Available online at www.sciencedirect.com

-zl . . JOURNAL OF
*.” ScienceDirect SOUND AND
VIBRATION

ELSEVIER Journal of Sound and Vibration 325 (2009) 287-296

www.elsevier.com/locate/jsvi

Homotopy perturbation for conservative
Helmholtz—Duffing oscillators

A.Y.T. Leung™*, Zhongjin Guo™®

#Building and Construction, City University of Hong Kong, Hong Kong
®Department of Mathematics and Systems Science, University of Tai Shan, Shan Dong, China

Received 26 July 2007; received in revised form 4 February 2009; accepted 28 February 2009
Handling Editor: J. Lam
Available online 31 March 2009

Abstract

The approximate periodic solutions of the Helmholtz—Duffing oscillator are obtained by homotopy perturbation. The
Helmholtz—Duffing oscillator becomes a Duffing oscillator when the homotopy parameter degenerates to one and a
Helmbholtz oscillator when it is zero. Since the behaviors of the solutions in the positive and negative directions are quite
different, the asymmetric equation is separated into two auxiliary equations. The auxiliary equations are solved by
homotopy perturbation method. A new analytical period for the Helmholtz—Duffing equation is derived. The resulting
second-order approximate periodic solutions are compared to the analytical solutions using numerical integration with
improved accuracy over some existing methods. Thus, the homotopy perturbation is very effective for the asymmetric
nonlinear oscillators.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In science and engineering, there are many phenomena and applications related to asymmetric oscillators.
Mickens [1] and Hu [2,3] examined the periodic solutions of quadratic nonlinear oscillators (QNO) and mixed
parity nonlinear oscillator using perturbation method and harmonic balance method respectively. Some one
dimensional structural systems with an initial curvature [4] can be simulated by a Helmholtz—Duffing
oscillator [5-8]. These systems include shallow arches, ship roll dynamics, some electrical circuits,
microperforated panel absorber and heavy symmetric gyroscope [9-12]. We shall solve the following
conservative Helmholtz—Duffing oscillator by the homotopy perturbation method:

ii+u+(1—o+ou’=0
with initial conditions

u0)=a and 0)=0 (1)
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where ¢ is an asymmetric parameter representing the extend of asymmetry and an over dot denotes
differentiation with respect to z. When o =1, Eq. (1) is a classical Duffing oscillator. Eq. (1) becomes a
Helmholtz oscillator with a single-well potential when ¢ = 0. The QNO studied by Hu [2,3] is essentially a
Helmholtz oscillator with a single-well potential. For the Helmholtz—Duffing oscillator (1), we obtain the
second-order approximate periods and the corresponding periodic solutions using homotopy perturbation
method proposed by He [13—15]. Strictly speaking, homotopy perturbation is not a perturbation method
which requires a small parameter in the differential equation but is an artificial perturbation method
constructed by embedding an artificial parameter p € [0, 1] in the equation so that a complicated equation can
be solved from the already known solution of another equation by unfolding the parameter in small
perturbation steps. This technique yields a very rapidly converging series of the solution, thus it can provide an
effective and convenient solution method for nonlinear differential equations.

The organization of the paper is as follows. In Section 2, we introduce two auxiliary equations which are
necessary as asymmetric solutions having different behaviors in positive and negative directions. In Section 3,
we construct two new homotopy equations based on the auxiliary equations and obtain second-order
approximations for the periods and the corresponding periodic solutions. In Section 4, we give some
numerical comparisons of the obtained second-order approximations of the periods with the newly introduced
analytical periods. Finally, we provide some conclusions in Section 5.

In the paper, we give an explicit formula for the analytical period of the Helmholtz—Duffing oscillator.
When degenerated to the QNO for the initial amplitude ¢ = 0.49 as a comparison example, the analytical
period is 9.2080. Hu’s result [2] is 8.8118(—4 percent error) which is much better than Micken’s 6.9816(—24
percent). Ours 9.2840(0.825 percent) is even better in all studied cases. Our method can be applied to a much
wider class of problems too.

2. Auxiliary equations of Helmholtz—Duffing oscillator

Introducing a new time variable t = w¢, the Helmholtz—Duffing oscillator becomes
0’ +u+(1 -0 +ou’=0 )

u0)=a, u'0)=0 (3)

where w is an unknown angular frequency to be determined and a prime denote differentiation with respect
to 7. That the behaviors of an asymmetric nonlinear oscillator are different in positive and negative directions
suggests that the equation can be conveniently studied in two parts [14,16]. Eq. (2) is equivalent to the
following two auxiliary equations:

o’ +u+ (1 — oy sgn(u) +ou’ =0 foru=0 (4)
(1)21/!” 4+ u— (1 — o)u2 Sgn(u) + o'u3 =0 foru<o0 (5)
in which
1, u>0

sgn(u) =4 0,  u=0
-1, u<0

is a sign function.

Assume that the system oscillates between asymmetric limits zone [—b, a], for positive a and b. When u = a
and u = —b, one has ¢/ = 0, where « is given by the initial condition (1) and b is an unknown amplitude in the
negative direction to be determined here. Multiply #’ on both sides of Eq. (2):

o*u'v +ud + (1 — o) + o’ =0 (6)
Integrating once, we have the first integral

lo*u” + 4 + 11 — oy’ + ou* = C (7
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where Cis an integration constant. The Helmholtz—Duffing oscillator (2) is a conservative system. Substituting
the conditions that ¥’ = 0 when u = @ and u = —b, one has

1 + 1 - 0)a® + loa* = 10> — 11 — 0)b* + Lob* (8)
Solving for b, we have an exact solution:
1 1 2
b=—@0Bac+4—46) +—A'"7 — = (9d°6* + 6ac — 6ac> + 436 — 8 — 824~/ (9)
9a¢ 9 ¢
where
A =270a*6*(1 + ac — ¢) — T2ac(1 + ¢*) — 5160(1 — 6) + 64(1 — ¢°) + 630ac” + 54a[—12(1 + ¢?)
+ 16a(a + 1 4+ ac* — ¢°) + 786(1 + d’c — a’6?) — 84°a(1 — &°) — 172d*a(1 + ¢%) — 120as(1 — o)
+94*6*(1 + 5ac + 100 + 3d%6> — Sac? + ¢°) + 4474%%])'/?
Therefore, the two auxiliary equations (4) and (5) with initial conditions (3) become

o’ +u+ (1 — o) sgn(u) +ou’ =0 foru=0 (10)
u(0)=a and «'(0)=0

o’ +u— (1 — o) sgn(u) + o’ =0 for u<0 (11)

u(0)=»b and u'(0)=0

We shall introduce the homotopy perturbation method to solve these two auxiliary equations, one at a time below.
3. Homotopy perturbation solutions of the auxiliary equations

For Eq. (10), let w,o be the initial angular frequency. We construct a homotopy:
(1 — p)oo @’ +u) + plo*t +u+ (1 — o)u? sgn(u) + ou’] = 0 (12)

where p € [0,1] is an embedding parameter, u = u(t,p), and w = w(p). When p =0, Eq. (12) is simple
harmonic:

W' +u=0, w0)=a and ¥(0)=0 (13)

For p = 1, we have the auxiliary equation (10). u(t,1) is therefore the required solution of Eq. (10). As the
embedding parameter p increases from 0 to 1, the solutions u(t,p) and w(p) of the homotopy equation (12)
change from the initial approximation u,y(t) and w,g to the required solutions u(z) and @ of Eq. (10).

The basic assumption of the technique is that the solution of Eq. (12) can be obtained as a power series of
the homotopy perturbation parameter p:

u(t) = up(t) + uy(v)p + uz(‘c)p2 + .- (14)

wzw00+wa1p+w02p2+"' (15)

Substituting Egs. (14) and (15) into Eq. (12) and equating the terms with identical powers of the embedding
parameter p, we can obtain a series of linear equations. The initial zeroth approximation is given by

uy +up =0 (16)
with initial conditions u((0) = @ and u{(0) = 0; the first approximation is given by
2o (W] +up — ) — up) + oy + uo + (1 — o)uj sgn(u) + oug = 0 (17)
with initial conditions u;(0) = 0 and «}(0) = 0; the second approximation is given by
20 4 1y — ] — uy) 4+ 2ol + uy + 2000041y + 2(1 — S)uguy sgn(u) 4 3oudu; =0 (18)

with initial conditions u#,(0) = 0 and #,(0) = 0, and so on.



290 A.Y.T. Leung, Z. Guo | Journal of Sound and Vibration 325 (2009) 287-296

The solution of Eq. (16) is simply
ug(t) =acost (19)
Substituting Eq. (19) into Eq. (17) gives
(W] + uy) = —[~wa cos T+ a cos t + (1 — a)a® cos® Tsgn(a cos 1) + aa’ cos’ 1] (20)

It should be pointed that the sign function can be expanded in trigonometry series
sgn(a cos 1) = sgn(cos 1) = (4/7) ;;000(—1)’/(21' + 1) cos[(2i + 1)t]. When taking three terms,
4 1 1
sgn(cos 1) &~ - CcoS T — gcos 3t+ gcos 5t 21

Since there should not be secular terms in u;, contributions from cost on the right hand side of Eq. (20) must
be eliminated; therefore,

3 8
waoz\/l—i——oaz—}——a(l—a) (22)
4 R
The corresponding approximate period of the oscillator is
2 3 8 ~12
Ta =" =271 +20a® +22(1 - 0) (23)
a0 4 3n
And, the solution to Eq. (20) is
g (t) = (=4 — B— C)cos 1+ Acos’ 1+ Bcos’ 1+ Ccos’ © (24)

where

a’ 32 32 194 4a®
A=Y (nao-Z64+2), B=—% (o-1), C=—% (-
2 (naa O ) ’ 45mw?, (=D, 15nw?, (1=0)

8mw,
Substituting Egs. (19), (22) and (24) into Eq. (18) gives
wf,o(u/z/ +up) = —[wio(—u/{ —up) + a)ﬁou’l’ + uy + 2w400quy + 2(1 — o)uguy sgn(u) + 3au§u1] (25)

The sign function sgn(u) is given in Eq. (21).
Similarly, to eliminate secular terms in u, of Eq. (25), one needs to annihilate the coefficient of cost giving

1 3 5 35
= l-?)-A—B—-C+>A+>B+—
Wyl Yo [( wa0)< C+4 +8 +64 C)
2(1—0) [ 491 199 8 of 1 13 33
——aC———aB——aA 3 ——A——B—-——C 26
T <480“ 240 15")+‘m(8 64”128 )} 26)
The second approximate period of the oscillator is
2n

Top=—— 27
? Wa0 + Wyl @7

Likewise, one considers the auxiliary equation (11) and constructs a homotopy for the initial angular
frequency wp:

(1 = p)ady@’ +u) + plo*u” +u — (1 — o)’ sgn(u) + ou’] = 0 (28)
Without repeating the above process, we just give the results of the first two approximate periods
upo(t) = b cos 7 (29)

3 8b
wb0=\/1+zab2—g(l—0) (30)
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—1)2
Ty =21 1+§ob2—8—b(1—a) (31)
4 3n
up (1) = (—121 - B-— C)cos 14 Acos®t+ Bcos® 1+ Ccos’ 1 (32)
1 A A 3. 5. 35, 2(1 — o)
= —|(1 - A-B— -A+-B+— -
Wp1 Yoo {( wb0)< C+4 +8 +6 C) -
491 199 8 By 1~ 13, 33 .
where
. b? 32 32 .19k . 4b*
8mw3, (n + 97779 >’ 45nw%0( 9, 15nw3, (e—1
and
27
Tp=—"-— 34
R o (34)

4. Results and discussion

The first approximate period 77 and the corresponding periodic solution uy(f) of Egs. (2) and (3) are,
respectively,

T, T
T _LatTn (35)
2
T
a cos Wyot, 0<1< :1
Ty | Ty Tu Ty
uy(t) = bcoswb()(t— - +T , :S < +T (36)
" T T, Ty
acoswao(H— l—%), 41+Tb<t<T1

The second approximate period 7, and the corresponding periodic solution uy(z) + u;(¢) of Egs. (2) and (3)
are, respectively,

T T
T, = a2+ 1mn (37)
2
TaZ
a cos[(wq + Wa)t] + a1 [(@a0 + @a1)], 0< IST
T To T Tp T
up(t) +u (1) = bCOS[(who+wh|)< 4 :2” + Upi |:(0)h0+0)h])<f— 42+%>}, 4 =N < +$
Tpo T Tpn T T Tk
a cos [(wao + wal)(t +5 - %ﬂ + {(wao - am)(z + 5 %ﬂ SIS
(38)
The exact period T, of the Helmholtz—Dulffing oscillator is
2d. 2d.
X X (39)

b
B /0 2 I * /0 2 1
\/ @ — X+ S0 - o)(a® — x3) + Ea(a4 —x%) \/ b —x2— 30— o)(b> — x3) + Ea(b4 —x%)

where b is given in Eq. (9).
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For comparison, the exact period T, is obtained by integrating Eq. (39) and the approximate periods 77 and
T, are given in Egs. (35) and (37), respectively. The relative errors are defined as (T — T.)/T.) x 100. When
o = 0, the Helmholtz—Duffing equation degenerates to a QNO. Hu [2] gave the solutions of QNO by the
harmonic balance method and the result of 75 in Eq. (35) is in exact agreement with his. The values of @ should
satisfy ¢ < 0.5, this is because that if @ = 0.5, the corresponding QNO has a homoclinic orbit with period + oo.
Table 1 compares the approximate periods with the corresponding exact period for ¢ = 0. It indicates that T,

Table 1

Comparison of the approximate periods with the exact period for ¢ = 0.

a T, T, (percent error) T, (percent error)
0.10 6.311599 6.311242 (—0.005656) 6.311687 (0.0014)
0.20 6.411392 6.409514 (—0.02929) 6.411861 (0.007315)
0.30 6.629357 6.622552 (—0.1026) 6.631084 (0.02605)
0.40 7.124567 7.096187 (—0.3983) 7.131872 (0.1025)
0.45 7.706476 7.627741 (—1.022) 7.726369 (0.2581)
0.46 7.905170 7.801416 (—1.312) 7.930979 (0.32648)
0.47 8.167157 8.023325 (—1.7611) 8.201926 (0.4257)
0.48 8.545167 8.327834 (—2.543) 8.594657 (0.5791)
0.49 9.207997 8.811815 (—4.303) 9.283958 (0.8249)
Table 2

Comparison of approximate periods with the exact period for ¢ = 0.5.

a T, T (percent error) T, (percent error)
0.01 6.283133 6.283132 (—0.00000159) 6.283133 (0.00000031018)
0.02 6.282974 6.282971 (—0.000004775) 6.282975 (0.000001592)
0.05 6.281851 6.281831 (—0.0003184) 6.281856 (0.00007959)
0.10 6.277721 6.277642 (—0.0012584) 6.2777408 (0.000315)
0.20 6.259970 6.259659 (—0.004968) 6.260044 (0.00118)
0.40 6.174673 6.173590 (—0.017539) 6.174871 (0.0032066)
0.60 5.999096 5.996744 (—0.0392059) 5.999168 (0.00120018)
0.80 5.728173 5.722892 (—0.092193) 5.727689 (—0.008449)
1.0 5.395022 5.3842845 (—0.199026) 5.393792 (—0.022798)
2.0 3.841120 3.8025801 (—1.00335) 3.8385182 (—0.067735)
5.0 1.894337 1.8588624 (—1.87267) 1.8926895 (—0.086968)
10 1.004172 0.98321194 (—2.087298) 1.0032703 (—0.089795)
20 0.5143428 0.50328477 (—2.14993) 0.51387692 (—0.090578)
50 0.2082766 0.20375994 (—2.168587) 0.20808755 (—0.0907687)
100 0.1045213 0.1022518 (—2.171328) 0.1044264 (—0.090795)
Table 3

Comparison of approximate periods with the exact period for ¢ = 0.9.

a T, T, (percent error) T> (percent error)

0.01 6.2829757 6.2829757 (—0.00000005) 6.2829757 (0.000000013)

0.10 6.2622091 6.26220029 (—0.0001407) 6.2622098 (0.000011178)

0.50 5.8065177 5.80388099 (—0.04541) 5.8065145 (—0.00005511)

1 4.841329 4.82413578 (—0.3551) 4.8411819 (—0.003038)

5 1.5054557 1.47638384 (—1.9310) 1.5043714 (—0.072025)
10 0.7727359 0.7564511 (=2.1074) 0.77207482 (—0.08555)
50 0.1561833 0.1527948 (—2.1696) 0.15604183 (—0.090579)

100 0.0781394 0.07644255 (—2.1716) 0.07806849 (—0.090748)
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Fig. 1. Comparison of the approximate solutions with numerical solution for ¢ = 0. Numerical: — uy(?) : .. .; uo(¢) + u1(¢):*; (@) a = 0.2;

(b) a=0.4; (c) a=0.49.

is more accurate than 7 in general. As the initial values « increases, the relative error of the approximate
periods T and 75 increase. When a = 0.49, the relative error of T with respect to 7, is less than 4.304 percent,
whereas, the relative error of 75> with respect to T, is less than 0.825 percent. For general Helmholtz—Duffing
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Fig. 2. Comparison of the approximate solutions with numerical solution for ¢ = 0.5. Numerical: — uo(?) : .. .; uo(¢) + 1 (2):*; (a) a = 0.1;

(b)a=1; (c) a=10; (d) a = 100.

oscillator, 0 #0. Tables 2 and 3 compare the approximate periods with the corresponding exact periods for
o = 0.5 and 0.9. From Tables 2 and 3, it is evident that 7, is more accurate than 7). As the initial value
a increases, the relative error of approximate periods 7 and 75 also increase. Even when a = 100, the relative
error of T, with respect to T, is less than 0.091 percent, that is, the approximate period 75 is very accurate.

Figs. 1-3 give some comparisons of the approximate solutions with numerical solutions. Figs. 1(a)—(c)
compare the approximate solutions uy(¢) and u(z) + u;(f) with the numerically integrated solution for ¢ = 0
and initial conditions ¢ = 0.2, 0.4, 0.49 while Fig. 2 are for ¢ = 0.5 and ¢ = 0.1, 1, 10 and 100 and Fig. 3 are
for 0 = 0.9 and a = 1, 10, 100, respectively. It is shown that uy(z) + u;(¢) is very accurate in all cases.

When the Helmholtz—Duffing oscillator degenerates to the Duffing oscillator by letting ¢ = 1, the results are
also compared favorably with those of Belendez et al. [17].

5. Conclusions

We have applied the homotopy perturbation method to obtain approximate expression for the periods and
corresponding to periodic solutions of the Helmholtz—Duffing oscillator. First, the asymmetric oscillator is
separated into two auxiliary equations whose restoring forces are odd functions. The amplitude in the negative
direction is obtained by conversation of energy. Then, the auxiliary equations are approximately solved by
constructing homotopy perturbation. The first-order approximate period 7 and periodic solution uy(¢) are in
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Fig. 3. Comparison of the approximate solutions with numerical solution for ¢ = 0.9. Numerical: —; uy(?) : ...; up(t) + u1(2):*; () a = 1;
(b) @ = 10; (c) a = 100.

agreement with those obtained by using harmonic balance method. The second-order approximate period 75
and the periodic solution uy(¢) + u;(¢) are more accurate than the first-order approximation for each
asymmetric parameter ¢. For very large initial amplitude ¢ = 100, the relative error of T, with respect to the
analytical period T, is less than 0.091 percent. Thus, the homotopy perturbation method is very effective and
convenient for some asymmetric nonlinear differential equations.
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