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Abstract

A model based on a Timoshenko beam p-version finite element is developed to analyse oscillations that are,

simultaneously, elasto-plastic and geometrically nonlinear. The geometrical nonlinearity is represented by Von Kármán
type strain–displacement relations and the stress–strain relation is of the bilinear type, with mixed strain hardening. The

equations of motion are obtained using the principle of virtual work and are solved in the time domain by an implicit

Newmark method. The Von Mises yield criterion is employed and the flow theory of plasticity applied; if plastic flow is

found at a point of the domain, the total plastic strain is determined by summation. Numerical examples are carried out in

order to demonstrate that the p-version element here advocated has a number of advantages and to show the influence of

the plastic and geometrically nonlinear terms on the oscillations of beams.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Large amplitude nonlinear vibrations, which cause large strains and stresses, are an important problem in
many structures including beams. Their study requires geometrically nonlinear models [1–4]. On the other
hand, at stresses where Hooke’s law is no longer valid it becomes necessary to consider the inelastic behaviour
of materials. Unlike elastic deformation, plastic deformation is not a reversible process and depends on the
loading path, making structural analysis more complex [5,6].

Some aspects of the vibrations of beams with elasto-plastic behaviour have been analysed before; a brief
review is provided in the following lines, in chronological order. In Ref. [7] the response of a beam, where
moderate plastic straining occurs due to a short pulse of transverse loading, is investigated. A simple two-
degree-of-freedom (dof) model based on a Shanley-type approach is used to represent the beam. In this model
a beam is approximated by rigid links joined by a linear elastic–perfectly plastic element; it is additionally
considered that the yield stress in tension and compression are equal. With these approximations, Shanley-
type models simplify the continuous elasto-plastic beam problem, reducing the system to a low-dimensional
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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discrete one. The existence of chaos is proved in Ref. [7] by computing the Lyapunov exponents. Manoach and
Karagiozova [8] analysed the influence of transverse shear on the response of a thick elasto-plastic beam
subjected to impulse loads. The linear modes of vibration are used to discretize the system and the equations of
motion are numerically integrated. Lepik [9] discusses elasto-plastic nonlinear vibrations of a buckled beam
under harmonic excitation, with the aid of Galerkin’s method. Vibrations that appear to be chaotic are found.
In Ref. [10], a Shanley-type model is used to analyse elasto-plastic beam dynamics. A co-dimension three
bifurcation problem is defined and the method of normal forms employed. Han and Lu [11] propose a space
time FEM scheme for elasto-plastic dynamic analysis of Timoshenko beams. An isotropic hardening model is
adopted and small displacements are considered. A cantilever beam under shock loading is analysed. In
Ref. [12] a numerical algorithm for studying the development of plastic and damaged zones in a vibrating thin
(Bernoulli–Euler) beam with guided rigid-body motion is presented. A linear elastic/perfectly plastic
constitutive relation is adopted and small displacements assumed (geometrical nonlinearity is neglected, as
often seems to occur). In Ref. [13] the previous analysis is extended and a linear elastic/perfectly plastic beam
performing rotatory motions about a fixed hinged end is studied. A three-dof Shanley-type model is also used
to investigate the dynamic instability of an elastic plastic beam in Ref. [14] and motions that apparently are
chaotic are found. It is of particular interest to the present paper that the authors, in agreement with other
authors, conclude that ‘‘A continuum beam model will be more appropriate to describe accurately the
asymmetrical instability of the elastic–plastic beams’’.

Accurate models can be defined using the finite element method (FEM). However, the FE nonlinear
equations of motion are solved by iterative methods and the computational effort can be substantial when the
h-version of the FEM is employed, because this version, which is based on simple elements, often requires a
large number of dof. In the so-called p-version FEM, the accuracy of the approximation is improved by
increasing the number of shape functions over the elements. It has been widely shown that this version of the
FEM demands a reduced number of dof to study vibrations linear or geometrically nonlinear (consult, for
example, Refs. [3,4]). This version of the FEM has additional advantages, as not being prone to locking [4]
and, if hierarchical,1 possessing the embedding property [15]. The p-version of the FEM is applied in Ref. [16]
to the deformation theory of plasticity, but only static problems are addressed. It is, once more, demonstrated
that this is a very efficient strategy. However, apparently the p-version FEM has not been extended to elasto-
plastic and geometrically nonlinear beam vibrations.

A procedure is proposed here to analyse the forced vibrations of beams oscillating in a plane, with large
displacements and in the elasto-plastic regime. As explained in Section 2, the beam element is based on a first-
order shear deformation theory, p-version finite element with hierarchical basis functions and the stresses are
computed by the governing parameter method [6]. When a material is loaded in tension and then compressed,
as occurs in cyclic loading, the yield stress in compression can be smaller than the yield stress reached in
tension. A similar behaviour occurs when the material is again subjected to tension, and so on. This
phenomenon is known as the Bauschinger effect [5,6] and none of the quoted references appears to have
considered it. We will take into account Bauschinger effect by using a mixed hardening model. Section 3 is
devoted to numerical tests; emphasis is given first to validation and analysis of convergence and, second, to the
influence of plastic strains on the geometrically nonlinear beam vibrations. In Section 4, a summary of the
conclusions is given.
2. Formulation

2.1. Relations between displacements, strains and stresses

A first-order shear deformation model will be followed, therefore, the displacement field is

u1ðx1;x3; tÞ ¼ u0
1ðx1; tÞ þ x3y

0
ðx1; tÞ (1)
1There are different notions of hierarchic FEM; here we follow Ref. [15] and consider an FEM as hierarchic if it is a p-version and uses a

hierarchic set of shape functions.
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u3ðx1; x3; tÞ ¼ u0
3ðx1; tÞ (2)

where ui(x1,x3,t) is the displacement component along axis xi and y0 (x1,t) is the rotation of the cross section
about axis x2. The superscript 0 indicates the centroidal axis, x1, which is also the longitudinal axis; x3 is the
vertical axis. The three reference axes are shown in Fig. 1.

Green strain (also known as Green–Lagrange strain) tensor [17] is

�ij ¼
1

2

qui

qxj

þ
quj

qxi

þ
quk

qxi

quk

qxj

� �
,

with i, j, k ¼ 1, 2, 3. Displacements are here measured with respect to a stationary reference frame, connected
to the undeformed or original configuration, an approach known as ‘‘total Lagrangian’’. Keeping only the
nonlinear term ðqu3=qx1Þ

2 in the longitudinal strain e11(x1,x3,t), because the other nonlinear terms are most
often negligible (Von Kármán approach), the longitudinal strain and the transverse shear engineering strain,
g13ðx1; tÞ, are the following:

�11ðx1; x3; tÞ ¼
qu0

1ðx1; tÞ

qx1
þ

1

2

qu0
3ðx1; tÞ

qx1

� �2

þ x3
qy0ðx1; tÞ

qx1
(3)

g13ðx1; tÞ ¼ 2�13ðx1; tÞ ¼
qu0

3ðx1; tÞ

qx1
þ y0ðx1; tÞ (4)

The longitudinal strain component can be written in a form that is advantageous to define the elemental
stiffness matrices [4]:

�11ðx1; x3; tÞ ¼ b1 x3c
�p
0ðx1; tÞ

�b
0ðx1; tÞ

( )
þ

�p
Lðx1; tÞ

0

( ) !
(5)

where the linear longitudinal strain, �p
0ðx1; tÞ, the bending strain, �b

0ðx1; tÞ, and the geometrically nonlinear
longitudinal strain, �p

L, are defined as follows:

�p
0ðx1; tÞ ¼

qu0
1ðx1; tÞ

qx1
; �b0ðx1; tÞ ¼

qy0ðx1; tÞ

qx1
; �p

Lðx1; tÞ ¼
1

2

qu0
3ðx1; tÞ

qx1

� �2

(6)

The elastic constitutive relation is

s11ðx1; x3; tÞ

s13ðx1; x3; tÞ

( )
¼

E 0

0 G

� � �11ðx1;x3; tÞ � �
p
11ðx1;x3; tÞ

kg13ðx1; tÞ � gp
13ðx1;x3; tÞ

( )
(7)

where E is the Young modulus and G is the shear modulus of elasticity, which is equal to E/(2(1+n)). The
letter n represents the ratio of Poisson and k is a shear correction factor. Only beams with rectangular cross
section will be analysed, and we will most often assume that k ¼ (5+5n)/(6+5n) (Ref. [18] defends this
expression, apparently introduced by S.P. Timoshenko, for beams of rectangular cross section). �p

11ðx1;x3; tÞ
represents the longitudinal plastic strain and gp

13ðx1;x3; tÞ the shear plastic strain. It is here assumed that
stresses s22, s33, s12 and s23 are negligible.
h

b

x1

x2x3

L

Fig. 1. Beam dimensions and reference axes.
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2.2. Elemental matrices and equations of motion

In each element, the displacements on the centroidal axis are expressed in the form

u0
1ðx; tÞ

u0
3ðx; tÞ

y0ðx; tÞ

8><
>:

9>=
>; ¼

Nu1ðxÞT 0 0

0 Nu3ðxÞT 0

0 0 NyðxÞT

2
64

3
75

qu1
ðtÞ

qu3
ðtÞ

qyðtÞ

8><
>:

9>=
>; (8)

Nu1ðxÞT ¼ fg1ðxÞ; g2ðxÞ; . . . ; gpi
ðxÞg (9)

Nu3 ðxÞT ¼ ff 1ðxÞ; f 2ðxÞ; . . . ; f p0
ðxÞg (10)

NyðxÞT ¼ fY1ðxÞ;Y2ðxÞ; . . . ;YpyðxÞg (11)

where the letter q is employed for time dependent generalized displacement vectors. The vectors of
longitudinal, transverse and rotational shape functions are, respectively, Nu1ðxÞ, Nu3 ðxÞ and NyðxÞ. Functions
gi(x), fi(x) and Yi(x) are the displacement shape functions, which belong to a set of polynomials of arbitrary
high order [4]; to increase the accuracy of the model one increases the number of shape functions employed,
keeping all the previously used functions (hence the designation hierarchic). In a 1D structure, the relation
between the local coordinate, x, that appears in Eq. (8) and the global coordinate, x1, is x1 ¼ x1i+Dx1i/2+
xDx1i/2, x1i being the location of the left node of element number i and Dx1i the element length. x varies from
�1 to 1.

Applying the principle of virtual work, the following equation is obtained:Z
O
d�11s11 dOþ

Z
O
dg13s13 dO�

Z
O
rðdu1 €u1 þ du3 €u3ÞdO�

Z
O
ðdu1Fu1 þ du3Fu3 þ dyMÞdO ¼ 0 (12)

where F ui
represents the forces with direction xi and M represents the moment about x2. The letter O denotes

the integration domain, in this case the 3D region occupied by the beam. Employing relation (7), the first two
terms of Eq. (12) are written asZ

O
d�11s11 dO ¼

Z
O
d�11E�11 dO�

Z
O
d�11E�p

11 dO (13)

and Z
O
dg13s13 dO ¼

Z
O
dg13kGg13 dO�

Z
O
dg13Ggp

13 dO (14)

In Eqs. (12)–(14) function arguments are not represented for the sake of simplicity.
At element level, the last term of Eq. (13) generates the following vectors:

eFplast
u1
ð�p

11Þ ¼ E
bh

2

Z 1

�1

Z 1

�1

N
u1
;x ðxÞ�

p
11ðx; Z; tÞdZdx (15)

eF
plast
y ð�p

11Þ ¼ E
bh2

4

Z 1

�1

Z 1

�1

ZNy
;xðxÞ�

p
11ðx; Z; tÞdZdx (16)

and matrix

eKplastð�p11Þ ¼ E
bh

Dxi

Z 1

�1

Z 1

�1

Nw
;xðxÞN

w
;xðxÞ

T�p
11ðx; Z; tÞdZdx (17)

eFplast
u1

and eF
plast
y are vectors of generalized forces that exist because of the longitudinal plastic strains; eKplast is

a matrix that appears due to the interaction between the plastic strains and the large displacements. The
Young modulus, E, width, b, and thickness, h, are properties of the element and assumed to be constant within
each element; the superscript e indicates that the vectors and matrix are elemental. The letter Z represents the
dimensionless coordinate in the x3 direction.
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The plastic shear strains also give rise to force vectors, which are defined as

eFplast
gu3
ðgp

13Þ ¼
bh

2
G

Z 1

�1

Z 1

�1

Nw
;xðxÞg

p
13ðx; Z; tÞdZdx (18)

eF
plast
gy ðg

p
13Þ ¼

bhDxi

4
G

Z 1

�1

Z 1

�1

NyðxÞgp
13ðx; Z; tÞdZdx (19)

By assembling the element force vectors and matrices, equations of motion of the following form are obtained:

Mu1 0 0

0 Mu3 0

0 0 My

2
664

3
775

€qu1
ðtÞ

€qu3
ðtÞ

€qyðtÞ

8>><
>>:

9>>=
>>;þ

K
p
‘11

0 0

0 K
g
‘22

K
g
‘23

0 K
g
‘32

K
g
‘33
þ Kb

‘33

2
6664

3
7775

qu1
ðtÞ

qu3
ðtÞ

qyðtÞ

8>><
>>:

9>>=
>>;

þ

0 Kn‘12 0

Kn‘21 Kn‘22 � Kplast 0

0 0 0

2
664

3
775

qu1
ðtÞ

qu3
ðtÞ

qyðtÞ

8>><
>>:

9>>=
>>; ¼

Fu1ðtÞ

Fu3ðtÞ

FyðtÞ

8>><
>>:

9>>=
>>;þ

Fplast
u1
ð�p

11Þ

Fplast
gu3
ðgp

13Þ

F
plast
y ð�p

11Þ þ F
plast
gy ðg

p
13Þ

8>>><
>>>:

9>>>=
>>>;

(20)

Some of the matrices and vectors that appear in this equation are given in [4]. These are the mass matricesMu1 ,
Mu3 and My; the so called linear stiffness matrices, written as Kk

‘ij
, where i, j are 1, 2 or 3, and k can be p, g or b

(standing for longitudinal, shear and bending, respectively); the geometrically nonlinear stiffness matrices
Kn‘ij

, i, j ¼ 1,2; and the vectors of generalized external forces Fu1ðtÞ, Fu3ðtÞ and FyðtÞ. All these terms are
computed resorting to analytical, exact, integration. The remaining forces and matrix Kplast were not included
in [4]; they result from assembling the element vectors and matrix defined by Eqs. (15)–(19). Because they
involve plastic strains, for which no analytical expression is known, these forces and matrix are computed
using numerical integration [19] (in our case Gaussian integration).
2.3. Solution of the equations of motion and computation of plastic strains

The equations of motion are solved by the implicit Newmark scheme with Newmark’s parameters [22]. The
plastic terms are zero until yielding occurs. In a first cycle of the solution algorithm, the plastic strains from the
previous time step—zero or not—are assumed to be invariant and used to compute the forces and matrix that
are given by Eqs. (15)–(19). The generalized displacements are computed by solving Eq. (20) iteratively with
update of the geometrically nonlinear stiffness matrix. Convergence in this cycle is achieved when the variation
of the generalized displacements from one iteration to another is below a prescribed small value. Additionally,
it is always verified whether the equation of motion (20) is satisfied.

After achieving convergence in the first cycle, the stresses are computed at the Gauss points using Eq. (7)
and the Von Mises yield criterion with mixed hardening [6] is employed to verify if yielding occurred at any
point. The yield function fy is thus defined as

f y ¼
1
2ð

tþDtSij
tþDtSij �

tþDtaij
tþDtaijÞ �

1
3

tþDts2y; i; j ¼ 1; 2; 3 (21)

where aij are the components of the back stress tensor a, which are zero until plasticity takes place; tþDtsy is the
yield stress, which is plasticity dependent, and Sij are the deviatoric stress components given by

Sij ¼ sij � smdij (22)

with sm the mean stress and dij the Kronecker delta. In the case of beams: S11 ¼ 2s11=3, S22 ¼ S33 ¼ �s11=3,
S13 ¼ S31 ¼ s13=3, S12 ¼ S21 ¼ S23 ¼ S32 ¼ 0.

The summation convention applies in Eq. (21), where the nine deviatoric stress components—a second-
order tensor—are written in vector form, i.e., S ¼ fS11;S12;S13;S21; . . . ;S33g. This vector form is also used in
this text for the other second-order tensors related with stress and strain.
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If yielding occurs at a Gauss point, the plastic strains and the plastic dependent variables, including the yield
stress, must be updated. It is also necessary to re-compute the generalized displacements from (20). These tasks
are carried out in a second cycle. To compute the plastic strains, the governing parameter method with the
increment of effective plastic strain, DeP, as governing parameter is employed. The procedure is briefly
described here and Ref. [6] may be consulted for further elucidation.

To apply the governing parameter method, the Von Mises yield function was chosen as a governing
function. If, as assumed here, the stress–strain relation is bilinear, Fig. 2, the yield function can be written as

f yðDePÞ ¼
tþDtsE

tþDtsy þ ½3G þ ð1�MÞEP�DeP
� 1 (23)

The first step in the governing parameter method is to compute DeP by equating the governing function
f yðDePÞ to zero.

The constant M in Eq. (23) is the mixed hardening parameter, a characteristic of the material that represents
a measure of the Bauschinger effect. In a mixed hardening material model, which is between isotropic and
kinematic hardening material models, only the isotropic part MðeP þ DePÞ of the effective plastic stress affects
the size of the yield surface [6]. The back stress, a, introduced in Eq. (21) defines the position of the yield
surface. This position changes when the Bauschinger effect occurs.

The plastic modulus Ep that appears in Eq. (23) can be expressed in terms of the tangent, ET, and Young, E,
modulus as

EP ¼
EET

E � ET

(24)

In a bilinear stress–strain relation ET and EP are constants.
tþDtsE , in Eq. (23), is the value of the effective plastic stress when DeP ¼ 0, which is given by

tþDtsE ¼ ð3
2

tþDtŜ
E
� tþDtŜ

E
Þ
1=2 (25)

tþDtŜ
E
is the radius of elastic stress surface, defined as

tþDtŜ
E
¼ tþDtSE � ta (26)

tþDtSE is the deviatoric stress of the elastic solution, i.e., the solution with no plastic deformation in the current
step. This may be computed using the following equations:

tþDte0ij ¼
tþDt�ij �

tþDt�m; i ¼ j (27)
ε

ET

�

�B

�A

2�A

2�B

Fig. 2. Bilinear uniaxial stress–strain curve with mixed hardening. The yield stress in compression is smaller than sB � 2sA and larger

than �sB.
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tþDte013 ¼
1
2
tþDtg13 (28)

tþDte00ij ¼
tþDte0ij �

t�P
ij (29)

tþDtSE ¼ 2GtþDte00 (30)

with tþDte0ij the components of the deviatoric strain tensor and t�Pij the components of the plastic strain tensor in
the previous step.

In the case of beams s22 ¼ s33 ¼ 0 and, therefore,

tþDt�11 ¼
tþDt s11

E
þ tþDt�P

11;
tþDt�22 ¼ �

n
E

tþDts11 þ tþDt�P
22;

tþDt�33 ¼ �
n
E

tþDts11 þ tþDt�P
33 (31)

Moreover, because the volumetric plastic strain equals zero ð�P
V ¼

tþDt�P
11 þ

tþDt�P
22 þ

tþDt�P
33 ¼ 0Þ, the mean

strain—required in Eq. (27)—is given by

tþDt�m ¼
1� 2n

3

s11
E

(32)

Parameter Dl, a positive factor of proportionality that relates the increments of plastic strain and the total
deviatoric stresses, is given by

Dl ¼
3

2

DeP

tþDtsy

(33)

where the yield stress is given by

tþDtsy ¼ syv þMEPðe
P þ DePÞ (34)

syv is the initial yield stress, i.e., the yield stress before any plastic hardening occurred.
The stress radius tþDtŜ, which is the deviatoric stress minus the back stress, can be computed from

tþDtŜ ¼
tþDtŜ

E

1þ 2½G þ ð1�MÞEP=3�Dl
(35)

an equation that is only valid in a bilinear stress–strain relation. To arrive at Eq. (35) one uses the fact that the
deviatoric stresses (22) can also be given by

tþDtS ¼ tþDtSE � 2GDltþDtŜ (36)

The increment of plastic strains is given by the Prandtl–Reuss equations:

DtþDteP ¼ DltþDtŜ (37)

but where tþDtŜ are the deviatoric stresses tþDtS, defined in Eq. (22), minus the back stresses tþDta. The total
plastic strain at time t+Dt is

tþDteP¼DteP þ DeP (38)

and the back stress is given by

tþDta¼Dtaþ Da (39)

Da ¼ 2ð1�MÞEPDeP=3 (40)

Eq. (40) is a form of Prager’s hardening rule [6] where 2EP=3 is the kinematic hardening modulus.
Now that the plastic strains have been computed, the forces and matrix given by Eqs. (15)–(19) can be

updated. It is then required to return to the equations of motion (20) and correct the generalized displacements
in an inner iterative procedure where the geometrically nonlinear terms are corrected. When convergence is
achieved in this inner iterative procedure, the new generalized displacements are used to compute the strains
and stresses. Then one verifies if convergence has also been achieved in the computation of the plastic strains
and back stresses. In the positive case, one proceeds to the next time step, otherwise one returns to the
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computation of the plastic strains using Eqs. (21)–(40) and the updated generalized displacements. Hence, the
iterations in a particular time step only stop when neither the generalized displacements, nor the plastic strains
vary more than accepted threshold values. The solution is always enforced to be inside or on the yield surface.
3. Numerical tests

3.1. Validation and analysis of convergence

To somehow validate the approach here suggested and the computational code implemented, a few
examples were carried out. The first example is taken from Ref. [8], where vibrations of an elasto-plastic beam
of steel with properties n ¼ 0.3, E ¼ 2.06� 1011Nm�2, r ¼ 7.69� 103 kgm�3, syv ¼ 4.88� 108Nm�2, were
analysed. The tangent modulus ET is not given in Ref. [8], where a different hardening parameter is employed,
and we used ET ¼ 109Nm�2 from an example in Ref. [6]. Parameter M was assumed to be 1 (isotropic
hardening). The geometric properties of this beam are b ¼ 0.02m, L ¼ 0.406m and h ¼ 0.2L. The excitation
is provided by a distributed, transverse, step force with amplitude 0.00429 EA/LNm�1 and with duration
2.3c/L s, where c represents the speed of sound in steel, given by c ¼

ffiffiffiffiffiffiffiffiffi
E=r

p
. The beam is clamped at both

ends (CC) and undamped.
Fig. 3 shows the longitudinal plastic strain at three instants, which can be compared with the distribution of

plastic zones shown in Fig. 7 of Ref. [8]. Both analyses show that initially the plastic zones appear close to the
clamped ends and later develop to the centre of the beam; in spite of the differences in the formulation and
approximation methods the agreement is quite good.

The following tests involve comparison with results obtained using the FEM code ANSYS. Before
proceeding to the inelastic analysis, a convergence study in the computation of the linear natural frequencies is
carried out. The beam material and geometric properties are now the following: n ¼ 0.3, E ¼ 2.00�
1011Nm�2, r ¼ 7.8� 103 kgm�3, b ¼ 0.03m, L ¼ 1m and h ¼ 0.01L. These properties were taken from an
example shown in Ref. [21], and will accompany us in the next numerical tests. The two ANSYS elements
employed are BEAM23, with shear deflection, and SHELL43. The BEAM23 element has two nodes and three
dof at each node: two displacements and one rotation. The SHELL43 element has four nodes, with six dof at
each node: translations in the nodal x1, x2 and x3 directions and rotations about the nodal x1, x2 and x3 axes.
Both elements have plasticity and large deflection capabilities, which will be required in an ensuing example.
The ANSYS beam element follows a first-order shear deformation approach similar to the one employed in
our formulation and the shell element is here employed to obtain reference results, since shell theory resorts to
less approximations than beam theory.

The first six linear natural frequencies of modes of vibration in the plane x1x3 are shown in Table 1
(ANSYS, h-version FEM, results) and in Table 2 (p-version FEM results). Values computed with different
meshes in ANSYS are shown in order to give an idea of the convergence rate of the h-version elements. Two
shear correction factors are employed in the p-version element; the first is the more traditional 5

6
, which is also

employed in the ANSYS code, and the second is k ¼ (5+5n)/(6+5n), which was mentioned in Section 2. The
same numbers of transverse, longitudinal and rotational shape functions are employed in each p-element.

By comparing the natural frequencies computed with the beam element of ANSYS with the ones computed
with the p-version and the same shear correction factor (k ¼ 5

6
), one confirms that the two models give

very similar values and that the p-version requires fewer dof for equivalent accuracy levels. In fact, the 51 dof
Fig. 3. Longitudinal plastic strain along CC beam subjected to rectangular pulse: (a) t ¼ 0.94 L/c, (b) t ¼ 1.33 L/c, (c) t ¼ 2.1 L/c.
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Table 1

Linear natural frequencies of vibration (Hz) computed with ANSYS elements.

Element type BEAM23 BEAM23 BEAM23 BEAM23 SHELL43 SHELL43 SHELL43

Number of elements 20 40 80 100 400 1600 6400

dof 63 117 237 297 3582 11970 43146

Mode number

1 52.015 52.015 52.015 52.015 52.043 52.035 52.031

2 143.25 143.25 143.25 143.25 143.34 143.31 143.30

3 280.51 280.49 280.48 280.48 280.70 280.62 280.59

4 463.06 462.95 462.93 462.93 463.37 463.19 463.12

5 690.65 690.29 690.24 690.24 691.01 690.69 690.56

6 963.04 962.07 961.94 961.93 963.20 962.66 962.44

Table 2

Linear natural frequencies of vibration (Hz) computed with p-version elements.

Dof 51a 69a 75a 39b 51b 69b 75b

Mode number

1 52.015 52.015 52.015 52.016 52.016 52.016 52.016

2 143.25 143.25 143.25 143.26 143.26 143.26 143.26

3 280.49 280.49 280.49 280.52 280.52 280.51 280.51

4 462.95 462.94 462.94 463.03 463.02 463.01 463.01

5 690.28 690.26 690.26 690.45 690.42 690.40 690.40

6 962.02 961.98 961.97 962.39 962.27 962.23 962.22

aShear correction factor 5
6
.

bShear correction factor (5+5n)/(6+5n).
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p-version element provides frequencies that are either equal or closer to the ones of more refined models (the
75 dof p-version and 297 dof ANSYS h-version) than the 117 dof ANSYS h-version element model. It should
be noted that, although it would be very straightforward, we did not resort to any type of reduction of the
p-version model size. Had we, for example, not included the longitudinal generalized coordinates in the
p-version model, the results would have been exactly the same, with 2

3
of the dof.

As far as the shear correction factor is concerned, the frequencies computed with k ¼ (5+5n)/(6+5n),
Table 2, are closer than the ones computed using k ¼ 5

6
to the frequencies computed with the ANSYS shell

element in Table 1. The choice of k ¼ (5+5n)/(6+5n) as shear correction factor hence appears to be appropriate.
In a test involving plasticity, static analyses are carried out in ANSYS and the results are compared with the

p-version ones. The beam is the one analysed in the previous example; the yield stress, syv ¼ 2.0� 108Nm�2,
is taken from an example of Ref. [6] and the tangent modulus is ET ¼ 108Nm�2, which is somewhat small,
approaching the popular elastic–perfectly plastic model [6]. M is again 1. A constant point force with variable
amplitude is applied in the middle of the beam, upwards (positive) in the vertical direction. In the p-version
models a transient problem was actually solved, using the code based on the Newmark method that will be
also employed in vibration analysis: a step force was applied and a large damping considered in order to avoid
overshoot; in these conditions the limit value of the displacement is equivalent to the static one. Two h-version
finite element models (ANSYS) are considered; one employs 40 planar beam elements BEAM23, with shear
deflection, and the other is an extremely detailed shell model that will be used as reference. The latter model
employs 6400 SHELL43 elements (eight elements in the thickness direction by 800 in the length).

Results computed with several p-version elements are presented in Table 3; all employ 40 Gauss points in
the longitudinal direction and 20 in the transverse direction. The relative error with respect to the shell model
values is given between brackets. The p-version models give displacement amplitudes that are reasonably close
to the very detailed ANSYS shell model, which has 43 146 dof. With a curious exception at 2000N, the
p-version element provides more accurate results and requires far fewer dof than the h-version beam element
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Table 3

Non-dimensional (u3/h) displacements in the middle of a beam under a constant transverse force.

Force

(N)

p-version, 39 dof p-version, 51 dof p-version, 69 dof p-version, 69 dof,

k ¼ 5
6

p-version, 75 dof BEAM23

ANSYS, 117 dof

SHELL43

ANSYS,

43 146 dof

Regime

500 0.45371 (�0.086%) 0.45401 (�0.019%) 0.45416 (0.014%) 0.45418 (0.018%) 0.45419 (0.020%) 0.45470 (0.13%) 0.45410 Elastic

1000 0.74581 (�0.17%) 0.74647 (�0.078%) 0.74677 (�0.038%) 0.74679 (�0.034%) 0.74682 (�0.031%) 0.74948 (0.33%) 0.74705 Elasto-

plastic

1500 0.97573 (�0.99%) 0.97943 (�0.62%) 0.98213 (�0.34%) 0.98215 (�0.34%) 0.98280 (�0.28%) 0.98000 (�0.56%) 0.98551 Elasto-

plastic

2000 1.2149 (�3.0%) 1.2264 (�2.1%) 1.2379 (�1.2) 1.2379 (�1.2%) 1.2391 (�1.1%) 1.2528 (0.024%) 1.2525 Elasto-

plastic

2500 1.4530 (�5.4%) 1.4758 (�3.9%) 1.4950 (�2.6%) 1.4951 (�2.6%) 1.4989 (�2.4%) 1.4896 (�3.0%) 1.5352 Elasto-

plastic

p-version results with 40� 20 Gauss points. k ¼ (5+5n)/(6+5n) except where indicated k ¼ 5
6
.

Table 4

Non-dimensional (u3/h) displacements in the middle of a beam under a constant transverse force.

Force

(N)

p-version, 69 dof p-version, 75 dof SHELL43

ANSYS,

43 146 dof

Regime

20� 10 GP 32� 32 GP 40� 20 GP 64� 32 GP 64� 64 GP 64� 64 GP

500 0.45416 (0.014%) 0.45416 (0.014%) 0.45416 (0.014%) 0.45416 (0.014%) 0.45416 (0.014%) 0.45419 (0.020%) 0.45410 Elastic

1000 0.74678 (�0.036%) 0.74677 (�0.037%) 0.74677 (�0.037%) 0.74678 (�0.036%) 0.74678 (�0.036%) 0.74684 (�0.028%) 0.74705 Elasto-

plastic

1500 0.98016 (�0.54%) 0.98250 (�0.31%) 0.98213 (�0.34%) 0.98234 (�0.321%) 0.98242 (�0.31%) 0.98297 (�0.26%) 0.98551 Elasto-

plastic

2000 1.2386 (�1.1%) 1.2371 (�1.2%) 1.2379 (�1.2%) 1.2385 (�1.1%) 1.2386 (�1.1%) 1.2399 (�1.0%) 1.2525 Elasto-

plastic

2500 1.5184 (�1.1%) 1.4948 (�2.6%) 1.4950 (�2.6%) 1.4990 (�2.4%) 1.4997 (�2.3%) 1.5039 (�2.0%) 1.5352 Elasto-

plastic

Convergence with the number of Gauss points (GP). p-version 69 dof (3� 23) model with shear correction factor k ¼ (5+5n)/(6+5n).
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of ANSYS. Moreover, the plastic zones obtained with the p-version beam finite element were visually
compared with the ones resulting from the very detailed shell model and the agreement is quite reasonable; the
h-version beam element of ANSYS does not provide as detailed a distribution of the plastic zones.

On the down side—a disadvantage that should be common to any approximation method—it is noticeable
that the number of dof required for convergence increases as the nonlinear terms due to geometrical
nonlinearity and plasticity increase (i.e., as the applied force amplitude increases). More dof are required in
this geometrical nonlinear and elasto-platic problem than in the computation of the linear natural frequencies,
which is a linear elastic problem.

Concerning the two shear correction factors—(5+5n)/(6+5n) and 5/6; see results from p-version model
with 69 dof—the displacements computed with k ¼ (5+5n)/(6+5n) are closer to the ones computed with the
ANSYS shell element when the force amplitude is not large. At some of the larger forces the shear correction
factor 5

6
provided displacements marginally closer—distinction in the fifth significant digit only—to the ones of

the ANSYS shell model. Hence, in the simultaneously inelastic and geometrical nonlinear tests k ¼ (5+5n)/
(6+5n) performed either similarly or very marginally worse than factor k ¼ 5/6. Given the superiority of the
shear correction factor k ¼ (5+5n)/(6+5n) in the computation of the natural frequencies, we will adopt
k ¼ (5+5n)/(6+5n) in the dynamic analyses.

Table 4 presents non-dimensional displacement mostly computed with the 69 dof p-version beam finite
element and using different numbers of Gauss points. When 20� 10 Gauss points are employed in the 69 dof
p-element, the displacements in the middle of the beam are already very close to the ones computed with the
very detailed 43 146 dof shell model. Actually, in a few of the tests results closer to the shell ones are computed
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with 20� 10 Gauss points than with more integration points. A possible explanation for this fact is that by
using a smaller number of Gauss integration points the stiffness is artificially reduced, thus increasing the
displacement amplitude and approaching the more flexible shell model. In any case, using 64� 64 Gauss
points similar or better results are, with one exception, obtained. Moreover, a visual comparison of surfaces
defined by the plastic strains and total stresses revealed, as expected, that the larger the number of Gauss
points employed in the p-model, the more detailed and smoother the computed surfaces become (examples are
given in the next section).

Data computed with a 75 dof p-element and 64� 64 Gauss points is also given in Table 4; this element
provides amplitudes that differ between �0.020 and 2.0 percent amplitudes computed with the 43 146 dof shell
model.

Another test was carried out to verify how the program behaves with a different tangent modulus; the
geometric and material properties are similar to the previous ones, with the exception of ET, which is now
109Nm�2, a value for steel taken from Ref. [6]. An analysis of convergence was carried out. Table 5 gives a
summary of the data, all in the elasto-plastic regime. In comparison with the previous example, the
displacements are lower, because with a larger tangent modulus the internal forces increase more with the
strains. Taking the 43 146 dof shell model as reference, the error of the beam p-version models is always below
1.86 percent. As occurred in the case with ET ¼ 108Nm�2, the implemented numerical procedure was able to
solve the equations of motion.

The following test example is taken from Ref. [21]. Most of the beam material and geometric properties,
including the yield stress—which is not given in Ref. [21] because plasticity is not addressed there—are the
ones of the former example. Mass proportional viscous damping with a proportionality factor b equal to one
is assumed. This means that the equations of motion (20) take the form

M€qþ bM_qþ K‘qþ ½Kn‘ � Kplast�q ¼ Fþ Fplast (41)

The excitation is transverse, uniformly distributed along the clamped–clamped beam. Two tangent moduli
were considered, ET ¼ 108Nm�2 and ET ¼ 109Nm�2, to see if numerical problems occur due to parameter
values. As said before, the former modulus turns the model closer to the one of perfectly plastic materials and
the latter is taken from an example of Ref. [6]. However, in this section only results with ET ¼ 108Nm�2 are
shown; values computed with ET ¼ 109Nm�2 are shown in the next section. M is again 1.

Fig. 4 shows the steady state displacement time history at the middle point of the beam when the excitation
frequency is 117.8097 rad/s (ffi18.75Hz) and the excitation amplitude 1000Nm�1. The displacement time
history resembles that of Fig. 7(a) of Ref. [21] but small plastic strains were found near the clamped ends. The
longitudinal plastic strains in steady state and at four points are shown in Fig. 5. The coordinates of the points
are: Point 1 (x,Z) ¼ (0.9907,�0.8391), Point 2 (x,Z) ¼ (0.9982,�0.8391), Point 3 (x,Z) ¼ (0.9579,0.8391), Point 4
(x,Z) ¼ (0.9982,0.9931). These points are near the beam limits where the plastic strains experience steep
variations; therefore, an accurate computation of the plastic strains requires employing high-order shape
functions. It is clear that the values of plastic strains change more with the number of shape functions employed
in the element than the linear natural frequencies (Table 1). In this example, the plastic strains are of
small consequence in the transverse displacement, as is shown in Fig. 4, which relates to the middle point of
the beam. This was also found to be the case in points near the clamped ends (figure not included).
Table 5

Non-dimensional (u3/h) displacements in the middle of a beam under a constant transverse force, ET ¼ 109Nm�2, shear correction factor

k ¼ (5+5n)/(6+5n).

Force

(N)

69 dof p-version,

40� 20 GP

69 dof p-version,

64� 64 GP

75 dof p-version,

40� 20 GP

75 dof p-version,

64� 64 GP

SHELL43 ANSYS,

43 146 dof

1500 0.98250 (�0.26%) 0.98267 (�0.25%) 0.98254 (�0.26%) 0.98271 (�0.24%) 0.98511

2000 1.2360 (�0.94%) 1.2367 (�0.89%) 1.2361 (�0.94%) 1.2367 (�0.89%) 1.2478

2500 1.4879 (�1.85%) 1.4916 (�1.6%) 1.4880 (�1.8%) 1.4917 (�1.6%) 1.5160

Relative errors between brackets, using the shell model as reference.



ARTICLE IN PRESS

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

Point 1 Point 2 Point 3 Point 4

�11

Fig. 5. Longitudinal plastic strains computed with 40� 20 Gauss points and:~ 21 dof,’ 27 dof, m 33 dof, � 51 dof; J 69 dof, � 75 dof.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

40

( )0
3 0,u t

t (s)

40.0 540.1 40.15

Fig. 4. Transverse displacement at middle point of the beam, computed with 40� 20 Gauss points and: -21 dof, -J- 33 dof, -� - 69 dof,

computed wit 64� 64 Gauss points and ~ 75 dof.

P. Ribeiro, G.H.M. van der Heijden / Journal of Sound and Vibration 325 (2009) 321–337332
3.2. Numerical analysis of the influence of plastic terms on forced vibrations

In the former section convergence studies were carried out. Different parameters were considered in order to
see if the procedure implemented experiences any convergence difficulties and if it approaches values that were
either published or obtained with a well known FE code. The goal of the present section is to show the effect
of the plastic strains on the forced vibrations of beams vibrating in the geometrically nonlinear regime. The
p-version model employed in this section has a total of 75 dof and 64� 64 Gauss points. In the former section
it was verified that this model is superior to models based on h-version beam finite elements and that it
approaches very reasonably a shell model based on h-version finite elements, which employs far more dof. The
geometric and the linear elastic material properties—typical of steel—are taken from Ref. [21], and are the
ones used in the last examples of the former section. The tangent modulus of all examples of the present
section is ET ¼ 109Nm�2 and the yield stress before yielding occurs is syv ¼ 2.0� 108Nm�2, values that are
also appropriate for some steels and taken from Ref. [6]. The first test with this data was a replica of the last
test of the former section, where ET was 108Nm�2. Data from the test with ET ¼ 109Nm�2 is not shown here,
since the values of the transverse displacements were virtually the same, because the plastic strains are small in
this example (zero in most of the beam). Naturally, the plastic strains computed with ET ¼ 109Nm�2 differ
from the ones computed with ET ¼ 108Nm�2, but only slightly.

Fig. 6 shows the transverse displacement time history of a point located at the middle of the beam, when the
excitation frequency is equal to the first linear natural frequency, 326.827 rad/s, and the amplitude of the
distributed transverse force is 500Nm�1. Also shown is the projection of the trajectory on the phase plane
defined by the transverse displacement and velocity. Te represents the excitation period. Compared with the
geometrically nonlinear and purely elastic results, the motion with plastic strains achieves smaller
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natural frequency with 500Nm�1 amplitude.
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displacement and velocity amplitudes. In spite of the presence of the plastic strains, the oscillation remains
periodic and dominated by the excitation frequency.

Fig. 7 shows the longitudinal stresses, s11, computed with the linear elastic model and with the elasto-plastic
model, both geometrically nonlinear, at a particular instant (t ¼ 0.75548 s). The values obtained differ more
near the clamps and in the middle of the beam due to the plastic strains. The surface defined by s11 becomes
somewhat irregular near the clamps when plasticity is taken into account. This effect, which was not at all so
profound in the static cases of the former section, appears to be a consequence of the cyclic load. The stresses
computed without considering plastic strains attain values over 400MPa; therefore, plasticity would occur
even if the steel was a higher strength one.

In the following test, a beam with similar characteristics but thicker (h ¼ 0.05L) is analysed. The force
amplitude was increased to 10 000Nm�1 in order to achieve large displacements. The damping factor b (see
Eq. (41)) was chosen so that the non-dimensional damping ratio, which is equal to the viscous damping
coefficient divided by the critical damping coefficient [23], of a single dof system representing the beam does
not change. Therefore, b is now 4.92206.
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Fig. 8 shows the evolution of the transverse displacement during the first 10 excitation cycles. The model
that only includes geometrically nonlinear terms (i.e., neglects the plastic strains) grossly over-predicts the
displacement amplitude, because it neglects the energy that is dissipated as plastic strains are developed. Fig. 9
shows the transverse displacement and the projection of the trajectory on a phase plane at later cycles. The
geometrically nonlinear, linear elastic model still over predicts the displacement and velocity amplitudes,
possibly because the plastic strains change the natural frequency of the beam to one that is further away from
this particular excitation frequency. At this stage the plastic strains are not changing in almost all the beam
(there are still small changes in some points), hence there is only a small dissipation due to plastic work. The
plastic strains at instant 2.66736 s (t/Te ¼ 682.913) are shown in Fig. 10, revealing that they mainly develop
close to the clamped boundaries.

Numerical tests also show that the displacements obtained by the elastic–plastic geometrical nonlinear
model can be larger than the ones obtained by using only the elastic model, due to softening induced by
plasticity. An example is shown in Fig. 11, where an excitation with a frequency equal to half of the first linear
natural frequency was applied. Although an excitation with very large amplitude was applied (50 000Nm�1),
the vibration displacement is not very large.

To have a first idea of the consequences of the Bauschinger effect on the dynamics of beams, the test with an
excitation of 10 000Nm�1 at the linear fundamental frequency is repeated, but taking M ¼ 0.8 (a value
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obtained from [6]) instead of M ¼ 1, i.e., effectively using the Von Mises material model with mixed hardening
that was presented in Section 2. Fig. 12 shows the transverse displacements between excitation cycles 650 and
655 computed with M ¼ 0.8 and 1, both models elasto-plastic and geometrically nonlinear. Fig. 13 compares
the stresses computed at t ¼ 2.66736 s (t/Te ¼ 682.913) without (Fig. 13(a)) and with (Fig. 13(b)) consideration
of the Bauschinger effect.

The Bauschinger effect led to different evolution and distribution of plastic strains that had consequences in
displacements and stresses. When the Bauschinger effect is included, the displacements slowly but steadily
increase until, at least, the 700th cycle, where the computation was stopped. Steady state was not achieved.
The plastic strains are, at the stage shown in the figures, changing much more significantly than if the
Bauschinger effect is neglected. This probably means that the plastic work—which requires energy—is larger
when the Bauschinger effect is considered because the yield surface changes locus. For this reason, the
transverse displacements are smaller at the stage shown in the figures when computed with the Bauschinger
effect, and consequently so are the total strains and stresses.

4. Conclusions

A method was proposed for dynamic analysis of beams, with consideration of plastic strains and
geometrically nonlinear terms. The procedure is based on the p-version FEM and the stresses are computed
following the governing parameter method. To investigate the robustness of the proposed approach, different
parameters were tried in numerical tests and compared either with published data or with results computed
using ANSYS. The element and procedure here suggested appear to be robust and able to provide accurate
results. The main advantages of the beam p-version, hierarchical, element are that it requires fewer dof than
h-version beam and shell elements, and provides a more detailed description of stress and strain fields than the
h-version beam elements.

Plasticity was found to occur in a thin beam (h/L ¼ 0.01) vibrating with displacement amplitude around its
thickness; in a thicker beam plasticity occurred at relatively lower amplitudes. The appearance of plasticity can
significantly change the dynamic behaviour of beams. In the first cycles of excitation, at the beginning of the
transient phase, plastic zones develop that absorb energy and, therefore, the displacements can be significantly
over predicted by models that solely consider geometrical nonlinearity. Once the plastic strains are established
they are permanent and obviously interfere in the beam dynamics; the way in which they do that will depend
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on the previous history of the motion and loading. With a periodic load, the fact that the combined plasticity
and geometrical nonlinearity change the stiffness, and therefore the natural frequencies, may be significant in
the dynamics of the beam.

Naturally, when plasticity occurs the stresses are influenced by it. If enough integration points are used, the
p-version beam element provides depictions of the stress distribution with a detail comparable to h-version
shell finite element models. It was found that under cyclic loading the stresses in zones where plasticity occurs
can become somewhat irregular. This was particularly important near clamped boundaries and may require
the use if quite high-order shape functions for a detailed description.

A first assessment of the Bauschinger effect on beam dynamics was made by carrying out tests on a thick
beam. In the test shown, the Bauschinger effect led to smaller plastic strains but which changed more
significantly and during more cycles than when the effect is neglected. As a consequence, energy dissipation
due to plastic work increased and smaller displacements, as well as smaller total strains and stresses occurred.
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Ciência e a Tecnologia, Portugal.
References

[1] R. Benamar, M.M.K. Bennouna, R.G. White, The effects of large vibration amplitudes on the mode shapes and natural frequencies

of thin elastic structures—part I: simply supported and clamped–clamped beams, Journal of Sound and Vibration 149 (1991) 179–195.

[2] H. Wolfe, An Experimental Investigation of Nonlinear Behaviour of Beams and Plates Excited to High Levels of Dynamic Response,

PhD Thesis, University of Southampton, 1995.

[3] P. Ribeiro, M. Petyt, Non-linear vibration of beams with internal resonance by the hierarchical finite element method, Journal of

Sound and Vibration 224 (1999) 591–624.

[4] P. Ribeiro, A p-version, first order shear deformation, finite element for geometrically non-linear vibration of curved beams,

International Journal for Numerical Methods in Engineering 61 (2004) 2696–2715.

[5] G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1986.
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