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Abstract

We study targeted energy transfer in a two degree-of-freedom damped system under the condition of 1:1 transient

resonance capture. The system consists of a linear oscillator strongly coupled to an essentially nonlinear attachment or

nonlinear energy sink. In a companion paper [Quinn et al., Efficiency of targeted energy transfers in coupled nonlinear

oscillators associated with 1:1 resonance captures: part I, Journal of Sound and Vibration 311 (2008) 1228–1248] we studied

the underlying structure of the Hamiltonian dynamics of this system, and showed that for sufficiently small values of

viscous damping, nonlinear damped transitions are strongly influenced by the underlying topological structure of periodic

and quasiperiodic orbits of the Hamiltonian system. In this work direct analytical treatment of the governing strongly

nonlinear damped equations of motion is performed through slow/fast partitions of the transient responses, in order to

investigate analytically the parameter region of optimal targeted energy transfer. To this end, we determine the

characteristic time scales of the dynamics that influence the capacity of the nonlinear attachment to passively absorb and

locally dissipate broadband energy from the linear oscillator. Then, we prove that optimal targeted energy transfer is

realized for initial energies close to the neighborhood of a homoclinic orbit of the underlying Hamiltonian system. We

study analytically transient orbits resulting as perturbations of the homoclinic orbit in the weakly damped system, and

show that this yields an additional slow-time scale in the averaged dynamics, and leads to optimal targeted energy transfer

from the linear oscillator to the nonlinear energy sink in a single ‘‘super-slow’’ half-cycle. We show that at higher energies,
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this ‘‘super-slow’’ half-cycle is replaced by strong nonlinear beats, which lead to significant but suboptimal targeted energy

transfer efficiency. Finally, we investigate numerically targeted energy transfer efficiency in this system over a wide range of

system parameters and verify the analytical predictions.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The aim of this work is to investigate conditions for optimal targeted energy transfer (TET), as judged by
the strongest energy dissipation, in a two–degree-of-freedom (dof) nonlinear system under condition of 1:1
transient resonance capture (TRC) [1,2].

Previous works examined TET in systems of coupled nonlinear oscillators through energy exchanges
between donor and acceptor discrete breathers due to nonlinear resonance [3–6]; resonant interactions
between monochromatic electromagnetic waves and charged particles were studied, leading to chaotization of
particles and transport in phase space. In Ref. [7] the processes governing energy exchange between coupled
Klein–Gordon oscillators were analyzed; the same weakly coupled system was studied in Ref. [8] and it was
shown that, under appropriate tuning, total energy transfer can be achieved for coupling above a critical
threshold. In related works, localization of modes in a periodic chain with a local nonlinear disorder was
analyzed [9]; transfer of energy between widely spaced modes in harmonically forced beams was analytically
and experimentally studied [10]; and, in Ref. [11] a nonlinear dynamic absorber designed for a nonlinear
primary was analyzed.

In this work, we consider the following weakly damped system,

€xþ l1 _xþ l2ð _x� _vÞ þ o2
0xþ Cðx� vÞ3 ¼ 0 (1)

�€vþ l2ð_v� _xÞ þ Cðv� xÞ3 ¼ 0,

that is, a linear oscillator (LO), described by coordinate x, coupled to a lightweight, essentially nonlinear
attachment, termed nonlinear energy sink—NES, described by coordinate v. The small parameter of the
problem, 0o�51, scales the mass of the NES.
This two-dof system possesses surprisingly complex dynamics [12,13]. Moreover, at certain ranges of

parameters and initial conditions passive targeted energy transfer—TET—is possible, whereby vibration
energy initially localized in the LO gets passively transferred to the lightweight attachment in a one-way
irreversible fashion where it is locally dissipated without ‘‘spreading back’’ to the LO.

In Part I [14] the topological features of the corresponding Hamiltonian dynamics of system (1) (i.e., with no
dissipative terms) were discussed. Focusing on an intermediate-energy region close to the 1:1 resonance
manifold of the Hamiltonian dynamics the topological changes of intermediate-energy impulsive orbits (IOs)
were studied [15] for varying energy. By IOs we denote periodic or quasi-periodic responses of the
Hamiltonian system initiated with nonzero velocity for the LO and all other initial conditions zero.
Specifically, it was found that above a critical value of energy, the topology of intermediate-energy IOs
changes drastically, as these orbits make much larger excursions in phase space, resulting in continuous,
strong energy exchanges between the LO and the NES, that appear in the form of strong nonlinear beats. It
was also mentioned that this critical energy of the Hamiltonian system may be directly related to the energy
threshold required for TET in the corresponding weakly damped system. Hence, a direct link between the
Hamiltonian and weakly damped dynamics was established.

In the present work we revisit the intermediate-energy dynamics of the weakly damped system (1), in an
effort to obtain conditions for realization of optimal TET from the LO to the NES. Since our study will be
based on perturbation analysis, it will be necessarily restricted to the neighborhood of the 1:1 resonance
manifold of the underlying Hamiltonian dynamics; hence, the damped dynamics will be studied under
condition of 1:1 resonance capture. However, the ideas and techniques presented here can be extended to
study optimal conditions for the more general case of m:n subharmonic TET.
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First, we will review briefly some analytical results derived in Part I of this work [14] concerning the
dynamics of the underlying Hamiltonian system. Subsequently, the topological structure of IOs will be
presented with main emphasis given on their influence on TET efficiency. We will then proceed to the main
part of this work, starting with the slow flow analysis of the governing equations through the complexification-
averaging technique first developed by Manevitch [16]. This will be followed by qualitative analysis of the
different mechanisms for TET in the system, and an analytical study of homoclinic perturbations in the
weakly damped system. We will show that homoclinic perturbations yield an additional slow-time scale in
the averaged dynamics which governs optimal TET from the LO to the NES occurring in a single ‘‘super-
slow’’ half-cycle. The role of a homoclinic orbit on optimal TET was also discussed in Part I of this work [14]
and in the work by Manevitch et al. [17]. We will conclude this work by providing numerical results of TET
efficiency for a wide range of system parameters, which verify the analytical findings.

2. Some topological features of the dynamics

To initiate our analysis, we set o2
0 ¼ 1 in Eq. (1), and consider the damped dynamics close to the 1:1

resonance manifold of the Hamiltonian system. That is, assuming that the transient dynamics can be
partitioned in terms of ‘‘slow’’ and ‘‘fast’’ components, we will consider damped oscillations with fast
frequency approximately equal to the eigenfrequency of the LO, oE1, in the form,

xðtÞ �
a1ðtÞ

o
cos½otþ aðtÞ�; vðtÞ �

a2ðtÞ

o
cos½otþ bðtÞ�, (2)

where a1ðtÞ; a2ðtÞ represent slowly varying amplitudes, and aðtÞ; bðtÞ slowly varying phases. Substituting
Eq. (2) into Eq. (1) and averaging out all frequency components with fast frequencies higher than o, we derive
a system of four modulation equations governing the slow evolution of the amplitudes a1ðtÞ; a2ðtÞ and phases
aðtÞ; bðtÞ of the two oscillators; this defines the slow flow of system (1) in the neighbourhood of the 1:1
resonance manifold.

First we will make a small digression to discuss some features of the dynamics of the underlying
Hamiltonian system obtained by setting l1 ¼ l2 ¼ 0 in Eq. (1). In Part I of this work [14] it was shown that the
slow flow of the Hamiltonian system is fully integrable and can be reduced to the sphere ðRþ � S1 � S1Þ.
Motivated by these results, we introduce the phase difference f ¼ a� b, the energy-like variable
r2 ¼ a2

1 þ ð
ffiffi
�
p

a2Þ
2, and the angle c 2 ½�p=2;p=2� defined by the relation tan½c=2þ p=4� ¼ a1=

ffiffi
�
p

a2.
Considering the isoenergetic dynamical flow corresponding to r ¼ const, the orbits of the corresponding
Hamiltonian system lie an a topological 2-sphere, and follow the level sets of the first integral of motion.

Projections of the isoenergetic reduced Hamiltonian dynamics onto the unit disk at different energy levels
are shown in Fig. 1. The north pole (NP) at c ¼ p=2 lies at the center of the disk, while the south pole (SP)
c ¼ �p=2 is mapped onto the entire unit circle. In this projection, trajectories that pass through the SP
approach the unit circle at f ¼ p=2 and are continued at f ¼ �p=2. If the response is localized to the LO, so
Fig. 1. Projection of the Hamiltonian dynamics of the isoenergetic manifold onto the unit disk at different energy levels

ð� ¼ 0:1; C ¼ 2=15Þ; (a) r ¼ 1.00, (b) r ¼ 0.375 and (c) r ¼ 0.25.
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that a25a1, the phase variable c lies close to þp=2. In contrast, a localized response in the nonlinear
attachment (e.g, a15a2) implies that c � �p=2.

Equilibrium points of the slow-flow of the undamped system are explicitly evaluated by the following
expressions,

_c ¼ 0) sinfeq ¼ 0) feq ¼ 0;p

_f ¼ 0) cosceq ¼
3Cr2

8�
ð1þ �Þ2½1� sinðceq þ geqÞ� cosðceq þ geqÞ,

with tan geq ¼ 2
ffiffi
�
p

cos feq=ð1� �Þ.
In general, equilibrium points with feq ¼ 0 correspond to in-phase periodic motions and have been denoted

as S11þ in Ref. [13]. Those corresponding to feq ¼ p, represent out-of-phase periodic motions and have been
denoted as S11�. In the phase space projections shown in Fig. 1, periodic motions on S11+ appear as
equilibrium points on the horizontal axis to the right of the origin, whereas periodic motions on S11� as
equilibrium points on the horizontal axis to the left of the origin.

With increasing energy, i.e., as r-N, both equilibrium points approach the asymptotic value,

lim
r!1

ceq ¼ arctanðð1� �Þ=2
ffiffi
�
p

cos feqÞ,

so that, for 0o�51, in the high-energy limit we have that ceq;S11þ40 and ceq;S11�o0. Hence, with increasing

energy the in-phase motion S11+ localizes to the LO, while the out-of-phase motion S11– localizes to the

nonlinear attachment (the NES).

Considering now the low-energy limit, it is easily shown that for sufficiently small values of r the equilibrium
equation for ceq leads to the simple limiting relation cos ceq! 0. Therefore, we conclude that as r! 0þ, the
following are attained by the equilibrium values for c,

lim
r!0þ

ceq;S11þ ¼ �p=2 and lim
r!0þ

ceq;S11� ¼ þp=2.

It follows that in the limit of small energies the in-phase periodic motion on S11+ localizes to the nonlinear
attachment, whereas the out-of-phase periodic motion on S11� to the LO. However, unlike the high-energy
limits, as r! 0 localization in this case is complete in either the LO or the nonlinear attachment.

In the transition from high to low energies, the out-of-phase branch of periodic motions S11� undergoes
two saddle-node bifurcations. In the first bifurcation, a new pair of stable–unstable equilibrium points is
generated near c ¼ þp=2. As energy decreases a second (inverse) saddle-node bifurcation occurs that destroys
the unstable equilibrium generated in the first bifurcation together with the branch of S11� that existed for
higher energies (Fig. 1). It should be noted, however, that these bifurcations occur only below a certain critical
mass ratio �, i.e., only for sufficiently light attachments.

After this digression on the dynamics of the underlying Hamiltonian system, we next consider the weakly
damped system (1) by rescaling the damping terms as, l1! �l1; l2 ! �l2, and expressing the slow flow
equations in terms of the new variables r;f and c. Then, we reduce the slow flow of the weakly damped system
to the sphere ðr;f;cÞ 2 ðRþ � S1 � S1Þ,

_r ¼ �
r

2
f�l1ð1þ sincÞ þ �l2½ð1þ �Þ � ð1� �Þ sin c� 2�1=2 cos c cos f�g

_c ¼
�3Cr2

8�3=2
½ð1þ �Þ � ð1� �Þ sinc� 2�1=2 cos c cos f� sin f�

�l1
2

cos cþ
l2
2
½ð1� �Þ cos c� 2�1=2 sin c cos f�

_f ¼
1

2
�

3Cr2

16�2
½ð1þ �Þ � ð1� �Þ sin c� 2�1=2 cos c cos f� ð1� �Þ � 2�1=2

sin c cos f
cos c

� �
� �1=2l2

sin f
cos c

. (3)

We note that when l1 ¼ l2 ¼ 0 the slow-flow reduces to an integrable system on a two-torus [14]. For nonzero
damping, however, the slow-flow dynamics is non-integrable and the dimensionality of the system Eq. (3)
cannot be reduced further.
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Fig. 2. Phase space projection of damped IOs for � ¼ 0:1, C ¼ 2=15, and l1 ¼ l2 ¼ 0:1: (a) projection definition, (b) rð0Þ ¼ 2:0, (c)
rð0Þ ¼ 1:0 and (d) rð0Þ ¼ 0:5.
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In Fig. 2 we depict projections of IOs of the weakly damped system (1) to the three-dimensional space
ðr;f;cÞ 2 ðRþ � S1 � S1Þ for three different initial energy levels. These results were obtained by performing
direct numerical simulations of the damped system (1) subject to a single nonzero initial condition, namely the
initial velocity of the LO (this is equivalent to applying an impulse to the LO with the system initially at rest,
hence, the terminology [15]). The results of Fig. 2 can be directly compared to the plots of Fig. 1 depicting
isoenergetic projections of the underlying Hamiltonian dynamics. In the damped case, however, instead of
periodic orbits S11� (or equivalently, equilibrium points of the slow flow) we get in-phase and out-of-phase
decaying motions on the corresponding damped invariant manifolds [18,19]. These damped invariant
manifolds can be considered as being analytical continuations for the weakly damped case of the invariant
manifolds corresponding to periodic motions of S11� of the Hamiltonian system. Their stability was
discussed in Part I at Section 4.2 [14].

For the case of large initial energy (large impulse applied to the LO) there is an initial transient (Stage I in
Fig. 2b) as the orbit gets attracted by the damped manifold S11þ; this is followed by the slow evolution of the
damped motion along S11þ as energy decreases with the motion predominantly localized to the NES as
evidenced by the fact that cðtÞ � �p=2 (Stage II in Fig. 2b); finally, the damped manifold S11þ becomes
unstable, and the dynamics makes a final transition to a weakly nonlinear (linearized) invariant manifold
S11� corresponding to out-of-phase oscillations being localized predominantly to the LO (as evidenced by the
fact that limt!1cðtÞ ¼ p=2—Stage III in Fig. 2b). In this case TET from the LO to the NES is realized
predominantly during Stage I (TET through nonlinear beat) and Stage II (fundamental TET).

For lower initial energy (i.e., in the intermediate energy level) the initial transients of the dynamics during
the attraction to S11þ possess larger amplitudes (Stage I, Fig. 2c) leading to an increase of the resulting TET
due to nonlinear beats. In later times, Stages II and III of the dynamics are realized, similarly to the
corresponding Stages in the higher-energy case. Compared to the previous case, TET is enhanced, especially
during the initial transients of the motion where the LO and the NES undergo larger-amplitude nonlinear
beats. However, qualitatively different dynamics is observed when the initial energy is further decreased.
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As can be noted from the projection of Fig. 2d, the low-energy motion rapidly localizes to the LO as the
dynamics approaches directly the weakly nonlinear (linearized) invariant manifold S11�, and, as a result,
TET drastically diminishes. In essence, for this low energy value only Stage III of the dynamics is realized.
3. Conditions for optimal TET

In this Section we will investigate conditions for optimal TET in system (1). Our analytical derivations will
be performed by rescaling the damping terms in system (1) according to l1 ¼ l2 ¼ �l and considering again
the normalized linear eigenfrequency o2

0 ¼ 1:

€xþ �l _xþ �lð _x� _vÞ þ xþ Cðx� vÞ3 ¼ 0

�€vþ �lð_v� _xÞ þ Cðv� xÞ3 ¼ 0. (4)

In similarity to the results of the previous Section we will consider initial conditions corresponding to
excitation of an IO, i.e., vð0Þ ¼ _vð0Þ ¼ xð0Þ ¼ 0 and _xð0Þ ¼ X , and 0o�51. This set of initial conditions is
equivalent to forcing the LO with an impulse of magnitude X with the system originally at rest.

In Fig. 3 we depict the plot of instantaneous energy versus time of the system with � ¼ 0:05, C ¼ 1 and
�l ¼ 0:005 for excitation of IOs at various energy levels (these parameter values will be assumed in the
remainder of this Section, unless stated otherwise). This plot indicates the TET efficiency of the NES and the
time scale of energy dissipation in the system. In accordance with previous findings reported in Part I of this
work [14], we find that strong TET from the LO to the NES (as evidenced by rapid transient energy
dissipation) is realized in the intermediate energy region, that is, in the neighborhood of the 1:1 resonance
manifold of the dynamics of the underlying Hamiltonian system.

Moreover, optimal TET, as judged by the strongest energy dissipation in the plot of Fig. 3, is realized for
initial impulses X (e.g., initial energies) in the range between the periodic IOs U65 and U76; it turns out [13]
that these periodic IOs are close to the energy level of a saddle-node bifurcation of the linearized and strongly
nonlinear components of the branch S11� of out-of-phase periodic solutions of the underlying Hamiltonian
system. At this energy level, an unstable hyperbolic periodic orbit is generated on the strongly nonlinear
component of S11�. As shown below, it is the homoclinic orbit of this hyperbolic periodic orbit that affects
the topology of nearby IOs and defines conditions for optimal TET in the weakly damped system.
Fig. 3. Percentage of initial energy dissipated in system (4) when intermediate-energy damped IOs are excited (� ¼ 0:05, C ¼ 1 and

�l ¼ 0:005): solid lines correspond to excitation of specific periodic IOs, and the dashed line indicates the instantaneous energy that

remains in the system at t ¼ 25 s.
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3.1. Slow flow equations

The analytical study of conditions for optimal fundamental TET (i.e., TET under condition of 1:1
resonance capture between the LO and the NES) is carried out by applying the complexification-averaging
technique to system (4) under condition of 1:1 internal resonance between the LO and the NES. As we shall
see in the sequel, one of the main advantages of the above method compared to averaging is the formulation of
the complete slow flow dynamics into a single complex integro-differential equation.

Only excitation of intermediate-energy IOs are considered, focusing to those lying close to the 1:1 resonance
manifold at (fast) frequency oE1. To this end, we introduce the new complex variables,

c1ðtÞ ¼ _vðtÞ þ jvðtÞ � j1ðtÞe
jt; c2ðtÞ ¼ _xðtÞ þ jxðtÞ � j2ðtÞe

jt,

where j ¼ ð�1Þ1=2. By these representations we partition the dynamics into slow (the complex amplitudes j1

and j2) and fast (the exponentials ejt) components. Expressing the equations of motion (4) in terms of these
complex variables, and applying averaging with respect to the fast-terms with frequency equal to unity or
higher, we derive the following set of complex modulation equations governing the slowly varying complex
amplitudes:

_j1 þ ðj=2Þj1 þ ðl=2Þðj1 � j2Þ � ð3jC=8�Þjj1 � j2j
2ðj1 � j2Þ ¼ 0

_j2 þ ð�l=2Þð2j2 � j1Þ þ ð3jC=8Þjj1 � j2j
2ðj1 � j2Þ ¼ 0. (5)

The corresponding initial conditions are given by j1ð0Þ ¼ 0 and j2ð0Þ ¼ X .
Introducing the new variables,

u ¼ j1 � j2

w ¼ �j1 þ j2

)
3

j1 ¼ ðuþ wÞ=ð1þ �Þ

j2 ¼ ðw� �uÞ=ð1þ �Þ

(
, (6)

we express the system of modulation Eq. (5) as,

_uþ
ð1þ �Þl

2
u�

3ð1þ �ÞjC

8�
juj2uþ j

uþ w

2ð1þ �Þ
� �l

w� �u

2ð1þ �Þ
¼ 0

_wþ j�
uþ w

2ð1þ �Þ
þ �l

w� �u

2ð1þ �Þ
¼ 0, (7)

with initial conditions uð0Þ ¼ �X and wð0Þ ¼ X . Variable u corresponds to the relative response between the
LO and the NES, whereas w the (slow) motion of the center of mass of the system.

Hence, we have reduced the problem of studying intermediate-energy damped IOs of the initial system of
coupled oscillators (4) under condition of 1:1 resonance capture, to the slow flow (Eq. (7)) of first order
complex modulation equations which govern the slow flow close to the 1:1 resonance manifold. These
equations are valid only for small- and moderate-energy IOs, i.e., for initial conditions Xo0:5 (cf. Fig. 3); the
reason is that above this energy level the fast frequency of the response depends significantly on energy and the
assumption oE1 is violated.

Returning to the slow-flow Eq. (7), the second modulation equation can be solved explicitly as follows,

wðtÞ ¼ Xe��ðjþltÞ=2 þ
�ð�l� jÞ

2ð1þ �Þ

Z t

0

e�ð�=2ÞðjþlÞ½t�t�uðtÞdt, (8)

which, upon substitution into the first modulation equation yields the dynamical system:

_u�
3jCð1þ �Þ

8�
juj2uþ

jþ l½�2 þ ð1þ �Þ2�
2ð1þ �Þ

u ¼
�l� j

2ð1þ �Þ
Xe��ðjþlÞt=2

þ �
ð�l� jÞ

2ð1þ �Þ

� �2 Z t

0

e�ð�=2ÞðjþlÞ½t�t�uðtÞdt; uð0Þ ¼ �X . (9)

This complex integro-differential equation governs the slow flow of a damped IO in the intermediate-energy
regime, and it is equivalent to system (7). The above dynamical system, which is formulated entirely in terms of
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the relative response u between the LO and the NES, provides information on the slow evolution of the damped
dynamics close to the 1:1 resonance manifold and will be the basis of the following analytical derivations.

3.2. Analytical approximations of energy functionals in the slow flow

The study of optimal TET from the LO to the NES is directly related to the study of energy dissipation by
the damper of the NES. This can be performed by analyzing the slow flow Eq. (9). The first step of our study is
to derive expressions for the various energy measures in the system in terms of the complex modulations u

and w. These expressions will be further exploited in an effort to study the dynamical features of these
responses that yield conditions for optimal TET.

Hence, for the instantaneous total energy stored in the LO we derive the measure,

ELðtÞ �
1

2
½x2ðtÞ þ _x2ðtÞ� �

1

2
½ðIm½j2e

jt�Þ
2
þ ðRe½j2e

jt�Þ
2
� ¼

1

2
jj2j

2 ¼
jw� �uj2

2ð1þ �Þ2
. (10)

The instantaneous energy stored in the NES is approximately evaluated as,

ENLðtÞ ¼
1

2
�_v2ðtÞ þ

C

2
½xðtÞ � vðtÞ�4

� �
�

1

2
�ðRe½j1e

jt�Þ
2
þ

C

2
ðIm½uejt�Þ4

� �

¼
1

2
� Re

uþ w

1þ �
ejt

� �� �2

þ
C

2
ðIm½uejt�Þ4

( )
. (11)

Finally, the most important energy measure for our analysis will be the dissipation of energy due to the
damper of the NES, approximated as,

EDISSðtÞ ¼

Z t

0

�l½ _xðtÞ � _vðtÞ�2 dt � �l
Z t

0

ðRe½uejt�Þ2 dt

¼ �l
Z t

0

fðRe½u�Þ2 cos2 tþ ðIm½u�Þ2 sin2 t�Re½u�Im½u� sin 2tgdt

¼ �l
Z t

0

ðRe½u�Þ2
1þ cos 2t

2
þ ðIm½u�Þ2

1� cos 2t

2
�Re½u�Im½u� sin 2t

� �
dt. (12a)

Omitting terms with fast frequencies greater than unity from the integrand (this is consistent with our
averaging analysis, based on averaging with respect to the fast frequency equal to unity), the above integral
can be further approximated by the compact expression,

EDISSðtÞ �
�l
2

Z t

0

fðRe½u�Þ2 þ ðIm½u�Þ2g dt ¼
�l
2

Z t

0

juðtÞj2 dt. (12b)

Hence, within the approximations of the analysis, the energy dissipated by the NES is directly related to the
modulus of u(t) which characterizes the relative response between the LO and the NES. It follows, that
enhanced TET in system (4) is realized when the modulus |u(t)| exhibits large amplitudes, especially during the

initial phase of motion where energy is at its highest.

3.3. Qualitative analysis of different TET regimes

In Fig. 4 we present a typical solution of the dynamical system (7) depicting the slow flow of a damped IO in
the upper intermediate-energy regime of Fig. 3. The initial ‘‘wiggles’’ in the slow-flow represent the initial
attraction of the dynamics by the damped in-phase invariant manifold S11þ, and correspond to initial
nonlinear beats in the full response. As we will see, although short in duration, the energy dissipated by the
NES in this initial nonlinear beat regime can be quite significant.

In Fig. 5 we examine the dynamics of the averaged system (7) (or equivalently Eq. (9)) over the entire
intermediate-energy regime of damped IOs. Starting from relatively high energies (i.e., from the highest value
of impulsive magnitude X, cf. Fig. 5a), the initial regime of nonlinear beats (corresponding to the attraction of
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the dynamics to the stable damped invariant manifold S11þ) leads to strong energy exchanges between the
LO and the NES; as the dynamics settles to the in-phase damped oscillation on S11þ the energy exchanges
diminish and slow energy dissipation is realized in both oscillators; finally the dynamics makes the transition
to the linearized damped manifold S11� at the later stage of the response when nearly the entire energy of the
system has been dissipated.

From the results depicted in the plots of Fig. 5 we conclude that in the upper region of the intermediate-
energy regime TET is relatively weak as the impulsively excited LO retains most of its energy throughout the
oscillation. As the impulsive energy decreases (cf. Figs. 5b and c) the initial regime of nonlinear beats expands
and stronger energy exchanges between the impulsively forced LO and NES are realized; moreover, the
dynamics instead of settling to S11þ, undergoes a transition to the linearized manifold S11�. These features
of the slow dynamics enhance TET in the system, as judged by the efficient dissipation of energy in both
oscillators. However, optimal energy dissipation (and hence, TET) is realized in Fig. 5d, where the initial
regime of beats is replaced by a slow oscillation during which the entire energy of the LO gets transferred to the

NES over a single half-cycle. Some of this energy gets ‘‘backscattered’’ to the LO at a later stage through
low-amplitude nonlinear beats, but the major amount of transferred energy to the NES gets dissipated during
the initial half-cycle of energy transfer; this provides the condition for optimal TET in this system, and
corresponds to the ‘‘ridge’’ in Fig. 3 realized at XE0.11. However, even slight decrease of the impulsive
magnitude X changes qualitatively the slow dynamics, as both oscillators now settle into out-of-phase
linearized responses and negligible TET takes place; in this case the slow dynamics gets directly attracted by
the linearized manifold S11�.

Hence, the slow dynamics of the damped IOs in the intermediate-energy regime is quite complex. Indeed,
based on the qualitative features of the damped IO dynamics we may divide the intermediate-energy regime of
Fig. 3 into three subregimes; these can be distinguished by the features of the slow-flow dynamics (Eq. (9))
during the initial, highly energetic stage of the impulsive motion where most TET is realized. In the upper

subregime corresponding to higher impulsive magnitudes (cf. Figs. 5a–c), initial wiggles in the slow flow
dynamics take place and TET is realized primary during the corresponding initial nonlinear beats. The middle

subregime (cf. Fig. 5d) is the regime of optimal TET, and is governed by the most complex dynamics; the initial
slow-flow dynamics is realized through a single ‘‘super-slow’’ half-cycle during which the entire energy of the
LO is transferred to the NES. Hence, it appears that the initial nonlinear beats realized in the upper subregime
degenerate to a single ‘‘super-slow’’ half-cycle of the slow-flow as the middle subregime is reached. As shown
in the following analysis, the dynamic mechanism generating the ‘‘super-slow’’ degeneration of the slow
dynamics in Fig. 5d is a homoclinic orbit of the unstable orbit on S11� generated by the saddle-node
bifurcation of branch S11� [13]. Finally, the lower subregime is characterized by linearized motion



ARTICLE IN PRESS

Fig. 5. Slow-flow (7) or (9) of damped IOs in the intermediate-energy regime: (a) X ¼ 0:30 (upper regime), (b) X ¼ 0:19, (c) X ¼ 0:12,
(d) X ¼ 0:11 (optimal TET) and (e) X ¼ 0:09 (lower regime).
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predominantly localized to the LO, with complete absence on nonlinear beats and negligible TET. We note
that the referred optimization of TET is not based on a formal optimization criterion, but rather on the
qualitative argument that optimal TET corresponds to one-way transfer of nearly all of the energy of the LO
to the nonlinear attachment in a single ‘super-slow’ half-cycle. This is caused by an additional ‘super-slow’
time scale in the dynamics which only exists in the neighborhood of the homoclinic orbit of the underlying
Hamiltonian system.

3.4. Analytical study of the regime of optimal TET

The previous discussion and results provide ample motivation for focusing on the initial, highly energetic
regime of the slow-flow dynamics [Eq. (7) or equivalently Eq. (9)], as this represents the most critical stage for
TET. Hence, we consider the modulation Eq. (9) and restrict the analysis to the initial stage of the dynamics.
Mathematically, we will be interested in the dynamics up to times of Oð1=�1=2Þ, for initial conditions (impulses)
X ¼ Oð�1=2Þ. Under these assumptions we consider the integral term on the right-hand-side of Eq. (9) and
express it as

I � �
ð�l� jÞ

2ð1þ �Þ

� �2 Z t

0

e�ð�=2ÞðjþlÞ½t�t�uðtÞdt ¼ �
1

2ð1þ �Þ

� �2 Z t

0

e�ð�=2ÞðjþlÞ½t�t�uðtÞdtþOð�2Þ.

Assuming that t ¼ Oð��1=2Þ, we have also that jt� tj ¼ Oð��1=2Þ; it follows that by expanding the exponential
in the integrand in Taylor series in terms of e, the integral I can be approximated as,

I � �
1

2ð1þ �Þ

� �2 Z t

0

uðtÞdtþOð�3=2Þ,

or, by invoking the mean value theorem of integral calculus, as

I � 2�2ð1þ �Þ�2�tuðt0Þ,

for some t0 in the interval 0ot0ot. Given that t ¼ Oð��1=2Þ and uðt0Þ ¼ OðX Þ ¼ Oð�1=2Þ, we prove that for
times smaller than Oð��1=2Þ, the integral is ordered as, I ¼ Oð�Þ, and hence is a small quantity asymptotically as
�! 0.

Taking this result into account, and introducing the variable transformations u ¼ �1=2z and X ¼ �1=2Z to
account for the scaling of the initial condition (impulse) X, we express the modulation equation Eq. (9) in the
form,

_z�
3jC

8
jzj2zþ

jþ l
2

z ¼ �
jZ

2
þOð�; �1=2lÞ; zð0Þ ¼ �Z; t up to Oð��1=2Þ, (13)

where the variable z and initial condition Z are assumed to be O(1) quantities, unless otherwise noted. Finally,
introducing the rescalings,

z!
4

3C

� �1=2

z; w!
4

3C

� �1=2

w,

the new notation,

B ¼ �
3C

4

� �1=2

Z,

and the additional scaling for the damping coefficient, l ¼ �1=2l̂, the system is brought into the final form,

_z�
j

2
jzj2zþ

jþ �1=2l̂
2

z ¼
jB

2
þOð�Þ; zð0Þ ¼ B; t up to Oð��1=2Þ. (14)

All quantities in the above reduced slow flow equation except the small parameter e are assumed to be O(1).
The complex modulation Eq. (14) provides an approximation to the initial slow-flow dynamics, and is valid
formally up to times of Oð��1=2Þ.
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Fig. 6. Percentage of energy dissipated when intermediate-energy damped IOs are excited (� ¼ 0:05, C ¼ 1 and l ¼ �1=2l̂ ¼ 0:1): (a) full
slow-slow (7) or (9) and (b) approximation of the slow-flow (12) or (14) in the initial stage of the dynamics.
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In Fig. 6 we test this approximation by comparing the slow flows resulting from the reduced model Eq. (13)
or Eq. (14), to the full slow-flow Eq. (7) or Eq. (9). This is performed by computing the corresponding energy
dissipation measures predicted by the two approximations when intermediate energy IOs are excited. This
comparison clearly validates the slow flow approximation (Eq. (14)) in the intermediate-energy level of interest
in our study.

Introducing the polar transformation z ¼ Nejd, substituting into Eq. (14), and separating real and
imaginary parts the reduced slow flow can be expressed in terms of the two real modulation equations,

_N þ
�1=2l̂
2

N ¼
B

2
sin dþOð�Þ; Nð0Þ ¼ B

_dþ
1

2
�

1

2
N2 ¼

B

2N
cos dþOð�Þ; dð0Þ ¼ 0. (15)

These equations govern the slow evolutions of the amplitude N and phase d of the complex modulation z of
the damped IO, during the initial regime of the dynamics. Note that for l̂ ¼ 0 the system is integrable as is
shown below.

In Fig. 7 we depict the initial regime of slow-flow dynamics for � ¼ 0:05, l̂ ¼ 0:4472 and three different
normalized impulses (initial conditions) B. For B above the critical level Bcrðl̂ ¼ 0:4472Þ � 0:3814, the
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slow-flow model (14) predicts large excursion of the damped IO in phase space. In fact, after executing
relatively large-amplitude transients, the orbit is attracted by the stable in-phase damped invariant manifold
S11þ; these initial transients correspond to the nonlinear beats (the ‘‘wiggles’’) observed in the initial stage of
the full slow-flow model (9) in the upper subregime of the intermediate-energy regime (cf. Figs. 4 and 5a–c).
Note, that since the slow flow model (14) and (15) is valid only for the initial stage of the slow-flow dynamics,
it cannot predict the eventual transition of the dynamics from S11þ to S11� in the later, low-energy
(linearized) stage of the oscillation.

For B below the critical level Bcrðl̂Þ, there is a significant qualitative change in the dynamics as the IO
executes small-amplitude oscillations and is being attracted by the out-of-phase damped invariant manifold
S11�; this corresponds to the linearized dynamics realized in the lower subregime of the intermediate-energy
range (cf. Fig. 5e).

The critical orbit that separates these two qualitatively different dynamics is a perturbed homoclinic orbit

realized for B ¼ Bcrðl̂Þ. This special orbit can be regarded as the damped perturbation of the homoclinic loop
of the unstable undamped invariant manifold S11� of the Hamiltonian system that is generated through a
saddle-node bifurcation [13]. This damped perturbed homoclinic orbit appears as the initial ‘‘super-slow’’ half-

cycle in the plot of Fig. 5d, and corresponds to the case of optimal TET in the system. In Fig. 7 we depict the
portion of this damped homoclinic perturbation corresponding to the solution of the slow-flow dynamical
systems (14) and (15) for the given initial conditions, i.e., zð0Þ ¼ B. We note that these are peculiar forms of
dynamical systems, as the initial conditions appear also as excitation terms on their right-hand-sides. In what
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follows, the damped homoclinic perturbation will be analytically studied in an effort to analytically model the
optimal TET regime depicted in Fig. 5d.

Reconsidering the slow flow system Eq. (14) or Eq. (15), we seek its solution in the regular perturbation
form,

zðtÞ ¼ z0ðtÞ þ �
1=2l̂z1ðtÞ þOð�Þ; B ¼ B0 þ �

1=2l̂B1 þOð�Þ. (16)

Substituting into Eq. (14) and considering only O(1) terms in the resulting expression we derive the system at
the first order of approximation,

_z0 �
j

2
jz0j

2z0 þ
j

2
z0 ¼

jB0

2
; z0ð0Þ ¼ B0, (17a)

or, in terms of the polar transformation z0 ¼ N0e
jd0 ,

_N0 ¼
B0

2
sin d0; N0ð0Þ ¼ B0

_d0 þ
1

2
�

1

2
N2

0 ¼
B0

2N0
cos d0; d0ð0Þ ¼ 0. (17b)

We note that due to scaling of the damping term in Eqs. (14) and (15), there are no dissipative terms in this
first order of approximation. Damping effects enter into the problem at the next order of approximation.

It can be proved that the undamped slow-flow Eq. (17a) or Eq. (17b) is integrable, as it possesses the
following Hamiltonian (first integral of the motion),

j

2
jz0j

2 �
j

4
jz0j

4 �
jB0

2
z�0 �

jB0

2
z0 ¼ h, (18)

where the asterisk denotes complex conjugate. Taking into account the integrability of the system we can
obtain a closed form (exact) solution. Indeed, taking into account Eq. (18) system (17b) reduces to the one-
dimensional slow-flow,

2 _a ¼ ½f ða;B0Þ�
1=2; f ða;B0Þ � 4B0a� a�

a2

2
þ

B4
0

2
þ B2

0

� �2

sin d0 ¼
2

B0

d
ffiffiffi
a
p

dt
; að0Þ ¼ B2

0; d0ð0Þ ¼ 0, (19)

where we introduced the notation aðtÞ � N2
0ðtÞ. The roots of the polynomial f ða;B0Þ depend on the parameter

B0 (cf. Fig. 8). For B04B0cr � 0:36727 the polynomial f ða;B0Þ possesses two real distinct roots for a, whereas
for B0oB0cr it possesses four distinct real roots. For B0 ¼ B0cr two of the real roots coincide, so f ða;B0Þ

possesses only three distinct real roots. These are given by

a1 ¼ B0croa2 ¼ a3 ¼ 0:4563oa4 ¼ 2:9525; B ¼ B0cr � 0:36727.
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Fig. 8. Roots of f ðB0; aÞ ¼ 0 (the additional real root for a41 is not shown).
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It will be proven that for B ¼ B0cr � 0:36727 system (19) possesses a homoclinic orbit, which we now proceed
to compute explicitly.

Indeed, for B0 ¼ B0cr the reduced slow-flow dynamical system (19) can be integrated by quadratures
as,

_a ¼
1

4
½ða� B2

0crÞða2 � aÞ2ða4 � aÞ�1=2 ) t ¼ 4

Z a

B2
0cr

du

ða2 � uÞ½ðu� B2
0crÞða4 � uÞ�1=2

, (20)

where the initial condition að0Þ ¼ B2
0cr was imposed, and it was recognized that aðtÞXB2

0cr for tX0. We note
that Eq. (20) provides the unique solution of the initial value problem (19). The definite integral in the
expression above can be explicitly evaluated [20] to yield the analytical homoclinic orbit of the first-order
system (17a) or (17b),

N2
0ðtÞ � a

ð�Þ

h ðtÞ ¼ a2 �
g1g2

g1 sinh
2

ffiffiffiffiffiffiffiffiffi
g1g2
p

8
t

� �
þ g2 cosh

2

ffiffiffiffiffiffiffiffiffi
g1g2
p

8
t

� � (21a)

d0ðtÞ ¼ dð�Þ0h ðtÞ ¼ sin�1
2

B0cr

d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ð�Þ

h ðtÞ

q
dt

2
4

3
5. (21b)

In the expressions above we use the definitions, g1 ¼ a2 � B2
0cr; g2 ¼ a4 � a2, and only the branch of the

solution corresponding to tX0 is selected. The solution (21) assumes the limiting values, N0ð0Þ ¼ B0cr and
limt!þ1N0ðtÞ ¼

ffiffiffiffiffi
a2
p

. Of course, this solution can be extended for to0, but the resulting branch of the
homoclinic orbit is not a solution of the initial value problem (17), and satisfies the alternative limiting relation
limt!�1N0ðtÞ ¼

ffiffiffiffiffi
a2
p

.
We mention that the system (20) provides an additional homoclinic loop for Eq. (17) (which, however, does

not satisfy the initial condition að0Þ ¼ B2
0cr), given by:

N2
0ðtÞ � a

ðþÞ

h ðtÞ ¼ a2 þ
g1g2

g1 cosh
2

ffiffiffiffiffiffiffiffiffi
g1g2
p

8
t

� �
þ g2 sinh

2

ffiffiffiffiffiffiffiffiffi
g1g2
p

8
t

� � (22a)

d0ðtÞ ¼ dðþÞ0h ðtÞ ¼ sin�1
2

B0cr

d

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ðþÞ

h ðtÞ

q
dt

2
4

3
5. (22b)

This homoclinic loop correspond to the limiting values, N0ð0Þ ¼
ffiffiffiffiffi
a4
p

and limt!�1N0ðtÞ ¼
ffiffiffiffiffi
a2
p

, and it will not
be taken into account in the following analytical derivations.

In Fig. 9 the two homoclinic loops corresponding to Eqs. (21a,21b) and (22a,22b) are depicted. These loops
are shown in dashed lines for the full range �1otoþ1, with the branch (21a) of the homoclinic solution of
problem (19) identified by solid line. This completes the solution of the O(1) approximation of the homoclinic
solution of Eqs. (14) and (15).

We now consider the Oð�Þ problem, which takes into account (to the first order) the effects of damping. We
will be especially interested in studying the perturbation of the homoclinic solution (21a) and (21b) of the O(1)
problem when weak damping [of Oð�1=2Þ] is added. The Oð�1=2Þ analysis will also provide the correction due to
damping of the critical value of the impulse (initial condition) corresponding to the perturbed homoclinic
solution (cf. Fig. 7).

Substituting Eq. (16) in Eq. (14) and considering Oð�1=2Þ terms, we derive the following problem at the next
order of approximation,

_z1 �
j

2
ðzn1z20 þ 2jz0j

2z1Þ þ
j

2
z1 ¼ �

1

2
z0 þ

jB1

2
; z1ð0Þ ¼ B1. (23)

This is a complex quasi-linear ordinary differential equation with a nonhomogeneous term. Although the
following analysis applies to the general class of solutions of Eq. (23), from hereon we will focus only on the
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solution corresponding to the perturbation of the homoclinic orbit (21a) and (21b) of the O(1) problem.
To this end, the perturbed homoclinic solution z1hðtÞ of Eq. (23) is written as,

z1hðtÞ ¼ z1HSðtÞ þ z1PIðtÞ, (24)

i.e., the solution is expressed as a superposition of the general homogeneous solution z1HSðtÞ and a particular
integral z1PIðtÞ. Key in solving the problem, is the computation of two linearly independent homogeneous
solutions of Eq. (23), since then, a particular integral may be systematically computed by either solving the
differential equation satisfied by the Wronskian relation satisfied by the linearly independent homogeneous
solutions, or by the employing the method of variation of parameters.

We can easily prove (by simple substitution into the complex homogeneous equation) that one
homogeneous solution of Eq. (23) can be computed in terms of the O(1) homoclinic solution
z0hðtÞ as, z

ð1Þ
1HSðtÞ ¼ L_z0hðtÞ; L 2 R. At this point we decompose the complex solution into real and imaginary

parts,

z1hðtÞ ¼ x1hðtÞ þ jy1hðtÞ; z0hðtÞ ¼ x0hðtÞ þ jy0hðtÞ. (25)
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Then the first homogeneous solution of Eq. (23) is expressed as,

x
ð1Þ
1HSðtÞ ¼

2

B0cr

_x0hðtÞ

y
ð1Þ
1HSðtÞ ¼

2

B0cr

_y0hðtÞ

9>>=
>>;) z

ð1Þ
1HS ¼

2

B0cr
½ _x0hðtÞ þ j _y0hðtÞ�, (26)

where the real constant L is selected so that the first homogeneous solution satisfies the initial conditions:

x
ð1Þ
1HSð0Þ ¼ 0; y

ð1Þ
1HSð0Þ ¼ þ1 ) z

ð1Þ
1HSð0Þ ¼ j.

In addition, the homogeneous solution (26) satisfies the limiting conditions limt!þ1x
ð1Þ
1HSðtÞ ¼ 0 and

limt!þ1y
ð1Þ
1HSðtÞ ¼ 0.

To compute a second linearly independent homogeneous solution of Eq. (23) it is convenient to carry the
entire analysis in the real domain by decomposing Eq. (23) to the following set of two real quasi-linear coupled
ordinary differential equations with nonhomogeneous terms:

_x1h

_y1h

( )
þ

x0hy0h ðx2
0h þ 3y2

0h � 1Þ=2

�ð3x2
0h þ y2

0h � 1Þ=2 �x0hy0h

" #
x1h

y1h

( )
¼

�x0h=2

ðB1cr � y0hÞ=2

( )
(27)

Note that problem (27) governs the Oð�1=2Þ perturbation of the O(1) homoclinic solution (21a) and (21b), and

that the real constant B1cr on the right-hand-side denotes the Oð�1=2Þ correction to B0cr in Eq. (16). We seek a

second homogeneous solution of Eq. (27) satisfying the initial conditions, x
ð2Þ
1HSð0Þ ¼ �1; y

ð2Þ
1HSð0Þ ¼ 0.

Accordingly, we consider the following relation satisfied by the Wronskian of independent homogeneous
solutions of Eq. (27):

W ðtÞ ¼ x
ð1Þ
1HSðtÞy

ð2Þ
1HSðtÞ � x

ð2Þ
1HSðtÞy

ð1Þ
1HSðtÞ (28a)

The Wronskian satisfies the following relation,

_W ðtÞ ¼ 0 ) W ðtÞ ¼W ð0Þ ¼ 1, (28b)

from which we conclude that the second homogeneous solution satisfies the relation,

x
ð1Þ
1HSðtÞy

ð2Þ
1HSðtÞ � x

ð2Þ
1HSðtÞy

ð1Þ
1HSðtÞ ¼ 1 ) x

ð2Þ
1HSðtÞ ¼

x
ð1Þ
1HSðtÞy

ð2Þ
1HSðtÞ � 1

y
ð1Þ
1HSðtÞ

. (29)

When this expression is substituted into the second of equations (27) with the nonhomogeneous term dropped,

it leads to the first-order quasi-linear differential equation governing y
ð2Þ
1HS,

_yð2Þ1HS þ a21

x
ð1Þ
1HS

y
ð1Þ
1HS

þ a22

" #
y
ð2Þ
1HS ¼

a21

y
ð1Þ
1HS

; y
ð2Þ
1HSð0Þ ¼ 0, (30)

with a11 ¼ x0hy0h, a12 ¼ ðx
2
0h þ 3y2

0h � 1Þ=2, a21 ¼ �ð3x2
0h þ y2

0h � 1Þ=2, and a22 ¼ �x0hy0h. The solution of

Eq. (30) provides the second linearly independent homogeneous solution of Eq. (23), which is computed
explicitly as,

x
ð2Þ
1HSðtÞ ¼

x
ð1Þ
1HSðtÞy

ð2Þ
1HSðtÞ � 1

y
ð1Þ
1HSðtÞ

y
ð2Þ
1HSðtÞ ¼

R t

0

a21ðtÞ

y
ð1Þ
1HSðtÞ

exp �
R t

t a21ðsÞ
x
ð1Þ
1HSðsÞ

y
ð1Þ
1HSðsÞ

þ a22ðsÞ

" #
ds

( )
dt

9>>>>>=
>>>>>;
) z

ð2Þ
1HS ¼ x

ð2Þ
1HSðtÞ þ jy

ð2Þ
1HSðtÞ. (31)

The second homogeneous solution satisfies the initial conditions,

x
ð2Þ
1HSð0Þ ¼ �1; y

ð2Þ
1HSð0Þ ¼ 0 ) z

ð2Þ
1HSð0Þ ¼ �1.
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Contrary to Eq. (26) the second linearly independent solution diverges with time, as limt!þ1x
ð2Þ
1HSðtÞ ¼ þ1

and limt!þ1y
ð2Þ
1HSðtÞ ¼ þ1.

Making use of the two linearly independent homogeneous Eqs. (26) and (31) we can compute a first
particular integral by the method of variation of parameters. By expressing the real and imaginary parts of the
particular integral z1PIðtÞ ¼ x1PIðtÞ þ jy1PIðtÞ, in the form,

x1PIðtÞ

y1PIðtÞ

( )
¼ c1ðtÞ

x
ð1Þ
1HSðtÞ

y
ð1Þ
1HSðtÞ

8<
:

9=
;þ c2ðtÞ

x
ð2Þ
1HSðtÞ

y
ð2Þ
1HSðtÞ

8<
:

9=
;, (32)

and evaluating the real coefficients c1ðtÞ and c2ðtÞ by substituting into Eq. (27), we obtain the following explicit
general solution of problem (23), providing the Oð�1=2Þ perturbation of the homoclinic orbit,

x1hðtÞ

y1hðtÞ

( )
¼ L1 þ

Z t

0

�
x0hðtÞ
2

y
ð2Þ
1HSðtÞ �

B1cr � y0hðtÞ
2

� �
x
ð2Þ
1HSðtÞ

� �
dt

� � x
ð1Þ
1HSðtÞ

y
ð1Þ
1HSðtÞ

8<
:

9=
;

þ L2 þ

Z t

0

x0hðtÞ
2

y
ð1Þ
1HSðtÞ þ

B1cr � y0hðtÞ
2

� �
x
ð1Þ
1HSðtÞ

� �
dt

� � x
ð2Þ
1HSðtÞ

y
ð2Þ
1HSðtÞ

8<
:

9=
;. (33)

This expression incorporates both the homogeneous solution and the particular integral and contains two
unknown real constants L1 and L2 which are evaluated by imposing the initial conditions corresponding to the
perturbed homoclinic orbit. Moreover, this expression contains the correction B1cr to the initial condition for
motion on the perturbed homoclinic orbit. By imposing the initial condition of Eq. (23),

z1hð0Þ ¼ B1cr ) x1hð0Þ ¼ B1cr; y1hð0Þ ¼ 0,

we compute the two unknown coefficients as

L1 ¼ 0 and L2 ¼ �B1cr. (34)

Then, taking into account that the components of the second homogeneous solution x
ð2Þ
1HSðtÞ and y

ð2Þ
1HSðtÞ in

the second additive term of Eq. (33) diverge as t!þ1, and imposing the requirement that x1hðtÞ and y1hðtÞ

should be bounded as t!þ1, it should be satisfied that

�B1cr þ

Z þ1
0

x0hðtÞ
2

y
ð1Þ
1HSðtÞ þ

B1cr � y0hðtÞ
2

� �
x
ð1Þ
1HSðtÞ

� �
dt ¼ 0. (35a)

This evaluates B1cr as

B1cr ¼

Rþ1
0 ½x0hðtÞy

ð1Þ
1HSðtÞ � y0hðtÞx

ð1Þ
1HSðtÞ�dt

2�
Rþ1
0 x

ð1Þ
1HSðtÞdt

. (35b)

This completes the solution of the Oð�1=2Þ problem (23) and provides the damped perturbation of the
homoclinic orbit in the slow flow (14) and (15) with Oð�1=2Þ damping.

In summary, by applying the complexification-averaging method we have reformulated the system to an
equivalent integro-differential equation that governs the slow flow. By a suitable early time approximation of
this complex equation we have determined analytically the response of the system near to the homoclinic orbit
which defines the critical amount of energy for optimum TET. The analytic approximation of the perturbed
homoclinic orbit for time scales of Oð��1=2Þ has been proven to be,

zhðtÞ ¼ z0hðtÞ þ �
1=2l̂z1hðtÞ þOð�Þ; Bcrðl̂Þ ¼ B0cr þ �

1=2l̂B1cr þOð�Þ, (36)

where z0hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ð�Þ

h ðtÞ

q
exp½dð�Þh ðtÞ� and a

ð�Þ

h ðtÞ, dð�Þh ðtÞ is the analytical homoclinic orbit of the first-order
system (undamped) which is computed by Eqs. (21a) and (21b). Additionally, the first order correction with
respect to damping z1hðtÞ ¼ x1hðtÞ þ jy1hðtÞ, is computed by considering Oð�1=2Þ terms in our analysis, resulting
in x1hðtÞ and y1hðtÞ given by Eqs. (33), (34) and (35b). Finally, the critical initial condition B0cr � 0:36727 is
found by analytically studying the unperturbed homoclinic orbit while the first order correction B1cr



ARTICLE IN PRESS
T.P. Sapsis et al. / Journal of Sound and Vibration 325 (2009) 297–320316
(computed by Eq. (35b)) is derived by imposing the requirements that x1hðtÞ and y1hðtÞ should be bounded as
t!þ1.

For � ¼ 0:05 and l̂ ¼ 0:4472 we estimate the initial condition as Bcrðl̂ ¼ 0:4472Þ � 0:3806, which compares
to the numerical value of 0.3814 derived from the numerical integration of the initial approximation of the
slow-flow (14) and (15) (cf. Fig. 7). Taking into account the previous coordinate transformations and
introduced rescalings for the initial condition B, the previous analytical result (Eq. (35b)) predicts an initial
condition (impulse) of the original problem equal to X ¼ 0:0983 for optimal TET (i.e., for the excitation of the
damped homoclinic perturbation), compared to the numerical result of X ¼ 0:1099 derived from simulation of
the full averaged slow-flow (9) (cf. Fig. 5d); we note that the error is of Oð� ¼ 0:05Þ and compatible to our
previous asymptotic derivations. Based on the previous analytical result (Eq. (35b)) an optimal choice of
system parameters can be made for a given energy level so that optimal TET is performed for a typical system
response (a response with initial energy close to the given one).

In Fig. 10a we provide a comparison of the three approximate models for the slow-flow dynamics in the
regime of optimal TET. The asymptotic analysis correctly predicts the half-cycle ‘‘super-slow’’ transfer of
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Fig. 10. (a) Slow-flow response in the regime of optimal TET (‘super-slow’ half-cycle of TET), for � ¼ 0:05, C ¼ 1 and l ¼ �1=2l̂ ¼ 0:1;
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in the regime of optimal TET.
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energy from the LO to the NES in the initial regime of the motion, although it underestimates the maximum
amplitude of the response during this half-cycle; this can be explained by the fact that the slow-flow
approximation (12) or (14) is only valid in the initial regime of the motion. Furthermore, the validity of the
averaged system (9) is illustrated in Fig. 10b where a direct comparison of system (1) response with the full
averaged system (9) is shown.

This completes the analytical study of the regime of optimal TET in system (4) when intermediate-energy
damped IOs are excited. In Figs. 11–13 we study TET in system (4) for excitation of intermediate-
energy damped IOs over a wider range of mass asymmetry e and damping el. These plots were derived by
direct numerical integrations of the differential equations of motion, and monitoring the instantaneous
energy of the system versus time. Numerical results indicate that, by increasing e (i.e., by decreasing
the mass asymmetry) and the damping coefficient el, the capacity of the NES for optimal TET also
deteriorates. This is due to the fact that by increasing the inertia of the NES the amplitude of the relative
response between the LO and the NES is expected to decrease, which hinders the capacity of the damper of the
NES to effectively dissipate vibration energy. Moreover, by increasing damping in the system, the damper of
the LO dissipates an increasingly higher portion of the vibration energy which leads to deterioration of TET;
this markedly slows energy dissipation in the system, as judged by comparing the times required for energy
dissipation in the plots of Fig. 13 to the corresponding times in the regimes of optimal TET in the plots of
Figs. 11 and 12.
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Fig. 11. Energy dissipation in system (4) when damped IOs are excited for mass asymmetry � ¼ 0:03: (a) �l ¼ 0:015, (b) �l ¼ 0:003 and (c)

�l ¼ 0:006.
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4. Concluding remarks

We have studied TET in coupled nonlinear oscillators associated with 1:1 resonance capture. Referring to
system (4), the dynamics (and TET) depends on the damping coefficient l and the parameter e that scales the
mass of the NES and damping. In Part I of this work [14] the dynamics was examined under the assumption
that l is small and � arbitrary. In Part II we assumed that e is small; although l was selected to be of Oð�1=2Þ,
this was not necessary in our study of the perturbation of the homoclinic orbit in the regime of optimal TET.
Hence, the analysis of this work can be extended (with some modification) to the case of arbitrary l.

We showed that in the weakly damped system, optimal TET is realized for initial energies where the excited
damped IOs are in the neighborhood of the homoclinic orbit of the unstable out-of-phase damped invariant
manifold S11�; in the underlying Hamiltonian system this unstable periodic orbit is generated at a critical
energy through a saddle-node bifurcation. We studied analytically the perturbation of the homoclinic orbit in
the weakly damped system, which introduces an additional slow-time scale in the averaged dynamics and leads
to optimal TET from the LO to the NES in a single ‘‘super-slow’’ half-cycle. At higher energies, this ‘‘super-
slow’’ half-cycle is replaced by strong nonlinear beats (these are generated from the attraction of the dynamics
to the stable in-phase damped orbit S11þ). Although producing significant TET through nonlinear beats, this
TET is not optimal. At lower energies than the one corresponding to the optimal TET regime, the dynamics is
attracted by the stable, weakly nonlinear (linearized), out-of-phase damped orbit S11� and TET is negligible.
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Fig. 13. Energy dissipation in system (4) when damped IOs are excited for mass asymmetry � ¼ 0:2: (a) �l ¼ 0:01, (b) �l ¼ 0:02 and (c)
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The aforementioned conclusions are valid for the weakly damped system (4), under the assumption of
sufficiently small e; i.e., for a lightweight NES in a system with high mass asymmetry.
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