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Abstract

The almost-sure asymptotic stability of elastic systems subjected to parametric excitation is studied. The excitation

consists of a harmonic function on which a stochastic term is superposed. The effect of the parametric action on the

stability of a coupled system of differential equations is studied. By means of stochastic transformations of state norm

process, the stability boundaries are determined using the stochastic averaging method and a technique due to

Khasminskii. As an application, the problem of coupled flexural–torsional instability of a deep rectangular beam in the

presence of fluctuating axial loads and end moments is considered.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrations caused by a variation in the parameters of a system are called parametrically excited or simply
parametric vibrations. From the mathematical point of view, the feature common to all parametric vibrations
is that they are described by differential equations with coefficients depending explicitly on time. Parametric
vibrations in deterministic systems have been investigated in great detail (see for example Refs. [1,2]).
Extension of the theory to stochastic systems, whose behavior is described by means of differential equations
with coefficients varying stochastically in time, is of interest. Again, there arises the problem of stability of the
trivial solutions of these equations. Stability is understood in the stochastic sense, i.e. as stability with respect
to probability, to mathematical expectations, to a set of moments of functions, etc.

Parametric resonances arises when certain relations between the frequency of parametric action, n, and the
natural frequencies of a system, ok, are satisfied, which include n ¼ 2ok=p, referred to simple resonances,
n ¼ ðoj þ okÞ=p, referred to combination sum resonances and n ¼ ðjoj � okjÞ=p, referred to combination
differences resonances ðj; k; p ¼ 1; 2; . . .Þ. If the parametric action is a random process with a latent periodicity,
analogous resonance phenomena can be expected to occur in the stochastic system [3,4].

The theory of stochastic stability first came into existence mainly in connection with problems of
control theory. Extending the classical theory of stability of motion to stochastic systems became necessary.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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The mathematical aspects of the theory are treated in Refs. [5,6]. Among numerous applied problems,
we cite the problem about the stability of linear stochastic dynamical systems, driven by parametric excitation.
A large amount of research has been done in this area. In the case of stationary stochastic excitation,
stochastic stability conditions were obtained by, among others, Stratonovich and Romanovskii [7],
Weidenhammer [8], and Graefe [9], who showed that, to a first approximation, stability depends only on
the excitation spectrum in the neighborhood of the sum of the natural frequencies. Ariaratnam and Tam [10]
investigated the effect of parametric action on the moment stability of a damped Mathieu oscillator. The
stability in mean square of an oscillator of the same kind, describing the vibration of a propeller blade of a
helicopter, has been studied in Ref. [11]. It is found that the turbulent fluctuation of the air speed lead to an
additional parametric random action, which according to Ref. [11], may have a stabilizing or a destabilizing
effect. The moment stability of a two-dimensional coupled system, driven by parametric excitation was
investigated in Ref. [12], using the Stratonovich–Khasminskii theory (SKT) [13]. Here, the variation of the
parametric excitation intensity with time is described by the sum of a harmonic function and a stationary
random process.

A combination of the stochastic averaging (built on the assumption of light damping and weak excitation of
wide-band process) and the Khasminskii’s procedure becomes an effective approach to obtain the asymptotic
expressions for the largest Lyapunov exponent (as an almost-sure stability indicator). This approach was used
by Ariaratnam et al. [14,15] to investigate the stochastic stability of coupled linear systems. The approach was
also used by Ariaratnam et al. [16] to analyze the stability of non-gyroscopic viscoelastic systems, in which the
integral term arising from the viscoelastic effect was averaged by employing the Larianov’s method [17]. The
stochastic averaging method, proposed by Zhu et al. in Refs. [18,19], combined with the technique of
Khasminskii, has been applied to quasilinear gyroscopic systems under real noise excitation to derive sufficient
conditions for the almost-sure asymptotic stability [20].

In this study, the obtained results in Ref. [12] are used in this paper to extend the study further
to obtain explicit asymptotic expressions for the largest Lyapunov exponent, using an alternative proba-
bilistic approach to the stability problem [5]. As an application, the problem of coupled flexural–torsional
instability of a deep rectangular beam in the presence of fluctuating axial loads and end moments is
considered.
2. Formulation

The systems considered are described by differential equations of the form

€qi þ 2�
X2
j¼1

bij _qj þ o2
i

X2
j¼1

hijqj� sin 2ntþ f ðtÞ�1=2
X2
j¼1

cijqj

" #
¼ 0 ði ¼ 1; 2Þ (1)

where qi are the generalized displacements and oi are the natural frequencies of the two subsystems,
respectively. Symbol bij denotes the damping coefficients, hij the amplitudes of the harmonic excitation, cij

normalization constants and � is a small parameter to ensure light system damping and weak excitation.
The dynamic stability of systems described by Eq. (1) under deterministic parametric load has been

investigated in detail in Refs. [1,2]. There exist situations in which the exciting loads cannot be described
adequately in the form of deterministic functions alone, and random fluctuating terms are superimposed.
When the excitation, f ðtÞ, is taken to be a stationary random process, a probabilistic approach is needed.

The effect of the random parametric excitation on the stability of trivial solutions of system (1) is
investigated when the frequency of the harmonic component falls within the region of combination parametric
resonance, i.e. 2n � o1 þ o2.

Considering the case of parametric resonance, i.e. when p1 � o1 and p2 � o2, and setting

o2
1 ¼ p2

1 þ �D1

o2
2 ¼ p2

2 þ �D2 (2)
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where �Di ði ¼ 1; 2Þ denotes the amount of detuning. Eq. (1) can be rewritten as

€q1 þ p2
1q1 ¼ � �½2ðb11 _q1 þ b12 _q2Þ þ ðD1 þ o2

1h11 sin 2ntÞq1

þ o2
1h12q2 sin 2nt� �

ffiffi
�
p
� o2

1ðc11q1 þ c12q2Þf ðtÞ

€q2 þ p2
2q2 ¼ � �½2ðb21 _q1 þ b22 _q2Þ þ ðD2 þ o2

2h22 sin 2ntÞq2

þ o2
2h21q1 sin 2nt� �

ffiffi
�
p
� o2

2ðc21q1 þ c22q2Þf ðtÞ (3)

In this study, � is assumed to be a small parameter, thus the solution of Eq. (3) will approach a harmonic
one; consequently, it is convenient to seek the solution in the form of

qiðtÞ ¼ zi cos pitþ yi sin pit; _qiðtÞ ¼ pi½�zi sin pitþ yi cos pit� (4)

thus,

€qi þ p2
i qi ¼ pi½�_zi sin pitþ _yi cos pit�; i ¼ 1; 2 (5)

and

ziðtÞ ¼
1

cos pit
½qi � yi sin pit�; _ziðtÞ ¼ � _yiðtÞ

sin pit

cos pit
; i ¼ 1; 2 (6)

Substitution of Eq. (6) into Eq. (5) gives the well-known relations [13]

_zi ¼ �
1

pi

ð €qi þ p2
i qiÞ sin pit; _yi ¼

1

pi

ð €qi þ p2
i qiÞ cos pit (7)

We consider that the frequencies of resonance oscillations satisfy the relation p1 þ p2 ¼ 2n. The system
equations expressed in Eq. (3) may be replaced by the following two pairs of first-order equations.

_z1 ¼ � � 2b11 z1 sin
2 p1t�

y1

2
sin 2p1t

� �
þ

p2

p1

b12ð�z2 cos 2nt� y2 sin 2nt

�

þ z2 cos dpt� y2 sin dptÞ �
D1

p1

þ o1h11 sin 2nt

� �
�

z1

2
sin 2p1tþ y1 sin

2 p1t
� �

�
o1

2
h12 sin 2ntðz2 sin 2nt� y2 cos 2ntþ z2 sin dptþ y2 cos dptÞ

i
�

ffiffi
�
p
� o1ðc11A1 þ c12A2Þf ðtÞ

_y1 ¼ � � 2b11 �
z1

2
sin 2p1t� y1 cos

2 p1t
� �

þ
p2

p1

b12ð�z2 sin 2ntþ y2 cos 2nt

�

þ z2 sin dptþ y2 cos dptÞ þ
D1

p1

þ o1h11 sin 2nt

� �
� z1 cos

2 p1tþ
y1

2
sin2 p1t

� �
þ

o1

2
h12 sin 2ntðz2 cos 2ntþ y2 sin 2ntþ z2 cos dpt� y2 sin dptÞ

i
�

ffiffi
�
p
� o1ðc11B1 þ c12B2Þf ðtÞ

_z2 ¼ � �
p1

p2

b21ð�z1 cos 2nt� y1 sin 2ntþ z1 cos dptþ y1 sin dptÞ þ 2b22 z2 sin
2 p2t

��

�
y2

2
sin 2p2t

�
þ

o2

2
h21 sin 2nt � ð�z1 sin 2ntþ y1 cos 2ntþ z1 sin dpt� y1 cos dptÞ

þ
D2

p2

þ o2h22 sin 2nt

� �
� �

z2

2
sin 2p2t� y2 sin

2 p2t
� �	

�
ffiffi
�
p
� o2ðc21C1 þ c22C2Þf ðtÞ
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_y2 ¼ � �
p1

p2

b21ð�z1 sin 2ntþ y1 cos 2nt� z1 sin dptþ y1 cos dptÞ þ 2b22 �
z2

2
sin 2p2t

��

þy2 cos
2 p2t



þ

o2

2
h21 sin 2nt � ðz1 cos 2ntþ y1 sin 2ntþ z1 cos dptþ y1 sin dptÞ

þ
D2

p2

þ o2h22 sin 2nt

� �
� z2 cos

2 p2tþ
y2

2
sin 2p2t

� �	
�

ffiffi
�
p
� o2ðc21D1 þ c22D2Þf ðtÞ (8)

where

A1 ¼ �
z1

2
sin 2p1tþ y1 sin

2 p1t
� �

A2 ¼
1
2
ð�z2 sin 2ntþ y2 cos 2nt� z2 sin dpt� y2 cos dptÞ

B1 ¼ z1 cos
2 p1tþ

y1

2
sin 2p1t

B2 ¼
1
2
ðz2 cos 2ntþ y2 sin 2ntþ z2 cos dpt� y2 sin dptÞ

C1 ¼
1
2
ð�z1 sin 2ntþ y1 cos 2ntþ z1 sin dpt� y1 cos dptÞ

C2 ¼ �
z2

2
sin 2p2t� y2 sin

2 p2t

D1 ¼
1
2ðz1 cos 2ntþ y1 sin 2ntþ z1 cos dptþ y1 sin dptÞ

D2 ¼ z2 cos
2 p2tþ

y2

2
sin 2p2t

We assume, that the oscillation frequencies of the two-degrees-of-freedom systems are commensurable, i.e.
n1 � p1 ¼ n2 � p2, where n1 and n2 are integers. We can easily show that the fluctuations in two different degrees
of freedom have a common period T ¼ n1 � T2 þ n2 � T1, where Ti ¼ 2p=pi, and it is possible to directly apply
the SKT to standard systems of equations in view of the periodicity of the deterministic functions.

Applying on system (8) the averaging principle of Krylov–Bogolyubov and the SKT [13] leads to the
following homogenous Itô equations:

dz1 ¼ � ð�b11 þ d1Þz1 þ
D1

2p1

� d2

� �
y1 þ o1

h12

4
z2

� 	
dtþ

ffiffi
�
p X4

j¼1

s1jðzÞdwj

dy1 ¼ � �
D1

2p1

� d2

� �
z1 þ ð�b11 þ d1Þy1 � o1

h12

4
y2

� 	
dtþ

ffiffi
�
p X4

j¼1

s2jðzÞdwj

dz2 ¼ � o2
h21

4
z1 þ ð�b22 þ d3Þz2 þ

D2

2p2

� d4

� �
y2

� 	
dtþ

ffiffi
�
p X4

j¼1

s3jðzÞdwj

dy2 ¼ � �o2
h21

4
y1 �

D2

2p2

� d4

� �
z2 þ ð�b22 þ d3Þy2

� 	
dtþ

ffiffi
�
p X4

j¼1

s4jðzÞdwj (9)

where wjðtÞ ðj ¼ 1; 2 . . . 4Þ are independent Wiener processes of unit intensity and

d1 ¼
o1

8
fo1c211½Sð2p1Þ � Sð0Þ� þ o2c12c21½Sð2nÞ � SðdpÞ�g

d2 ¼
o1

8
fo1c

2
11cð2p1Þ þ o2c12c21½cð2nÞ � cðdpÞ�g



ARTICLE IN PRESS
M. Labou, T.-W. Ma / Journal of Sound and Vibration 325 (2009) 421–435 425
d3 ¼
o2

8
fo1c12c21½Sð2nÞ � SðdpÞ� þ o2c

2
22½Sð2p2Þ � Sð0Þ�g

d4 ¼
o2

8
fo1c21c12½cð2nÞ þ cðdpÞ� þ o2c222cð2p2Þg

½ssT�11 ¼
o2

1

8
fc211ðSð2p1Þz

2
1 þ c2y

2
1Þ þ c212ðc1z

2
2 þ c1y2

2Þg

½ssT�22 ¼
o2

1

8
fc211ðc2z21 þ Sð2p1Þy

2
1Þ þ c212ðc1z

2
2 þ c1y2

2Þg

½ssT�33 ¼
o2

2

8
fc221ðc1z21 þ c1y

2
1Þ þ c222ðSð2p2Þz

2
2 þ c3y2

2Þg

½ssT�44 ¼
o2

2

8
fc221ðc1z21 þ c1y

2
1Þ þ c222ðc3z

2
2 þ Sð2p2Þy

2
2Þg

½ssT�12 ¼ ½ss
T�21 ¼ �

o2
1

4
c211Sð0Þz1y1

½ssT�13 ¼ ½ss
T�31 ¼

o1o2

8
ðc4z1z2 þ c5y1y2Þ

½ssT�14 ¼ ½ss
T�41 ¼

o1o2

8
ðc4z1y2 � c5y1z2Þ

½ssT�23 ¼ ½ss
T�32 ¼

o1o2

8
ð�c5z1y2 þ c4y1z2Þ

½ssT�24 ¼ ½ss
T�42 ¼

o1o2

8
ðc5z1z2 þ c4y1y2Þ

½ssT�34 ¼ ½ss
T�43 ¼ �

o2
2

4
c222Sð0Þz2y2

c1 ¼ Sð2nÞ þ SðdpÞ; c2 ¼ Sð2p1Þ þ 2Sð0Þ

c3 ¼ Sð2p2Þ þ 2Sð0Þ; c4 ¼ c12c21½Sð2nÞ � SðdpÞ�

c5 ¼ c12c21½Sð2nÞ þ SðdpÞ� þ 2c11c22Sð0Þ; dp ¼ p1 � p2

Here SðoÞ and cðoÞ, respectively, denote the cosine and sine power spectral densities of the stochastic
process f ðtÞ defined by

SðoÞ þ icðoÞ ¼ 2

Z 1
0

E½f ðtÞf ðtþ tÞ�eiot dt (10)
Fig. 1. Cartesian rectangular coordinates.
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The Cartesian rectangular coordinates z1, z2, y1, and y2 are shown in Fig. 1, which are defined as

z1 ¼ a1 sinf; z2 ¼ a2 cosf; a2
1 ¼ z21 þ y2

1

y1 ¼ �a1 cosf; y2 ¼ a2 sinf; a2
2 ¼ z22 þ y2

2 (11)

The stability analysis by the probabilistic approach of trivial solutions of stochastic system (1) is based on
the fact that the coefficients of the terms of the right-hand side of Eq. (9) are homogeneous first-order
functions of z1; z2; y1, and y2. Therefore the projection of the amplitude vector ða1; a2Þ on a circle is also a
Markovian process. Hence, explicit expression for the largest Lyapunov exponent of the amplitude process
may be derived [5]. For this purpose, a further logarithmic polar transformation is applied as follows:

r ¼
1

2
lnða2

1 þ a2
2Þ; f ¼ arctan

a2

a1

� �
; 0pfp

p
2

(12)

Further making use of Itô’s differential rule for four-dimensional diffusion stochastic process [21], the
following pair of Itô equations governing r and f are obtained:

dr ¼ QðfÞdtþ OðfÞdw

df ¼ FðfÞdtþCðfÞdw (13)

where wðtÞ is a Wiener process of unit intensity and

QðfÞ ¼ a1 cos2 fþ a2 sin
2 fþ

�

8
ðo1h12 þ o2h21Þ sin

2 2fþ �
o1o2

8
c12c21S� þC2ðfÞ

FðfÞ ¼
1

2
ða2 � a1Þ sin 2f�

�

4
ðo1h12 sin

2 f� o2h21 cos
2 fÞ sin 2f

þ
�

8

o2
1

8
c211Sð2p1Þ þ

o2
2

8
c222Sð2p2Þ �

o1o2

4
c12c21S�

� �
sin 4f

þ
�

2

o2
1

8
c212ðtanfÞ sin

2 fþ
o2

2

8
c221ðcotfÞ cos

2 f
� �

Sþ cos 2f

C2ðfÞ ¼
�

4

o2
1

8
c211Sð2p1Þ þ

o2
2

8
c222Sð2p2Þ �

o1o2

4
c12c21S�

� �
sin2 2f

þ �
o2

1

8
c212sin

4fþ
o2

2

8
c221cos

4f
� �

Sþ

O2ðfÞ ¼ �
o2

1

8
c211Sð2p1Þcos

4fþ �
o2

2

8
c222Sð2p2Þsin

4f

þ
�

4

o2
1

8
c212 þ

o2
2

8
c221

� �
Sþ þ

o1o2

4
c12c21S�

� 	
sin2 2f (14)

where a1 ¼ ��b11 þ �ðo
2
1=8Þc

2
11Sð2p1Þ, a2 ¼ ��b22 þ �ðo

2
2=8Þc

2
22Sð2p2Þ.

Setting

k11 ¼
ffiffi
�
p

o1c11; k12 ¼
ffiffi
�
p

o1c12; k21 ¼
ffiffi
�
p

o2c21; k22 ¼
ffiffi
�
p

o2c22

l12 ¼ �o1h12; l21 ¼ �o2h21; b1 ¼ �b11; b2 ¼ eb22 (15)

and, by a suitable scaling of coordinates, it is always possible to take k12 ¼ �k21 ¼ k40, without loss of
generality. Making use of the fact that p1 � o1 and p2 � o2, expressions in Eq. (14) take the following forms:

QðfÞ ¼ 1
2
½�ð2bþ lþÞ cos2 2fþ ða1 � a2Þ cos 2fþ A1�

C2ðfÞ ¼ cð1� a cos2 2fÞ
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FðfÞ ¼ 1
2
½ða2 � a1 þ l�Þ þ ð2bþ lþÞ cos 2f� sin 2fþ 1

8
k2Sþ cot 2f

O2ðfÞ ¼ b cos2 2fþ 1
16
½k2

11Sð2o1Þ � k2
22Sð2o2Þ� cos 2fþ ½bþ 2k2Sðo1 � o2Þ� (16)

where

a1 ¼ �b1 þ
1
8
k2
11Sð2o1Þ; a2 ¼ �b2 þ

1
8
k2
22Sð2o2Þ; l� ¼ 1

4
ðl21 � l12Þ

A1 ¼ a1 þ a2 þ lþ þ 2c� 1
4
k2S�; c ¼ 1

8
k2Sþ þ b; a ¼

b

c

b ¼ 1
8
½1
4
k2
11Sð2o1Þ þ

1
4
k2
22Sð2o2Þ � k2Sðo1 � o2Þ�

S�ij ¼ Sðoi þ ojÞ � Sðoi � ojÞ; i; j ¼ 1; 2 (17)

in which the upper sign is taken when k12 ¼ k21 ¼ k, and the lower sign when k12 ¼ �k21 ¼ k. Note that
parameters b, c and thus a are related to the characteristics of the two individual subsystems, i.e. o1;o2, the
type and strength of the coupling between them, i.e. k, as well as the stochastic property of the excitation, i.e.
S. For white-noise excitations, c is always positive and depending on the strength of coupling, b can take any
real values. For example, if the coupling is sufficiently strong such that k24 1

4
ðk2

11 þ k2
22Þ, bo0, and thus ao0,

whereas in a weakly coupled system, e.g. k2o 1
4
ðk2

11 þ k2
22Þ, b40, and thus a40.

We consider the nonsingular case, i.e. C2ðfÞ40, then the diffusion process fðtÞ is nonsingular; it has a
stationary distribution with a probability density mðfÞ being governed by the Fokker–Planck–Kolmogorov
equation defined as

1

2

d2

df2
ðmC2ðfÞÞ �

d

df
ðmFðfÞÞ ¼ 0 (18)

along with the normalization condition Z p=2

0

mðfÞdf ¼ 1 (19)

and the periodicity mð0Þ ¼ mðp=2Þ. Eq. (18) has a unique solution [1] defined by

mðfÞ ¼
C

C2ðfÞW ðfÞ
(20)

where

W ðfÞ ¼ exp �2

Z f FðxÞ
C2ðxÞ

dx

� �
¼

1

sin 2f
exp

1

2c

Z cos 2f�t̄þ lþx

1� ax2
dx

� �
(21)

and t̄ ¼ a1 � a2 � l�. Here C is the normalized constant determined from Eq. (19).
The form of the integral in Eq. (21) depends on the sign of parameter a ¼ b=c. Here c is always positive for

white-noise excitations, thus, the sign of a is the same as parameter b. In the following, we discuss three forms
of integrals which correspond, respectively, to a40, a ¼ 0, and ao0.
�
 ao0
In this case, the invariant density mðfÞ is of the form

mðfÞ ¼
C sin 2f

C2ðfÞ
ð1� a cos2 2fÞl

þ=4b exp
t̄

2
ffiffiffiffiffiffiffiffiffi
�bc
p arctanð

ffiffiffiffiffiffiffi
�a
p

cos 2fÞ
� 	

(22)
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and

C ¼
2
ffiffiffiffiffiffiffiffiffi
�bc
pZ t1

�t1

1

ðcos tÞl
þ=2b

exp
t̄

2
ffiffiffiffiffiffiffiffiffi
�bc
p t

� �
dt

; t1 ¼ arctan
ffiffiffiffiffiffiffi
�a
p

(23)

For this case, a typical plot of the density mðfÞ is shown in Fig. 2, for Sð2o1Þ ¼ Sð2o2Þ ¼ Sðo1 þ o2Þ ¼ S0.
The largest Lyapunov exponent of system (9) is given by

ā ¼ E½QðfÞ� ¼
Z p=2

0

QðfÞmðfÞdf (24)

Substituting from Eqs. (16) and (22) into Eq. (24) yields the following expression for the Lyapunov
exponent for ao0:

ā ¼
C

4
ffiffiffiffiffiffiffiffiffi
�bc
p

Z t1

�t1

F ðtÞ

ðcos tÞl
þ=2b

exp
t̄

2
ffiffiffiffiffiffiffiffiffi
�bc
p t

� �
dt (25)

where

F ðtÞ ¼
1

a
ð2bþ lþÞ tan2 tþ

1ffiffiffiffiffiffiffi
�a
p ða1 � a2Þ tan tþ A1 (26)

The stability boundary is define as ā ¼ 0. It is clear that the normalization constant C40. Using the
intermediate value theorem for integrals, the stability boundary can be written as F ðtsÞ ¼ 0, where
ts 2 ½�t1; t1�. Clearly, ts is a function of t̄ ¼ a1 � a2 � l�. Using Eq. (17), the stability boundary becomes

1þ
tan tsffiffiffiffiffiffiffi
�a
p

� �
a1 þ 1�

tan tsffiffiffiffiffiffiffi
�a
p

� �
a2 þ 2c sec2 ts þ lþ

tan2 ts

a
þ 1

� �
�

1

8
k2S� ¼ 0 (27)

As ts is an implicit function of a1 and a2, the relation between a1 and a2 is also implicit in general. The
stability boundary can only be analyzed qualitatively if without numerical simulations. According to
Eq. (17), a1 and a2 are related to the level of viscous damping of the system. Higher level of damping in the
system will have more stabilizing effect, thus it is expected that on the stability boundary, da2=da1o0.
Furthermore, it can be shown that when a1 !�1, i.e. damping b1!1, ts !�t1; similarly, when
a2!�1 (i.e. b2!1, ts ! t1, see Appendix). Considering the former case ða1!�1Þ, Eq. (27) can be
written as

a2 ¼ b� c�
1

2
lim

ts!�t1
a1!�1

1þ
tan tsffiffiffiffiffiffiffi
�a
p

� �
a1 �

1

16
k2S� (28)
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Fig. 2. Probability density mðfÞ.
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which determines an asymptotic line of the stability boundary. Following the same procedure, the
asymptotic line for the case when a2!�1 and ts ! t1 can be found as

a1 ¼ b� c�
1

2
lim
ts!t1

a1!�1

1�
tan tsffiffiffiffiffiffiffi
�a
p

� �
a2 �

1

16
k2S� (29)

To determine the limits in Eqs. (28) and (29) analytically is not possible in general as ts is an unknown
implicit function of a1 and a2. However, as observed from intensive numerical simulations, for white-noise
excitations, the asymptotical lines of the stability boundary are determined by

a1 ¼ a2 ¼ 0 (30)

Thus, the limits may take the same finite value as

lim
ts!�t1
a1!�1

1þ
tan tsffiffiffiffiffiffiffi
�a
p

� �
a1 ¼ lim

ts!t1
a1!�1

1�
tan tsffiffiffiffiffiffiffi
�a
p

� �
a2 ¼ 2b� 2c (31)
�
 a40
In this case, the invariant density mðfÞ is of the form

mðfÞ ¼
C sin 2f
C2ðfÞ

ð1� a cos2 2fÞl
þ=4b exp

t̄

2
ffiffiffiffiffi
bc
p arctanhð

ffiffiffi
a
p

cos 2fÞ
� 	

(32)

where

C ¼
2
ffiffiffiffiffi
bc
p

Z t2

�t2

1

ðcosh tÞl
þ=2b

exp
t̄

2
ffiffiffiffiffi
bc
p t

� �
dt

(33)

and t2 ¼ arctanh
ffiffiffi
a
p

. Substituting Eqs. (16) and (32) into Eq. (24) yields the following expression for the
Lyapunov exponent for the case when a40:

ā ¼
C

4
ffiffiffiffiffi
bc
p

Z t2

�t2
F ðtÞ

1

ðcosh tÞl
þ=2b

exp
t̄

2
ffiffiffiffiffi
bc
p t

� �
dt (34)

where

F ðtÞ ¼ �
1

a
ð2bþ lþÞtanh2tþ

1ffiffiffi
a
p ða1 � a2Þ tanh tþ A1 (35)

Using the intermediate value theorem for integrals, the stability boundary is determined by

1þ
tanh tsffiffiffi

a
p

� �
a1 þ 1�

tanh tsffiffiffi
a
p

� �
a2 þ 2c � sech2 ts þ lþ 1�

tanh2ts

a

� �
�

1

8
k2S� ¼ 0 (36)

where ts 2 ½�t1; t1�.
Following the same procedure shown in Appendix, it can be shown that on the stability boundary, when
a1!�1, ts !�t1; whereas when a2!�1, ts ! t1. The asymptotic lines of the two cases are

a1 ¼ b� c�
1

2
lim
ts!t1

a2!�1

1�
tanh tsffiffiffi

a
p

� �
a2 �

1

8
k2S�

a2 ¼ b� c�
1

2
lim

ts!�t1
a1!�1

1þ
tanh tsffiffiffi

a
p

� �
a1 �

1

8
k2S� (37)

As in the previous case when ao0, the two limits in Eq. (37) are not found analytically in this study.
Observations made in numerical simulations suggested that for the case of white noise, the asymptotic lines
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of the stability boundary take the same form as expressed in Eq. (30), thus

lim
ts!�t1
a1!�1

1þ
tanh tsffiffiffiffiffiffiffi
�a
p

� �
a1 ¼ lim

ts!t1
a1!�1

1�
tanh tsffiffiffiffiffiffiffi
�a
p

� �
a2 ¼ 2b� 2c (38)
�
 a ¼ 0
In this case, the invariant density mðfÞ is

mðfÞ ¼
C

c
sin 2f exp

t̄

2c
cos 2f

� �
(39)

where

C ¼
t̄

2
csch

t̄

2c

� �
(40)

Substituting Eqs. (16) and (39) into Eq. (24) yields the following expression for the Lyapunov exponent
for this case:

ā ¼
1

2
4
lþ

t̄
cþ ða1 � a2Þ

� 	
coth

t̄

2c

� �
� 8

lþ

t̄2
c2 þ ða1 þ a2Þ � 2

l�

t̄
c�

1

4
k2S�

� �
(41)

The two asymptotic lines of the stability boundary can be found as

a1 ¼ �1
8
k2S�; a2 ¼ �1

8
k2S� (42)

Again, in this case, for white-noise excitations, the asymptotic lines of the stability boundary are the same
as the previous cases, i.e. a1 ¼ a2 ¼ 0.

3. Application: flexural–torsional instability of a deep rectangular beam

As an application, the problem of coupled flexural–torsional instability of a deep rectangular beam in the
presence of fluctuating axial loads and end moments is considered. The beam is simply supported as shown in Fig. 3.

The governing equations for the coupled flexural and torsional motion of the beam can be written as [22]

�EIx

@4v0
@z4
þ P

@2v0

@z2
þM

@2y0
@z2
� rA

@2v0

@t2
�Dv

@v0

@t
¼ 0

GJ þ P
IP

A

� 	
@2y0
@z2
þM

@2v0

@z2
� rIP

@2y0
@t2
�Dy

@y0
@t
¼ 0 (43)
Fig. 3. Loaded rectangular beam in flexural–torsional deformation.
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where EIx and GJ denote the relevant flexural and torsional rigidities of the cross section of the beam,
respectively; Dv and Dy the viscous damping coefficients for flexural and torsional deformations, respectively;
r the mass density of the material; A the area of the cross section; Ip the polar moment of inertia; and
PðtÞ;MðtÞ are random axial force and member-end moment, respectively. v0ðz; tÞ and y0ðz; tÞ are the flexural
and torsional deformations, respectively, with the following boundary conditions:

v0ð0; tÞ ¼ v0ðL; tÞ ¼ 0

@2v0
@z2
ð0; tÞ ¼

@2v0
@z2
ðL; tÞ ¼ 0

y0ð0; tÞ ¼ y0ðL; tÞ ¼ 0 (44)

In this example, the fundamental modes of flexural and torsional vibration are assumed to be dominant,
thus

v0ðz; tÞ ¼ vðtÞ sin
pz

L
; y0ðz; tÞ ¼ yðtÞ sin

pz

L
(45)

Plugging Eq. (45) into Eq. (43) and defining l ¼ p=L yield,

€vþ
Dv

rA
_vþ

EIx

rA
l4vþ

PðtÞ

rA
l2vþ

MðtÞ

rA
l2y ¼ 0

€yþ
Dy

rIP

_yþ
GJ

rIP

l2yþ
PðtÞ

rA
l2yþ

MðtÞ

rIP

l2v ¼ 0 (46)

Changing to new variables

v ¼
x1ffiffiffiffiffiffiffiffiffiffiffi
o1o2
p ; y ¼

x2

rp
ffiffiffiffiffiffiffiffiffiffiffi
o1o2
p (47)

where o1 ¼ ðp2=L2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIx=rA

p
and o2 ¼ ðp=LÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ=rIP

p
are the fundamental frequencies of the flexural and

torsional modes, respectively, and rp ¼
ffiffiffiffiffiffiffiffiffiffiffi
IP=A

p
is the polar radius of gyration of the cross section, Eq. (46) can

be rewritten as

€x1 þ
Dv

rA
_x1 þ o2

1x1 þ o2
1

1

g
MðtÞ

Mcr

x2 þ
PðtÞ

Pcr

x1

� 	
¼ 0

€x2 þ
Dy

rIP

_x2 þ o2
2x2 þ o2

2 g
MðtÞ

Mcr

x1 þ g2
PðtÞ

Pcr

x2

� 	
¼ 0 (48)

where

Pcr ¼ l2EIx; Mcr ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIxGJ

p
; g ¼

o1

o2
¼

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EIx

GJ
rp

r
(49)

Let q1 ¼ x1, q2 ¼ x2
ffiffiffi
g
p

, 2�b11 ¼ Dv=rA, 2�b22 ¼ Dy=rIP, PðtÞ=Pcr ¼
ffiffi
�
p

f ðtÞ, MðtÞ=Mcr ¼ �h sin 2ntþffiffi
�
p

f ðtÞ. The system equation (48) can be written as

€q1 þ 2�b11 _q1 þ o2
1q1 þ o2

1 �
hffiffiffi
g
p ðsin 2ntÞq2 þ q1 þ

1ffiffiffi
g
p q2

� � ffiffi
�
p

f ðtÞ

� 	
¼ 0

€q2 þ 2�b22 _q2 þ o2
2q2 þ o2

2½�
ffiffiffi
g
p

hðsin 2ntÞq1 þ ð
ffiffiffi
g
p

q1 þ g2q2Þ
ffiffi
�
p

f ðtÞ� ¼ 0 (50)

which takes the exact same form as system equation (1) with the following coefficients:

b12 ¼ b21 ¼ h11 ¼ h22 ¼ 0

c11 ¼ 1; c12 ¼
1ffiffiffi
g
p ; c21 ¼

ffiffiffi
g
p
; c22 ¼ g2
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h12 ¼
hffiffiffi
g
p ; h21 ¼

ffiffiffi
g
p

h (51)

Thus, the coefficients of Eq. (15) are obtained as

k11 ¼
ffiffi
�
p

o1; k22 ¼ gk11; k12 ¼ k21 ¼ k ¼
k11ffiffiffi
g
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�o1o2

p

l ¼ �o1h; l21 ¼ l12 ¼
lffiffiffi
g
p ; b1 ¼ �b11; b2 ¼ �b22 (52)

Note that in this case, the strength of coupling is proportional to the geometrical average of the two
fundamental natural frequencies, i.e.

ffiffiffiffiffiffiffiffiffiffiffi
o1o2
p

.
Letting h� ¼ �h and f �ðtÞ ¼ ðf ðtÞ=

ffiffiffi
h
p
Þ ðha0Þ, Eq. (50) can be further rewritten as

€q1 þ 2b1 _q1 þ o2
1q1 þ o2

1

h�ffiffiffi
g
p ðsin 2ntÞq2 þ q1 þ

1ffiffiffi
g
p q2

� � ffiffiffiffi
h�

p
f �ðtÞ

� 	
¼ 0

€q2 þ 2b2 _q2 þ o2
2q2 þ o2

2½
ffiffiffi
g
p

h�ðsin 2ntÞq1 þ ð
ffiffiffi
g
p

q1 þ g2q2Þ
ffiffiffiffi
h�

p
f �ðtÞ� ¼ 0 (53)

Here we study the effect of random parametric excitation on system stability when the system is under
combination parametric resonance, i.e. 2n � o1 þ o2.
If excitation f ðtÞ is white noise of intensity S0, f �ðtÞ is also a white noise of intensity S� ¼ S0=h; thus

a1 ¼ �b1 þ
1
8
o2

1h�S� and a2 ¼ �b2 þ
1
8
g2o2

1h�S� (see Eq. (17)). Furthermore, the constants a, b and c in
Eq. (15) are

b ¼
o1o2h�S�

32
ðg3 þ g� 4Þ; c ¼

o1o2h�S�

32
ðg3 þ gþ 4Þ; a ¼

ðg3 þ g� 4Þ

ðg3 þ gþ 4Þ
(54)

In this case, constant a is only dependent on the ratio of the two fundamental frequencies, i.e. g.
Particularly, ao0 if go1:3788; a40 if g41:3788 and a ¼ 0 if g ¼ 1:3788.

Without loss of generality, we assume that S� ¼ 1 and let â1 ¼ b1 �
1
8
o2

1h�S� ¼ �a1 and â2 ¼ b2�
1
8
g2o2

1h�S� ¼ �a2. A large number of numerical simulations were carried out to evaluate the effect of
combination parametric resonance on the system stability. It was observed that the stability regions of all the
cases considered take similar shape. Typical results are summarized in Figs. 4–7. It is seen that while the
analytical expressions of the Lyapunov exponent are different for the cases where the ratio of the two
fundamental frequencies (i.e. g ¼ o1=o2) are in different regions (see Eqs. (25), (34), and (41)), the resulted
stability boundaries are similar in shape. Particularly, there are asymptotical lines for all the stability regions
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obtained, which can be estimated using the numerical results obtained. It was observed that for all the cases
considered, the relation between â1 and â2 on the stability boundary tends to be linear in the logarithm scale
when either of them is sufficiently large. This observation suggests that ln â1 / � ln â2 for sufficiently large â1
or â2, i.e. in such cases, â1 / 1=â2, which implies that the asymptotical lines are defined by â1 ¼ �a1 ¼ 0,
â2 ¼ �a2 ¼ 0, or b1 ¼

1
8

k2
11S0, b2 ¼

1
8

k2
22S0. Note that for the case where g ¼ 1:7388ða ¼ 0Þ, the asymptotically

lines can be found analytically as a1 ¼ a2 ¼ 0 for white-noise excitations (see Eq. (42)). Using expressions in
Eq. (17), the asymptotical lines of the stability region in the ðb1;b2Þ plane are

b1 ¼
1
8
k2
11S0; b2 ¼

1
8
k2
22S0 (55)

It is also observed that as the excitation level (i.e. h�) or the fundamental frequencies, o1 and/or o2 increase,
higher levels of viscous damping are required for the system to remain stable.
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4. Concluding remarks

In this study, the almost-sure asymptotic stability of elastic systems subjected to parametric excitations
has been investigated. The stability region of a linear two-degree-of-freedom coupled system can be
obtained using the combination of the stochastic averaging method and the Khasminskii’s formulation.
It is noted that the stochastic averaging method is built on the assumption of light damping and weak
excitation of wide-band process in order that the system response approaches a harmonic one. A numerical
example of a deep rectangular beam subjected to fluctuating axial loads and end moments has been considered
in order to demonstrate the effectiveness of the proposed method and its implementation to real-world
applications. The parametric excitation consists of a white-noise action and a harmonic function. The coupled
flexural–torsional instability has been investigated. It has been shown that depending on the ratio between the
two fundamental frequencies, i.e. g ¼ o1=o2, the analytical expression of the Lyapunov exponent of the
system takes different form. The resulted stability boundaries are, however, similar in shape. There also
appears to be an asymptotical minimal damping level for each of the flexural and tensional modes that is
required for the system to be stable. Such limits are independent of the strength of the coupling and are
proportional to the power density of the excitation as well as the square of the natural frequencies of the
individual subsystems.

The proposed method may be applied to a variety of engineering systems. For instance, it may be used to
study the effect of additional random internal pressure on the load capacity of elastic cylindrical shells, and to
study the stability of a helicopter rotor blade subjected to turbulent fluctuations.
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Appendix

Consider the case where ao0. Using Eq. (26), the stability boundary can be written as

1

a
ð2bþ lþÞ tan2 ts þ

1ffiffiffiffiffiffiffi
�a
p ða1 � a2Þ tan ts þ A1 ¼ 0 (A.1)
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Letting z ¼ tan ts and using the definition of A1 (see Eq. (17)), the following expression is readily obtained:

z ¼
1

2

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

A
(A.2)

where A ¼ ð1=aÞð2bþ lþÞ, B ¼ ð1=
ffiffiffiffiffiffiffi
�a
p
Þða1 � a2Þ, and C ¼ a1 þ a2 þ lþ þ 2c� 1

4
k2S�.

Ignoring the solution z ¼ 1
2
ð�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

Þ=A, which leads to unrealistic results, the following

expressions are obtained:

lim
a1!�1

z ¼ �
ffiffiffiffiffiffiffi
�a
p

¼ tanð�t1Þ

lim
a2!�1

z ¼
ffiffiffiffiffiffiffi
�a
p

¼ tan t1 (A.3)

Replacing tan ts with tanh ts in Eq. (A.1) gives the stability boundary for the case of a40. The same results
can be obtained.
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