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Abstract

The structured modal properties of single-stage helical planetary gears with equally spaced planets are categorized and
mathematically proved. Compared to prior two-dimensional analyses of spur gears, this study examines the three-
dimensional motion of the helical gears and shafts. A lumped-parameter model is formulated to obtain the equations of
motion. The gear-shaft bodies are modeled as rigid bodies with compliant bearings at arbitrary axial locations on the
shafts. A translational and a tilting stiffness account for the force and moment transmission at the gear mesh interface. The
derived modal properties generalize those of two-dimensional spur planetary gears; there are twice as many degrees of
freedom and natural frequencies due to the added tilting and axial motion. All vibration modes are categorized as
rotational—-axial, translational-tilting, and planet modes. The modal properties are shown to hold even for configurations
that are not symmetric about the gear plane, due to, for example, shaft bearings not being equidistant from the gear plane.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of the modal properties of planetary gears is crucial for developing strategies to reduce vibration.
Planetary gear dynamic models are developed in Refs. [1-4]. Lin and Parker show that two-dimensional, spur
planetary gears with equally spaced [5] and diametrically opposed [6] planets possess well-defined modal
properties. They report all vibration modes belong to one of the three categories: (1) Rotational modes where the
central members (sun, carrier, and ring) rotate but do not translate. The planet motions are identical. (2)
Translational modes with degenerate natural frequencies, where the central members translate but do not rotate.
There are well-defined relations between the two independent vibration modes at each natural frequency. (3)
Planet modes where only the planets move, and their motions are scalar multiples of the arbitrarily chosen first
planet’s motion. Kiracofe and Parker [7] prove that a similar categorization applies to compound planetary gears.
Wu and Parker [8] prove the modal properties of spur planetary gears having elastically deformable ring gears.

These vibration mode characteristics are crucial in vibration suppression strategies using mesh phasing
[2,9,10] and eigensensitivity analysis [11,12] of planetary gears. Schlegel and Mard [10], Seager [2], and Hidaka
et al. [13] assert that the vibration of planetary gears is reduced by proper gear mesh phasing. Hidaka et al. [13]
experimentally and Kahraman [14] computationally investigate the effectiveness of vibration suppression by
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Nomenclature D transverse operating pressure angle of
sun—planet meshes
¢ axial position of the center of stiffness at Dy transverse operating pressure angle of
the jth mesh ring—planet meshes
ep axial position of the center of mass of il tilting stiffness of bearing 4 on body b
body b o axial rotation stiffness of bearing 4 on
J3 tilting moment of inertia of body » body b
JZ polar moment of inertia of body b kB, kB analogous definitions for bearing B as for
kf translational stiffness of bearing 4 on bearing A4
body b K tilting gear mesh stiffness at the jth mesh
k= axial stiffness of bearing 4 on body b Qp rotation speed of body b
kP, kf* analogous definitions for bearing B as for v base helix angle
bearing 4 .
k; translational gear mesh stiffness at the jth Subscripts
mesh )
L axial position of bearing 4 on body b b body index, b =s,r,¢,1,...,p
L,lf axial position of bearing B on body b ¢ carrier )
- mass of body b h centrallmembe.:r index, h = s,r1,¢
. i planet index, i=1,2,...,p
p number of planets . ;
" base radius of gear b Jj gear mesh index (odd are sun—planet,

Xb, Vp, zp translational deflections of body b even are ring-planet meshes)

along E;, E;, and E; r ring gear
o angular position of the ith planet § sun gear
op, 0p, B, angular deflections of body b about E|,

Ez, and E3

planet mesh phasing. Kahraman [14] uses a three-dimensional lumped-parameter model for computations.
Blankenship and Kahraman [15] illustrate how some harmonics of the transmission error excitation vanish by
adjusting the mesh phasing. Based on the well-defined modal properties of planctary gears, Parker [16]
explains how proper mesh phasing suppresses many resonances of translational and rotational modes from
certain harmonics of mesh frequency. Ambarisha and Parker [17] explain the vibration suppression of planet
modes from mesh phasing.

Finite element analysis is incorporated with elaborate gear contact analysis in Refs. [18-21] to capture the
complex dynamic behavior of planetary gears. These studies enable computationally efficient analysis of
complex planetary gears and survey the effects of design parameters on dynamic behavior.

Although the vibration modes of two-dimensional planetary gears have been studied, it remains to be seen
what the vibration mode characteristics are for helical planetary gears with three-dimensional motion, a three-
dimensional gear mesh interface, and the gear-shaft bodies supported by bearings at arbitrary locations along
the shafts. A lumped-parameter model is formulated to include the tilting and axial motions, thus including all
six degrees of freedom for each gear-shaft body. A tilting mesh stiffness augments the gear mesh interface to
produce the three-dimensional force and moment transmission.

This study proves that helical planetary gears with equally spaced planets have exactly three types of vibration
modes. Unique properties of these vibration modes are given. Compared to two-dimensional spur gear models there
are twice as many natural modes, and their properties are different. The modal properties hold for configurations that
are asymmetric about the gear plane, such as when the bearings are not equidistant from the gears.

2. Planetary gear analytical model

The planetary gear model consists of three central members (the sun, ring, and carrier) and p planets.
The gears and the carrier are integrated with their supporting shafts, so that each gear-shaft is a single body.
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These combined gear-shaft bodies are each mounted on up to two bearings placed at arbitrary axial locations.
The sun, ring, and carrier bearings are connected to ground while the planet bearings are connected to the
carrier. The gear-shaft bodies and carrier are rigid; the compliant elements are the meshing gear teeth and
bearings. Figs. 1(a) and (b) depict the model with the parameters defining the system geometry. The vibration
amplitudes are small, so geometric nonlinearities are neglected.

The indexing conventions b = s,r,¢, 1,...,p for the sun, ring, carrier, and the planets, & = s, r, ¢ for the sun,
ring, and carrier, and i = 1,2, ...,p for the planets are maintained throughout this work. There are 2p gear
meshes. Odd numbers are assigned to the sun—planet meshes, and even numbers are assigned to the
ring—planet meshes.

The origin is at the undeflected position of the center of the sun. A right handed, orthonormal basis {E} =
{E|, E;, E3} rotates with the constant carrier angular speed 2. For the central members, translational coordinates
Xn, 5, Zip are assigned to translations along E,, E,, and Ej, respectively. Similarly, angular coordinates ¢, 05, f,
are assigned to small rotations about E;, E,, and Ej, respectively. Translational coordinates for the planets x;, y;,
z; are measured from the undeflected position of the centers of the planets in the bases {E'} = {E}, E3, E4} that
rotate with the carrier angular speed. The base vector E| is parallel to the line of action of the ith sun—planet mesh
because this selection algebraically simplifies the sun—planet mesh deflections. Angular coordinates ¢;, 0;, f5; for

i Planet-ring
center of stiffness

Carrier

Sun-glanet
centef of stiffnpss

Fig. 1. Coordinates and dimensions used in the planetary gear model. The parameters are defined in Nomenclature.
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Fig. 2. Tooth surface normal and the tilting axis for the ith sun—planet mesh. The ith planet gear is shown. i is the base helix angle, and
&y, is the transverse operating pressure angle.

the planets are assigned to rotations about E!, E5, and Ej, respectively. Body fixed bases for all the bodies
e’} = {ell’,eé’,eé’ } are adopted because the gear mesh deflection expressions are algebraically simpler in these
bases.

Axial position quantities in Fig. 1(a) are measured from the datum position, which is at the center of the
minimum active facewidth F and denoted by the dashed line. Any inactive facewidth is considered as part of
the shaft. This setup allows arbitrary axial positioning of gears with different facewidths. Positive planet
position angle o; is measured counter-clockwise from the arbitrarily chosen first planet.

Two linear springs, one translational and one tilting, model the gear mesh interface. The translational
stiffness (k;) accounts for the transmitted force through the gear mesh. Its associated relative translational
deflection (6;) is in the direction of the tooth surface normal. The tilting stiffness (x;) accounts for the moment
transmitted through the gear mesh. Its associated angular deflection is about an axis that is in the gear plane
and perpendicular to both the line of action E| and the tooth surface normal. Fig. 2 shows the line of action

!, the tooth surface normal, and the tilting axis E5 for the ith sun-planet mesh. These two deflections are
calculated at a specified point along the facewidth, called the center of stiffness. The axial position of the
center of stiffness is ¢;. The translational stiffness, tilting stiffness, and center of stiffness can be reduced from
gear tooth contact models, such as Ref. [22], averaged over a mesh cycle.

The equations of motion come from Lagrange’s equations for unconstrained generalized coordinates.
The kinetic and potential energies are

1 T
T= 3 Z(wthwb + Ej mpip),
=1

N N 2p
V= %Z(dz,bKA,bdA,b + g, Kppdpp) + %Z(C;,hXA,bCA,b + Cpptpsls) + %Z(k/'é.% + 1577, (M
b=1 b=1 j=1
where N = p + 3 is the number of bodies, w, is the angular velocity, m; is the mass, Jj, is the inertia tensor, 1y
is the velocity vector, d 4 is the translational bearing deflection vector, {,, is the angular bearing deflection
vector, K4 is the bearing stiffness matrix for translation, and y, , is the bearing stiffness matrix for rotation.
The translational gear mesh deflection is d;; the angular (tilting) gear mesh deflection is y;; the translational
gear mesh stiffness is k;; and the tilting gear mesh stiffness is x;.
The angular velocity of the hth body in its corotational basis {e"} is

b = [py — 0n(By + Qu)1el + 05 + dy(By + Q0)1es + [By + 2 — d0s]e5, 2)

where Q, is the constant kinematic rotation speed. The inertia tensor for each body in its principal axes is
J), = diag[J3}, J}, J;] with constant components. All gears are axisymmetric, so J, = J}. The velocity vectors of
the central members and planets are

l.‘h = [x/’l - Q('yh]El + D.;h + chh]EZ + Z./1E3> h =s,r1,C, (3)

i'i - [xh - Q(f(yi —Fs— rp)]Eli + D>i + Qc'(xi + tan ¢sp(rs + rp))]Elz + ZiEé, i = la 2a Ry 2 (4)

where &g, and @, are the sun—planet and ring—planet transverse operating pressure angles.
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The bearings are attached to the points A, and B, on the left and right sides of the bth body, respectively.
The bearing deflection vectors for central members at points 4, and By, (h = s,r,c) are

day = [0 — (en + LDOLE; + [(en + L)y, + v4JE2 + z,Es, (5)

dg) = [x5 — (en — LY)OLE) + [(en — L)y, + yy)En + z,Es, (6)

where ¢y, Lf, and Lf are the axial positions of the mass centers, bearings A4;, and bearings Bj, of the central
members. Positive values of ¢, and Lg‘ are measured from the datum along Ej;, and positive values of Lf are
measured from the datum along —E;. This sign convention is chosen so that for positive Lf and Lf the gears
are in between the bearings. The bearing deflection vector for the planets is the relative position between the
point that is on the carrier and the point that is on the planet shaft. The bearing deflection vectors for the
planets at points 4; and B; are
dy; ={-.+ ¢.(es + L;l)] sina; + [0.(es + L;‘) — xcJcoso; — B.(rp +ry) + x; — Oi(e, + L;l)}E’i

+ ([ — O, + LY sinoy — [y, + eles + LD cos s — B(ry + 1) tan @y + 3, + by, + LHVES

+ {[—(}’)C(}’S + Vp) tan ¢sp +0.(rs + rp)] sino; + [0c(rs + Vp) tan (Dsp + ¢c(rs' + rp)] coso; +z; — Zc}Ei 5 (7

dp; = {—[y, + ¢.les — LD)]sino; + [0.(es — L)) — xc]coso; — B(rp + 1) + x; — Oile, — LI)IE]
+ {[x. — 0.(e5 — L,f)] sino; — [yc + (]56,(63 - Lf)] Cos o — ﬁc(rp +ry) tan (DSP +yi+ ¢i(€17 - Lf)}Elz
+ {[—¢.(rs + 1rp) tan Dy, + 0.(rs + rp)]sin o + [0.(rs + 1) tan Dy, + P (75 4 1p)] cos o + z; — zc}Eé. (8)

The angular bearing deflection vector is the relative angular displacements of the connected bodies.
The angular bearing deflection vectors for the central members and planets at points A, and A; are

Can = O1E1 + 0,Es + B, Es, 9)

$4i=1Id; — Ocsina; — ¢, cos oc,-]Eil +[0; — 0. cosa; + ¢, sin oc,-]Eé +[B; — ﬁ(,]Eé. (10)

The angular bearing deflection vectors at points Bj, and B; are identical to Egs. (9) and (10) for rigid shafts.

The bearings are isotropic in the E; —E, plane. There is no coupling between different directions. For all
bodies the bearing stiffness matrix for translation is K4, = diag[k;‘, k;}, kbAZ], and the bearing stiffness matrix
for rotation is x4, = diag[x{!, xj!, 1c1°], where the equality of stiffness in the two in-plane translation directions
is evident (and similarly for rotation). These stiffness components are in the {E} basis for the central members
and in the {E'} basis for each of the planets.

The translational gear mesh deflection §; is the relative compressive deflection at the center of stiffness in the
direction normal to the tooth surface. The translational gear mesh deflection for the sun—planet meshes
(G=1,3,5...,2p—1)is

0; = {l(es — ¢j)p; + yJcosy + 1[0 — ¢, tan D] sinyp} sin o;
+ {[xs — (es — ¢))0] cosyy + 1P, + O, tan D] sinyf} cos o,
+[(ep — )0 + 1oy +1pP; — xi]cosy + [z; — zg + rp(@P; + 0;tan D) siny, (11)
where / is the base helix angle, and the center of stiffness for a gear mesh in the axial direction measured from
the datum is ¢;. For the ring—planet meshes (j = 2,4, ...,2p) the translational gear mesh deflection is
0; = {r,[(¢, — 0, tan ®,p) sin(Ps, + Pypy) — (0, + ¢, tan @y,) cos(Psp, + Prpy)] sin Yy
+ [((er — ¢))0, — x,) sin( Dy, + Prp) + (e, — ¢;)P, + ¥,) cOs(Ps, + Pp)] cos ) sin o
— {0, + ¢, tan @) sin(Psp + Prp) + (P, — 0, tan @,) cos(Pyp + Prpp)] Sin Yy
+ [((er — ¢))¢, + y,) sin(Dsp + Prp) + ((¢j — )0, + x,) cOS(Psp + Prp)] COS Y} COS 0
+ {r,l(¢p; — 0; tan D) cos(Pgp, + DPyp) + (¢, tan Prpy + 0,) sin( P, + Prp)] + 2 — 2} Sin Y
+ {[(ep — ¢))0; — xi]cos(Pgp + Prpp) + [(¢; — €p)P; — y;]sin(Pgp, + Dypp) — 1,3} cOS Y. (12)
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The angular gear mesh deflection y; for the sun—planet and ring-planet meshes is

y; = ¢gsino; — Ogcoso; +0;, j=1,3,5....2p—1, (13)
7= — [§, cos(Psp + Prp) + 0, sin(Dsp + Prp)] sin

— [, sin(Ds, + Prp) — 0, cOS(Dsp, + Prp)] COS 0

+ ¢;sin(Dgp + Prp) — 0;cos(Psp + Prp), j=2,4,...,2p. (14)

Lagrange’s equations of motion are obtained following substitution of Eqs. (2)—(14) into the energy
expressions in Eq. (1). In matrix form they are

Mg + 2.Gq + (K — Q*C)q = Q%c +f, (15)

q= (qxa 999, -- 7qp)’

qb=(¢b90baﬁb7xb7ybazb)a b=s7r5C717""p' (16)
The diagonal inertia matrix M is
M = diag(MDMl‘yMc’aMly'"9M[a-"9Mp)a (17)

where an individual block is M = diag(J3, J3, J3, mp, myp, mp). Only certain blocks of the stiffness matrix K are
populated due to the geometric configuration of planetary gears. The 6N x 6 N matrix has the form

K, 0 0 K Koo ... KT

K 0 K, Ko ... K,

K(? Kc,l Kc,Z v Kc,p
K, 0o ... 0

K= , (13)
K, ... 0
Symmetric :

K,

L = nxn
where the total number of degrees of freedom is # = 6/N. The 6 x 6 sub-matrices K;, and K;;, h = s,r,¢, are

expanded in the following section. The individual elements of these sub-matrices and of K; are given in
Appendix A. Spinning of the system generates the block diagonal gyroscopic matrix

G = diag(Gsa Gl‘s G(’a Gla- "aGis' . 'st)a (19)
r 0 —Ry2J3—=J3) 0 0 0 07
Ry(2T} — T3) 0 0O 0 0 0
0 0 0 0 0 0
Gb = P (20)
0 0 0 0 -=-2m, O
0 0 0 2my, 0 0
L 0 0 0 0 0 0]

where the gear ratios R, relate the rotation speeds by Q;, = R,Q, (recall b =s,r,¢,1,...,p). The centripetal
stiffness matrix is

C :diag(CSBCr’CL’acla'"sCiy"'5C]7)3 (21)

Cy = diag[J3R;, J3R;,0,mp,m;,0], b=s,r,¢1,...,p. (22)
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Carrier rotation induces constant planet centripetal accelerations evident in the ch term of Eq. (15) where
c=1[0,0,0,ci,...,¢c;,...,¢], (23)

¢; =mp[0,0,0, —(ry +1,) tan O, 1 + 1, 0]. (24)

If one considers motion y = q — q, about the steady configuration q, defined by (K — Q?C)qe = Qgc +f,
where f is the constant external loading vector, the governing equation is

My + Q,.Gy + (K — Q*C)y = f,(1), (25)

where f;(¢) is the zero-mean, dynamic external loading vector.
3. Modal analysis
3.1. Eigenvalue problem

The high-speed effects that arise from the constant kinematic rotation fall outside the scope of this study,
so Q. = 0 is specified. The eigenvalue problem is

(K- M)q=0 (26)
with natural frequencies +//. The vibration modes are divided into 6 x 1 sub-vectors as
q= (Vss Vs Ve Vipov vy Vp)- (27)

The system is tuned, that is, all sun—planet and ring—planet mesh stiffnesses, and their centers of stiffnesses,
are identical among all planets; the planet bearing stiffnesses, the axial locations of the planet bearings, and
the planet inertias are the same for all planets. Regardless of planet spacing, the stiffness and inertia sub-
matrices satisfy

p P
K,=Y, Z sino; + RY,RT Z cosa; + O, Z sin® o

P
i=1 i=1 i=1

J4 )4
+RO,RT Z cos’ o, + Z sino;cosa; + Wy, h=s,r0c, (28)
i=1 i=1
ro 1 0 0 0 07
-1 0 0 0 0 O
0O 01 0 0O
R = , (29)
0O 00 O 1 0
0O 0 0 -1 0 O
L0 0 0 0 0 1]
Klszs MIZM]a laJ: lszssp’ (30)
K;; = Apsino; + RAj cosa; + Iy 3D

Individual elements of X, @y, E,, W), Ay, I', and K; are given in Appendix A.
3.2. Computational observation of vibration modes

Eigensolutions of a sample system (Table 1) with four and five equally spaced planets are evaluated
numerically to expose the modal properties. Some natural frequencies and their corresponding mode types are
given in Table 2. The vibration modes exhibit distinctive characteristics. There are three types of vibration
modes. Figs. 3-6 show two examples of each of the three types of vibration modes for the example system with
four planets. Regardless of the system parameters the modal deflections of certain gears are zero, or there is a
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Table 1

Parameters of the planetary gear system.

Parameter Sun Mesh Planet Mesh Ring Carrier
Operating pressure angle, @ (deg) 21.3 21.3

Base helix angle,  (deg) —28.5 28.5

Translational mesh stiffness, & (N/m) 6.19 x 10° 22.3 x 10°

Tilting mesh stiffness, x (N m) 643 x 103 231 x 10°

Center of stiffness, ¢ (mm) 0 0

Base radius,  (mm) 24 16 56

Center of mass, e (mm) 0 0 0 0
Bearing distance at point 4, L* (mm) =20 =20 =20 =20
Bearing distance at point B, L? (mm) 20 20 20 20
Radial bearing stiffnesses, &, k% (N/m) 0.5 x 10° 0.5 x 10° 0.5 x 10° 0.5 x 10°
Axial bearing stiffnesses, k%, k% (N/m) 0.5 x 10° 0.5 x 10° 0.5 x 10° 0.5 x 10°
Tilting bearing stiffnesses, x4, k% (Nm) 50 x 10° 5 x 10° 50 x 10° 50 x 10°
Rotational bearing stiffnesses, x4, x57(N m) 0 0 90 x 10° 90 x 10°
Mass, m (kg) 0.3 0.2 100 x 10~° 0.5
Tilting inertia, J* (kgm?) 5% 1073 50 x 107° 10 x 107¢ 4x1073
Rotational inertia, J° (kg m?) 10 x 1073 100 x 107° 20 x 1076 8 x 1073

Table 2

Lowest 10 natural frequencies (Hz) and mode types of the planetary gear system defined in Table 1 with four and five planets.

Four planets

Five planets

Natural frequency (Hz) Mode type Natural frequency (Hz) Mode type
953 R-A 1011 R-A
3120 T-T 3068 T-T
3120 T-T 3068 T-T
3251 R-A 3114 -A
3743 R-A 3670 R-A
5426 T-T 5184 T-T
5426 T-T 5184 T-T
8177 P 8177 P
8537 T-T 8177 P
8537 T-T 8506 R-A

R-A: rotational-axial mode, T-T: translational-tilting mode, P: planet mode.

relation between certain degrees of freedom such that not all modal deflections are independent. Based on
these features, all vibration modes are categorized as rotational—axial, translational-tilting, and planet modes.
These three types bear some similarities to those described by Lin and Parker [5], but they have important

differences.

3.2.1. Observed rotational— axial modes

There are 12 rotational-axial modes for systems with more than two planets. The natural frequency
multiplicity is one. From the computed eigenvectors (in Fig. 3, for example) the central members rotate and
translate axially, but they do not tilt or translate in-plane. The modal deflection of any central member is of

the form

Y = (09 09 ﬁ/’l’ 03 03 Zh)'

(32)
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The planets move in all degrees of freedom, and their modal deflections are identical to one another as
given by

V]:Vz:...:Vp, (33)

3.2.2. Observed translational- tilting modes

There are 12 pairs of translational-tilting modes with natural frequency multiplicity of two for systems with
three or more planets. In both modes of a translational-tilting mode pair the central members only translate
in-plane and tilt but do not rotate or translate axially. Figs. 4 and 5 show two examples of translational—tilting
mode pairs. The modal deflections of any central member for a pair of vibration modes have the form

Vi = (¢, 01,0, %1, 34,0), W, = (On, — ), 0, ), —x4,0) = w, =Ry, h=s,r,c (34)

The planets move in all six degrees of freedom. Their motions are such that the modal deflections of any planet
can be found from the modal deflections of the arbitrarily selected first planet using

Vi cosol  sinogl Vi 5 3
w;, | | —=singl cosa |\ w; /)’ F=2%00b (33)

where I is the 6 x 6 identity matrix.

3.2.3. Observed planet modes
In two sample planet modes shown in Fig. 6 all central members are stationary. This is given by

vi,=0, h=s,rc (36)

The planets move in all six degrees of freedom, and their motions are related to that of the arbitrarily selected
first planet, as given by

vi=wivy, i=2,...,p, (37)
where the w; are constants. Planet modes are observed only when there are four or more planets (p=4).

The natural frequency multiplicity is p — 3.

(a) :

Fig. 3. Two rotational-axial modes of the planetary gear system defined in Table 1 with four equally spaced planets. Angular and
translational displacements are scaled independently to emphasize behavior. (a) 953 Hz. (b) 3251 Hz.
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1
1

Fig. 4. A pair of degenerate translational-tilting modes (10 591 Hz) of the planetary gear system defined in Table 1 with four equally
spaced planets. Angular and translational displacements are scaled independently to emphasize behavior.

T
L

Fig. 5. A pair of degenerate translational-tilting modes (25696 Hz) of the planetary gear system defined in Table 1 with four equally
spaced planets. Angular and translational displacements are scaled independently to emphasize behavior.

(a)

(b)

(b)

3.3. Analytical characterization of vibration modes

The observed properties of the different types of vibration modes will be proved for general systems with
three or more planets. The proof consists of constructing a candidate vibration mode (for each mode type)
based on the observed characteristics and substituting it into the eigenvalue problem Eq. (26). Showing that
the eigenvalue problem is satisfied ensures that the proposed vibration mode is truly a system vibration mode.
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(@)

Fig. 6. Two planet modes of the planetary gear system defined in Table 1 with four equally spaced planets. Angular and translational
displacements are scaled independently to emphasize behavior. (a) 8177 Hz. (b) 80 538 Hz.

The critical point for all three mode types is that some elements of the candidate vibration mode are linearly
dependent on others. A candidate vibration mode is partitioned as

q=(uq"), q"=Yu, (38)
where the vector u contains elements regarded as independent, and the vector q* is the vector of dependent
elements calculated from u. How the modal deflections are partitioned between u and q* as well as the
matrix Y differ for each of the three mode types, but all three types can be expressed in this general form with
known Y. The three specific cases are discussed subsequently.

Substitution of the candidate vibration mode from Eq. (38) into the eigenvalue problem Eq. (26) results in

u _; M, 0 u 19
q* - 0 Ml q* > ( )

where A, B, and E are partitioned matrices of K; M, and M; are partitioned matrices of the diagonal M. The
upper row yields Au+ BTq* = ZM,u. Substitution of ¢q* = Yu expresses the upper row in the form of a
reduced eigenvalue problem

A BT
B E

(A+B"Y)u = M,u. (40)

This equation contains all the necessary information to find the natural frequencies and vibration modes of the
type of vibration mode under consideration. The remaining elements q* of q are found from Eq. (38). For such
a mode to indeed be a system mode, however, the lower row of Eq. (39) must hold, which is given by

Bu + Eq* = AM,q". 41

This equation is crucial for the rest of this paper.

In what follows, we prove that Eq. (41) holds for appropriately selected candidate vibration modes of the
form Eq. (38) constructed for each of the three mode types. In each case, u is calculated by the reduced
eigenvalue problem in Eq. (40). In this process, the algebraic properties of the stiffness and inertia matrices are
pivotal. Furthermore, we show that this process yields all of the system modes, that is, every mode is either a
rotational-axial, translational—tilting, or planet mode.

Several elements of q* are zero for each mode type. The non-zero elements are collected in q}. To simplify
the subsequent algebra Eq. (41) is partitioned into two parts associated with the zero and non-zero elements of
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(42)

where the subscripts 0 and N denote the partitioning, and Eq. (42) reflects M; being diagonal. The upper and
lower rows of Eq. (42) are

Bou + Eoq}, = 0, (43)

Byu + Eyqy = AMyqy. (44)

The construction of matrices Y, By, By, Eg, Ey, A, My, and M,, are dictated by the partitioning of each
candidate mode type by Eq. (38).

With the stipulations that the planets are equally spaced and the system is tuned, the following
developments do not depend on, and are therefore valid for arbitrary values of, system parameters such as
gear radii, pressure and helix angles, locations and stiffnesses of the bearings, mesh stiffnesses, and so on.

3.3.1. Rotational-axial modes
The decomposition of the candidate rotational-axial mode according to Egs. (32), (33), and (38) is

u= (vj'svrsvcsvl)s q* = (0,0,0,Vl,...,V]), (45)
——
p—1
where the zero vector has dimension 4 x 1. The tilde accent is used here and for the other two mode types to
represent sub-vectors containing only the independent elements u of the candidate mode q in Eq. (38). The
specific elements in the quantities with a tilde accent will differ based on the mode type in question. The tilting

and translational motions of the central members in a candidate rotational-axial mode are zero as indicated in
Eq. (32), so the sun, ring, and carrier modal deflection sub-vectors are

vs = (:83,25): V= (Br’ Zi’)a vc = (ﬁwZC)' (46)
The modal deflections of each planet are identical as given by Eq. (33). The modal deflection of the arbitrarily
selected first planet v, is chosen to be the independent one hence the appearance of v; in Eq. (45). The
dependent elements contained in q* are all calculable from the vector of independent elements u using Eq. (38)
and

0126 012x6
Osxs  Ioxo

Y = . . 47)
Osx6  Isxo

with dimension 12 4+ 6(p — 1) x 12.
One can readily partition Eq. (26) to obtain Eq. (39), and the reduced eigenvectors u are found from
Eq. (40). To confirm that Eq. (45) is indeed a mode, each of Egs. (43) and (44) must be satisfied for u and q*.
The matrices By and Ej in Eq. (43) are dictated by the partitioning given in Eq. (45) to be

K, 0 0 K Koo ... K,
By = 0 lA(r 0 IA(r,l , Eo= KV,Z ce R"a[’ : (48)
0 0 K. K. Ko ... K,

The sub-matrices Ky, & = s, r, ¢, are constructed from the 1st, 2nd, 4th, and 5th rows and 3rd and 6th columns
of the corresponding matrices K;, in Eq. (18). The sub-matrices IA(;U, i=1,...,p, are constructed from the 1st,
2nd, 4th, and 5th rows and all columns of the corresponding matrices K;; in Eq. (18). By has dimension
12 x 12 and E, has dimension 12 x 6(p — 1).
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Substitution of matrices By and Ey from Eq. (48) into Eq. (43) yields

D
Ki¥y + Y Kjv =0. (49)
i=1

From Eq. (28), the sub-matrices K;, satisfy

P p
Ki= 1) sing + RVR' S cosa, (50)
i=1 i=1
because @, ==, =¥, =0 by Egs. (88)-(90), (94)—(96), (100)—(102). The hat accent on R indicates the 3rd
and 6th rows and 3rd and 6th columns of R. The bar accent on R indicates the 1st, 2nd, 4th, and 5th rows and
the 1st, 2nd, 4th, and 5th columns of R. From Ref. [23]

p+l P

sin - o sin 2 coserl osin
E sinig =—=2——2 = E cosig =—-=2——241=0, (51)
sin% s sin%

where the second equalltles are from equal planet spacing o = 27/p. The sub-matrices K, in Eq. (49) vanish
as a result of Egs. (50) and (51). For vanishing K; Eq. (49) becomes, after use of Eq. (31) and I',; =0
(by Eqgs. (92), (98), and (104))

p ? ?
> Kpvi =AY _sino; + RAv Y coso; =0, (52)
i=1 i=1 i=1
where the second equality results from Eq. (51). This confirms that Eq. (43) is satisfied for the candidate
rotational-axial vibration mode defined in Eq. (45).

We now examine whether Eq. (44) is satisfied. The matrices By, Ey, and My are

K, K, K, 0

By = s Ey = diag(Ky, ..., Kp), My = diag(Mo, ..., Mp). (53)
=T =T =T
KS’ » Kr, » K ep 0

The sub-matriges Kh’,' are constructed from all columns and the 3rd and 6th rows of K;,; in Eq. (18), so using
Eq. (31) and A, = 0 (by Eqgs. (91), (97), (103)) Eq. (31) becomes
K =T (54)

The zero matrices are 6 x 6. The matrices By, Ey, and My have dimensions 6(p — 1) x 12, 6(p — 1) x 6(p — 1),
and 6(p — 1) x 6(p — 1), respectively. Substitution of Eq. (53) into Eq. (44) yields p — 1 matrix equations
Zh:%c f;?h + K;vi = AM,vy, i = 2,...,p. Substitution of Eq. (30) gives

S Fin + Kivi =AMy, (55)

h=s,r,c

We now show that this equality is satisfied for v, and v; calculated from the reduced eigenvalue problem
Eq. (40). The matrices A and M,, in Eq. (40) are

K, 0 0 K

A= 0 0 Kc Kc,l , M, =diag(M;,M,, M., M), (56)
T 5T 5T
Ks,l Kr,l K(r,l Ki

where M, and K, are constructed from the 3rd and 6th rows and the 3rd and 6th columns of the
corresponding matrices in Eqs. (17) and (18). The matrices A and M, have dimension 12 x 12. Upon
substitution of A, M,,, By, By, and Y from Egs. (56), (48), (53), (47), and (54) into Eq. (40), the reduced
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eigenvalue problem for rotational-axial modes is

K, 0 0 pIy] /¥, M, 0 0 0 7
0 K. 0 pL||+ 0 M, 0 0 v,

, _ Tl =2 ) N (57)
0 0 K. pI.|] ¥ 0 0 M., 0 Ve
pEl pEl pEL pKy | \vi 0 0 0 pM;|\Wi

The last row of the reduced eigenvalue problem in Eq. (57) is the same equation as Eq. (55). Thus, u satisfying
Eq. (40) ensures the satisfaction of Eq. (55), and so the satisfaction of Eq. (44).

We have shown that every rotational-axial mode q of the form Egs. (38) and (45), defined by Egs. (32)
and (33) satisfies the full eigenvalue problem Eq. (26); each u is determined from the reduced eigenvalue
problem Eq. (40). In the rotational-axial mode case, Eq. (40) is a 12 x 12 eigenvalue problem and the reduced
eigenvector u has 12 elements. Therefore, there are 12 rotational-axial modes. Because each reduced
eigenvector u produces only one rotational-axial mode, each rotational-axial mode has a distinct natural
frequency.

3.3.2. Translational- tilting modes
The candidate pair of translational-tilting modes given by the relations Eqgs. (34) and (35) satisfy the
eigenvalue problem Eq. (26) with the same eigenvalue. This is expressed as

(K —iM)q, =0, (K—/M)q,=0. (58)

Any linear combination of q; and q, also satisfies the full eigenvalue problem with the same eigenvalue. To
apply the formulation in Eqgs. (40)—(44), we stack the two expressions in Eq. (58) into a single block-diagonal
matrix eigenvalue problem of dimension 12(p + 3) with eigenvector

q=1(q;,q). (59)

This eigenvalue problem is partitioned to give Eq. (39). To that end, decomposition of the candidate
translational-tilting mode pair in Eq. (59) according to Egs. (34), (35), and (38) gives

u= (vs: vry v(‘a vla wl)’

q* = (0> 05 05 We, Wy, We, V2,000, Vp, Wo, s, Wp)a (60)

where the zero vectors are 2 x 1. The matrix Y combines Eqgs. (34) and (35) to relate q* to u in Eq. (38), and it
is given by

064

R

0454
04><4
066

06x6
06x6

066

064
044

R
0454
066

06x6
066

066

064
044
044

R

066

066
06x6

066

0656
0456
04x6
04x6
Icosan

Icosa,

—Isinay

—Isina,

0656
0456
04x6
0456
Isin oy

Isino,

Icosay

Icosa,

) (61)

where the bar accent on R indicates the 1st, 2nd, 4th, and 5th rows and the 1st, 2nd, 4th, and 5th columns of R.
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The sub-matrices By and Ej in Eq. (43) are

K, 0 0 K, K
Bp=|0 K 0 K., K./, (62)
0 0 K. K, K.
K, 0 0 K, K, Ko K.,
E,=|0 K. 0 K. K., K. K., (63)
0 0 K. K. K., K. K.,

The sub-matrices Kh are constructed from the Ist, 2nd, 4th,Aand 5th columns and the 3rd and 6th rows
of the corresponding matrices in Eq. (18). The sub-matrices K;; are constructed from all columns and the
3rd and 6th rows of the corresponding matrices in Eq. (18). By has dimension 6 x 24 and E has dimension

6 x 12p.
Substitution of By and E, from Egs. (62) and (63) into Eq. (43) yields

)4 )4
K+ Y Knvi=0, Ky, + > Kywi =0, h=src (64)

i=1 i=1

Considering the specified K, and Eq. (28), ©, = £ = ¥, = 0 by Egs. (88)-(90), (94)~(96), (100)~(102). Thus,
using Eq. (51), the sub-matrices K;, vanish for equally spaced planets. Use of Eq. (31) and A;, = 0 (by Egs. (91),
(97), and (103)) simplifies the off-diagonal sub-matrices to K, ; = I';,. For vanishing K, substitution of Eq. (35)

into Eq. (64) yields

P P
th vicoso; + wysina; = 0, th wicoso; —visine; =0, h=s,7,c. (65)

i=1 i=1

These six matrix equations are satisfied in light of Eq. (51). This confirms that Eq. (43) is satisfied for the
candidate mode given in Eq. (60), or equivalently, Eqgs. (34) and (35).
The matrices By, Ey, and My in Eq. (44) are given by

[ 044 044 0454 0456 K,
044 044 044 046 K,
0454 0454 044 0446 K.
=T T T
By = KS,Z Kr,2 Kc,2 066 066 , (66)
=T T T
Ks,p Kr,p Kc,p 06><6 06><6
| Osp-1x4 Osp-1yx4 Osp-1)xa Osp—1)x6  O6(p—1)x6 |
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[ Ky 04g Ops 04 ... 04 Koo ... K, |
0ss Ko Opg O ... 04 Koo ... K.,
044 Ops Ko Opg ... Oss Koo ... K.,
Osxs Osxa Osxa Ko ... Osxs Opxs ... Ogxs
Ey = : : : : : : : i (67)
O6xa O6xa Opxa Opxs ... K, 0Osxg ... Opxs
T =T 5T
KS’2 Kr,z KC,Z O ... 066 Ko ... Ogxs
T =T 5T
K K, K 0us oo 0o O ... K,
MN = diag(MS9 MI‘: M(‘) MZ» MR Mpa MZ) MR Mp) (68)

The sub-matrices K;; are constructed from all columr_ls and the 1st, 2nd, 4th, and 5th rows of the
corresponding matrices in Eq. (18). Use of Eq. (31) and I';, = 0 (by Egs. (92), (98), and (104)) simplifies the
off-diagonal sub-matrices to

K = Ay (69)

The sub-matrices Mh and Kh are constructed from the 1st, 2nd, 4th, and 5th rows and the 1st, 2nd, 4th, and
Sth columns from the corresponding matrices in Eqgs. (17) and (18). The planet stiffness and inertia sub-
matrices M; and K; do not need partitioning; they are identical to the ones in Eqgs. (17) and (18). By has
dimension 12p x 24, and Ey and My have dimension 12p x 12p.

Substitution of Egs. (66)—(68), and the candidate mode from Eq. (60) into Eq. (44) gives

V4
KhWh + Z Kh,iwi = ;"thha h =s,r,C, (70)
i=1
Z K;[Vh +Kyv; =My, i=2,...,p, (71)
h=s,r,c
Z K;’iWh + Kl‘Wl‘ = }le‘Wl’, = 2’ R/ (72)
h=s,r,c

From Ref. [23]

P : )4 .
5. p cos(p+ Dusinpx _p 2. P cos(p+ Dasinpa _p
;sm la—2 2 sino =5 ;cos loc—z—i— Jsino =7

» ) Dasi
Z sin io cos it = w =0, (73)
— 2sino

where the second equalities result from equal planet spacing o = 27/p. Substitution of Egs. (34), (35), and (73)
into Eq. (70), premultiplication by R", and use of R' MR = M, R K;R = K, gives

I’(/ﬂ’h —i—gli/ihV] —i—gl{h‘ﬁ = iM/ﬁ’]h h=s,r,c. (74)
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Substitution_c%f_Eqs. (30), (34), and (35) into Eqgs. (71) and (72), and summing the p — 1 equations, gives (for
op=0and R R=1)

)4
( Z AERTW, + Kjv; — iM1V1> Zcog o =0, (75)

h=s,r,c =2

P
( Z Ay + Kiwy — ZM1W1> Zcosa,- =0. (76)

h=s,r,c i=2

We now show that Eqs. (74)—(76) are satisfied for v, Wy, v;, and w; calculated from the reduced eigenvalue
problem Eq. (40). A and M,, are given by

K, Opa 04 Ko 046
0ss K 040 Ko 04
A= {044 0454 K. Koo 046, M,=diag(M,M,M,M),). (77)
T =T =T

Ks,l Kr,l K(:,l K, 06><6
| O6xa Ooxa  O6xa 0Oox6 Ky |

Substitution of A, M,,, By, By, and Y from Egs. (77), (62), (66), (61), and (69) into Eq. (40), and using algebra
similar to that in Eqgs. (74)—(76), gives the 24 x 24 reduced eigenvalue problem

Koo Oua i SRABAT g M, 0 0 0 0 ]/5%
04><4 Kr 04><4 % RAr % Ar i’/r 0 Mr 0 0 0 {,r
0454 0454 K. 5RA. ZA. v.l=410 0o ™M o0 0 v, (78)
PATRY ZAIR" ZAIR' LKy O | | Vi 0 0 0 ZM, 0 v
- - - 4
%AYT %’A,T 157 ;r 06><6 %KI Wi i 0 0 0 0 2M1 | Wi

The first three rows of Eq. (78) are the same as Eq. (74). The 4th row of Eq. (78) is the same as Eq. (75) because

" _, cosa; is non-zero. Similarly, the 5th row of Eq. (78) is the same as Eq. (76). Consequently, Eq. (44) is
satisfied for u satisfying the reduced eigenvalue problem Eq. (78).

The foregoing analysis confirms that the degenerate mode pair q; and q, defined by Eqs. (34) and (35) each
satisfy Eq. (26) with the same eigenvalue. The natural frequency multiplicity of two is also reflected in Eq. (78),
which yields 12 degenerate eigenvalues with corresponding eigenvectors u; = (¥, V,,V.,vi,w;) and
uy = (Wy, W,, W, w,vp). This is true because one can exchange the letters v and w in Eq. (60) with no change
to any subsequent matrices or results. As a result, there are exactly 12 pairs of translational-tilting modes with
twice repeated natural frequencies.

3.3.3. Planet modes
The decomposition of the candidate planet mode according to Egs. (36)—(38) is

u=wivy, q°=1(0,0,0,wv,...,w,v1), (79)

where the zero vectors are 6 x 1. We specify without loss of generality that w;v; #0, that is, at least the
arbitrarily selected first planet deflects. The modal deflections of other planets are a scalar multiple of the
modal deflections of the first planet as given in Eq. (37), although the w; (i = 1,. .., p) are yet to be determined.
The matrices in Eq. (43) are
K, Ko, ... K,

B() = Kr,l , EO = Kr,2 cee Kr,p 5 (80)
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where By has dimension 18 x 6 and Ej has dimension 18 x 6(p — 1). Substitution of Egs. (79) and (80) into
Eq. (43) yields

P
Z Kywivi =0, h=s,rc. 81)
i=1

Substitution of Eq. (31) into Eq. (81) gives

p p P
(A;, Z w;sino; + RAy, Z wicoso; + Iy, Z wi> vi =0, (82)

i=1 i=1 i=1

which is satisfied if

p P p
g w;sino; = 0, E wicoso; =0, E w; = 0. (83)
i=1 i=1 i=1

Eq. (83) can be solved for p — 3 solutions for p>4 [8,17]. Each solution gives a non-trivial set of w;,

i=1,...,p, and this set can be scaled by an arbitrary constant.
The matrices in Eq. (44) are
By =0, Ey=diagK,,...,K,), My =diag(M,,...,M,), (84)

where By has dimension 6(p — 1) x 6, and Ey and My have dimension 6(p — 1) x 6(p — 1). Substitution of
Eqgs. (79) and (84) into Eq. (44) gives K;w;v; = AM;w;vy, i = 2,...,p. With use of Eq. (30) and w; #0 for some i,
these equations reduce to

K1V1 = ;»Mlvl. (85)

We now show that this equation is satisfied by the reduced eigenvalue problem Eq. (40).
Considering Eq. (40), the matrices are given by A = K;, M,, = M|, and BTY = 0. With u = w;v, Eq. (40)
becomes

K1W1V1 = ZM]W]V]. (86)

Eq. (85) is satisfied for v; determined from Eq. (86) and w; #0. Thus, both Eqgs. (40) and (44) are satisfied.
Eq. (43) is satisfied by solution of Eq. (83) for the p — 3 sets of w;.

Thus, every mode of the form Eq. (79), defined by Egs. (36) and (37) constructed from v; and a set of w;,
satisfies the full eigenvalue problem Eq. (26). The reduced 6 x 6 eigenvalue problem in Eq. (86) yields six
planet mode eigenvalues regardless of the number of planets. For each of the six eigensolution pairs (4,v|) one
can construct p — 3 (p>4) eigenvectors of the full system using the solution sets for the w; from Eq. (83).
Hence, each of the six planet mode natural frequencies has multiplicity p — 3. There are no planet modes if
there are less than four planets because no set of w; satisfying Eq. (83) can be found.

3.4. Discussion

A helical planetary gear with p equally spaced planets and six degrees of freedom per component has
18 4 6p degrees of freedom. There are 12 rotational-axial modes with distinct natural frequencies; there are 24
translational-tilting modes (i.e., 12 degenerate mode pairs with natural frequency multiplicity two); there are
six planet modes each with natural frequency multiplicity p — 3 (i.e., 6(p — 3) modes) provided p=4. Thus, all
18 + 6p vibration modes have been accounted for. No other mode type is possible.

The only restrictions that the proof needs are the tuned system assumption and equal planet spacing. These
restrictions are confined to the plane of the planetary gear. Parameter variations that do not disturb these
stipulations have no effect on the properties of the vibration modes. There are no restrictions on the
parameters that define the system in the axial direction. Therefore, contrary to intuition, the described mode
types hold for configurations that are not symmetric about the plane of the gears, such as:

1. The bearings at opposite ends of a given gear-shaft body have different stiffness properties. An example is
tapered roller bearings at one end and spherical roller bearings at the other end.
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2. The bearings on a given gear-shaft body are at different distances from the gear plane; both bearings are on
the same side of the gear plane; or, there is only one bearing. An example of such a configuration would be
overhung gears and/or carrier.

. The mass centers of the various gear-shaft bodies are at different axial positions.

4. The contact pattern is off-centered at the gear meshes. This may be due to, for example, lead modifications

and deflection of the system under load. Note, however, that the sun—planet contact patterns must be the
same at each planet (and the same for the ring—planet meshes).

w

These four items destroy symmetry about the gear plane, but the modal properties hold for these
configurations and any combination thereof.

4. Conclusions

We prove that there are exactly three types of vibration modes of any tuned single-stage helical planetary
gear system with equally spaced planets. The helical planetary gear system is represented by a three-
dimensional lumped-parameter model that allows for six degrees of freedom per gear-shaft body supported by
bearings at arbitrary axial positions. All vibration modes belong to one of these three types, described below:

1. Rotational-axial modes: The central members rotate and move axially but do not tilt or translate. The
modal deflection of the planets are identical. There are 12 rotational-axial modes with distinct natural
frequencies.

2. Translational-tilting modes: The central members tilt and translate in-plane but do not rotate or move
axially. The modal deflections of all planets are related to one another according to Eq. (35). There are
12 pairs of degenerate translational-tilting modes with natural frequency multiplicity two.

3. Planet modes: Only the planets have modal deflection. Each planet’s modal deflection is a known scalar
multiple of any other planet’s modal deflection. The central members do not move. There are six planet
mode sets, where each set consists of p — 3 degenerate (for p >4) modes having the same natural frequency.
Planet modes exist only for systems with four or more planets (p>4).

This classification of the vibration modes persists for systems that are not symmetric about the plane of the
planetary gear because the proof is valid for arbitrary values of all parameters that lead to such asymmetry.

Appendix A. System matrices
For all matrices in the appendix, all unspecified elements are zero.
All sub-matrices in Egs. (87)—(98) are associated with a particular mesh. Subscript s denotes the sun gear;

for sub-matrices with the subscript s, j = 1,3,...,2p — 1 indicates the particular sun—planet mesh. Similarly,
for sub-matrices with the subscript r, j = 2,4,...,2p indicates the particular ring—planet mesh.

Y =P = lgrDi()cos g, XYPY =YD = kil sin cos
Y& =YY = krocos?y, YO =YD = —kD(j)sin,
Y20 = YO = i sin® . (87)
O =1+ kDG, O =03 =KD i()rsiny.,
@sz,z) = kjry sin s, ®§5’5> =kj cos> iy,
0" = @Y = k;Di(j)cosyy, O = O = k;rysiny cos . (88)

=(L1 N o =(12) _ =21 2 2 2
ED = 2k;D(yrgsinyg,  EMD = ESD = k[r? sin® y — D1()*] — x;,
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521,4) = E§4,1) = kjcosyDi(j), Egl’s) = Egs’l) = kjrycosy siny,
E®D = —2k;Dy(j)rgsing, EXY = EHD = kir cosysiny,
EPY =B = —k;cosyDy(j), EM =EPY = k;cos’ . (89)
YD =k AD2 4 kBD3 4k B, WS =B — k4D — kB Dyg,
YD) = k4D + kEDY 4+ ki, WY =W = k4D 4 kB Dy,
WO = 2 B cos?y, WO = —krgcosysing, WO = k4 1 k5
WO — A ) B w00 — A2 fB o fsin? . (90)
AMY = 1Dy Gy, sing, AU = kD ()Da() + x5, AN = kD (j)r, cos y,
AN = Dy ()cosy,  ALO =k;Di()sing,  APD = kjror, sin® b,
AP = kirosingDy(j),  A®Y = kjryr, singcosyy,  APY = —k;rysiny cos i,
APO = kirosin?y,  ACD = kir,cosysing,  AS? = k; cosyDy(j),
ACY =i cos?y, ABY = —kcos’yy, ALY = k;sinycos . 1)
e = ki, cosysing, T = krocosyDa(j), TPV = kir,rycos?y,
I8 = —kirocos’yy, T30 =Fkirocosysing, TOY = —kr,sin’y,
1'% = —k;sinyDy(j), T = —kjr,sinycosyy, T = k;sinycosy,

%% = —k;siny, (92)
where j = 1,3,...,2p — 1 for all matrices related to the sun.

i =13 =k Ds(cosy, XM =XV = k;Ds()siny,
Y = YO = ki, Dy()cosy, YO = YO0 = k;Dy(j)siny,
YO = Y4 = . Dscosy, YD = YO = k;r,Dg cos
Y4 = YO = k:Dssing, YOO = YOI = k; D sinyp. (93)
0D = i;D} + k;D3(j)>, O = @Y = ;D9 Dy + k;D3(j)Da(j),
0! = @™ = k;D5(j)Ds, O = @D = k;D3(j)Ds,
0% = ;D% + k;Da(j)’, O = @“? = k;D4(j)Ds,
0% = 05? = k;Dy(j)Ds, OWY = k; D2,
0" = @Y = k;DsDs, OO = k;D2. (94)

ED = 2i;:D9 Dy + 2k; D3 () Da()),
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2 =B = KDa()’ = Ds(i)’] + 1D}y — D5),
M = B = k[Ds3(j) D6 + Da(j)Ds],
2 = DD = k;[D4(j)Ds — D3(j)Ds],
E®? = —2i;,D9D1g — 2k;D3(j)Da()),
23 = 8% = k;[Dy(j)Ds — D3(j)Ds], EWY = 2k;DsDs,
B> = B = —;[D3(j)Ds + Da(j)Ds),
EW) = 809 = k(D — D), ESY = —2k;DsDs. (95)
W =KADY 4 KED3, 4! ok, ) = WD = kD, — KDy,
WD = kADY, + kPD3) + k! + kB, WY = WD = kA Dyg + kP Dy,
WO = A2 4B 4k cos®y, WO = WO = ki, cosysiny,
WD — A i B WO = A kB WO = kA7 iB kg sin? . (96)
AN = J;D3(j)D7(j) — x;Do Do, A" = k;D3())Ds(j) + x; D3,
A = kD3 ()Ds, A" = k;D3(j)Ds,  AO = —k;Ds(j) siny,
AN = —kir,Ds(j)cosy, AP = —k;r, Dy(j) cos i,
AP = k;Da()D1() — 1, D3, AP = k;Da(j)Ds()) + ;D Dy,
APY = —k;Da()Ds,  APY = k;Da()Ds,  APO = —k;sin Y Da()),
A = k;DsD4(j), A% =k;DsDg(j), AYY = —k;Dsr,cosy,
A%Y = _k;DsDs, AYY = kD2, AYD = —k;Dssiny,
ACY = kiDsD4(j), AS? = k;DeDs(j), AP = —k;r,Dgcos i,
APY = ;D% ASY =k;DsDs, ABY = —k;sinyDg. 97)
T = ki, cosyDr(j), T8 =k, cosyDs(j), TPV = —kjrr, cos*y,
Ff.3’4) = —kjr.Dgcos y, I‘,@’S) = kjr,.Dscos s, l"f,3’6) = —kjr.siny cosy,
TSD = k;sinyDs(j), T =k;sinyDg(j), T = —k;r,siny cosy,

I = —k;sinyD, T =k;sinyDs, T = —k;sin®y, (98)
where j = 2,4,...,2p for all matrices related to the ring.

YD =YOD = —D3(k) Dy + k) Dys), YO =YD = —Dip (k) + k),

Y3 =x0? = D12(k;1D11 + ngls)a YO =70 = _D13(k;2 + kfz)’
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YO =¥ = Dy(k) + kD), XD = Y0V = Dis(k) + k). (99)
O = ki D}, + kP Dis + DLk + k) + 1) + 12,
0(12) 9(2 ) _ D12D13(kAZ +kBZ)
0" = 0> = —ki Dy — k. Dis,
O = kD, + kI Dis + D5k + k) + 1 + 12,
0% =0 = kiDi +kiDis, O =k + k2,
0> =k + k7. (100)
MY =2DnDis(k)” + ki), EFP = —2DpDis(k)” + k),
2 =82 = (D1 - D)k, + k), (101)
WD = D3 4 KEDS + ! et WD = WD = ictDyy — KD,
W2 — kAD3 + kED3, 4+ kd 1B, WY = WD = kADyy 4 kB Dy,
YO =i + 1k i 4 1 + (D + D)) + k),
YOO =kl kP WO =k kP WO =k kP kK (102)
A = k,/,anDm + kalst + ;c;’ + Kf,
APD = —kd Dy Dy — k) DisDyg — i) — K1,
AYD = —kADyy — kD1, AN =k 4+ K2,
AP =~k Dy — kD, ADY = k! — kP,
A = kdDy + ki Dis, AP =k Dyy + k. Dy,
ALY = Dk + k), AZO = Diaky)” + kb)), (103)
réb = —D12(k;1D14 + kam), ré? = —D13(k;,1D14 + kalé),
IO = —cte — il 109 = —Dyy(k! + kD),

89 = Dio(ky) +ky), TOO = ke — IF. (104)

Eq. (105) relates to planet i € {1,2,...,p}. The quantity 2i — 1 indicates the sun—planet mesh, and 2i
indicates the ring-planet mesh.

K" = k12 sin®  + ko D7(20) + kDY + kit DYy + KE D + 1! + 5.

K" = K" = ki1 D2(2i — Dr, siny + ko D7(20)Ds(2i) — K2:Do Do,
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Kﬁl’g) K(3 D = [kai_1rp siny — ko D7(20)]r, cos i,
K" = KV = ky,D7(2i)Ds — k;DM - kam,
Kgl"” = K§4’1) = —koi_1r, siny cos y — ko;D7(2i)Dg,
K" = KD = k1, sin® y — ko D7 (20) sin i,
K = kyi_1 Dy(2i — 1) + ki Ds(20)” + Keaimy + k2:D3 + ki D}y + kB DY + ! + 18
K = K®? = [ky; 1 D2(2i — 1) — kaiDg(2i)]r, cos ),
K§2’4) = KE~4’2) = —kji_1D>(2i — 1) cos l// — ko;Dg(2i)Dg + k;DM + kaIG,
K = K™ = kD5 Dy(20)
K* = K = ky;_ Dy(2i — 1) sinyy — ko Dg(2i) sin ),

K& = (kyy + leai)ry cos” Y + 1t + 1

Kf3’4) (4 3) = (k2iD¢ — kaj—1 cosyr)r, cosy,

K(3’5) K\ ?) = —koiDsr,cosy,
KO = K = (ko1 + kai)r, siny cos ),
K = ki cos?  + koD + ky + Ky, K" =K = —ky;Ds D,
K = K = —(kni1 cosy — kaiDe) sin ),
KES,S) = kyD? + kA + kB K(5’6) = K(.6’5) = —ky;Dssiny,
KO = (kaiy + kao)sin® y + k= + k5. (105)
In the quantities below, j € {1,2,...,2p} denotes one of the 2p tooth meshes:

D1(j) = (es — ¢j)cosy — rysiny tan Pgp,
Dy (j) = (e, — ¢j)cos Y + 1, siny tan D,

D3(j) = cos(Psp + Prp)l(er — ¢j)cosyy — rpsinyf tan @] + 1, sin Y sin(Pgp + Prp),
Dy(j) = sin(@s, + Dp)[(e, — ¢j) cosyy — 1 sinyy tan @] — 1, sin iy cos(Pgp + Pyp),
Ds = —cosysin(Pgp + 1),  Ds = cos iy cos(Psp + Prp),

D5(j) = sin(Dg, + Prp)l(c; — €,) cos Y + 1, tan D, sin ] + 1, sin iy cos(Pgp, + Py,

Ds(j) = cos(Psp + Prp)l(ey — ¢j) cOs Y — 1, tan Ppp sin ] + 1, sinyf sin( Dy, + D),
Dy = — COs(ésp + (prp)a Dy =— Sin(¢sp + q)rp)a

4 4
Dy =-L,—e, Do=—tan®y(r;+r,), Dsz=ri+r, Du=-L,—e¢,
B B 4 B
Dis=L,—e, Di=L,—¢, Di7=-Lf—e, Dyg=L;—e,

4 B A B
Dyg=—-L —e, D=L —e¢, Dy=-L—e, Dp=L —e.
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