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Fig. 12. The dynamic amplification factor DAFu as a function of the damping ratio z for the moving load model (solid black line), vehicle

model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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Fig. 13. Maximum vertical acceleration at mid-span as a function of the damping ratio z for the moving load model (solid black line),

vehicle model a (solid gray line), vehicle model b (dashed black line) and vehicle model c (dashed gray line).
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The influence of the damping ratio on the dynamic response of the bridge is shown in Figs. 12 and 13. As expected,
an increase in the modal damping ratio of the bridge results in a reduced magnitude of the response. Moreover, an
increase of the bridge damping ratio leads to a decrease of the effect of dynamic train–bridge interaction.
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4. Conclusions

This study investigates the effect of dynamic train–bridge interaction on the bridge response during a train
passage. The influence of several dynamic characteristics of the train and the bridge on the dynamic response
of the bridge is studied. The following conclusions can be drawn from this study:
1.
 The dynamic amplification attains its maximum value at a critical train speed where the passage of a series
of regularly spaced axles excites the bridge at its resonance frequency.
2.
 When the train speed approaches its critical value, dynamic train–bridge interaction results in a lower
dynamic response of the bridge as compared to the moving load model. The reduction is larger for the
bridge acceleration at mid-span than for the corresponding displacement.
3.
 When the ratio of the natural frequency of the vehicle and the bridge is much smaller than one, the response
of the bridge can be estimated by a moving load model. For an increasing ratio, dynamic train–bridge
interaction becomes more important and reduces the dynamic amplification at the critical speed. The
largest reduction is found when the natural frequency of vehicle is slightly larger than the natural frequency
of the bridge.
4.
 The results are dependent on the type of vehicle model and it is therefore important to choose a suitable
vehicle model in the analysis. Among the vehicle models adopted in the study, vehicle models b and c give
the most accurate prediction, while vehicle model a provides a good approximation due to the very low
value of the natural frequency of the car body.
5.
 Dynamic train–bridge interaction is more important for the situation when the ratio of the mass of the
vehicle and the bridge is relatively large. When the mass ratio is low, a moving load model is sufficient for
the dynamic analysis of the bridge. With an increasing mass ratio, the effect of dynamic train–bridge
interaction becomes more important.
6.
 A larger value of the modal damping ratio results in a lower dynamic response of the bridge.
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