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A modeling method for the modal analysis of a multi-packet blade system undergoing

rotational motion is presented in this paper. Blades are idealized as tapered cantilever

beams that are fixed to a rotating disc. The stiffness coupling effects between blades due

to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid

general information, the equations of motion are transformed into a dimensionless form

in which dimensionless parameters are identified. The effects of the dimensionless

parameters and the number of packets on the modal characteristics of the rotating

multi-packet blade system are investigated with numerical examples.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A rotating multi-blade system can be found in several engineering examples, such as turbine generators, turbo engines,
turbo fans, and rotorcraft wings. These structures are comprised of several blades which are attached to a disk and often
connected through shrouds. Since the disc and the shroud possess flexibility, they create stiffness coupling effects between
blades. The stiffness coupling effect along with the angular motion affects the modal characteristics of the multi-blade
system significantly. The modal characteristics of a multi-blade system are different from those of a single blade system.
The natural frequencies and the mode shapes of the multi-blade system cannot be accurately predicted by a single blade
analysis. To design such a structure properly, therefore, an analysis model for the multi-blade system needs to be developed
to estimate the modal characteristics effectively and accurately.

Study on the modal characteristics of a rotating flexible structure originated from the work by Southwell and Gough [1].
They developed a simple analytical model, often called the Southwell equation, to calculate the natural frequencies of a
single rotating beam. Schilhansl [2] later derived the partial differential equations of motion for a rotating cantilever beam
and applied the Ritz method to obtain more accurate coefficients of the Southwell equation. Since the early 1970s, the fast
progress of computing technology has enabled engineers to calculate the modal characteristics of a rotating beam with
numerical methods. A large amount of literature related to the subject can be found in two survey papers (see Refs. [3,4]).
More recently, the buckling limit as well as the free vibration characteristics was estimated using perturbation techniques
(see Ref. [5]). The effect of base translational and rotational motions on the stability of a cantilever beam attached to the
base was also studied (see Ref. [6]). To reduce the tip vibration of rotating beam, a control law which employs the shear
force measured at the root of the beam was devised (see Ref. [7]) and a piezoelectric actuator was employed to control the
vibration of a beam (see Ref. [8]). To derive the equations of motion in a consistent way, a dynamic modeling method
employing a set of hybrid deformation variables (see Refs. [9,10]) was introduced. Different from other previous methods in
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which Cartesian deformation variables were only employed, linear equations of motion could be derived directly with
the hybrid deformation variable method. The coupling effects between the stretching and the bending motions could be
considered (see Ref. [11]) and the modal characteristics of a rotating beam having an arc shape (see Ref. [12]) could be
analyzed.

In most of the studies mentioned in the previous paragraph, the modal characteristics of a single blade were only
investigated. The study of the modal characteristics of a multi-blade system was presented only in a few papers. The
vibration characteristics of stationary coupled turbomachinery blades with various types of connecting elements were
calculated by using a transfer matrix method (see Ref. [13]). To obtain the modal characteristics of a rotating multi-blade
system, the finite element method could be employed (see, for instance, Ref. [14]). However, if it is employed, the equation
size becomes large for a multi-blade system. Such a large size model is not proper for the purpose of system design. It is
also not convenient to perform a parameter study with a finite element model. So a simplified model in which blades were
idealized as rigid pendulums having discrete torsional springs was employed (see Ref. [15]). More recently, the modal
characteristics of rotating disk-blade coupled systems were also investigated (see Ref. [16]).

In this paper, blades are idealized as slender tapered cantilever beams and the stiffness coupling effects between blades
due to the flexibilities of the disc and the shroud are modeled with discrete springs. Employing hybrid deformation
variables and the Rayleigh–Ritz method, the equations of motion are derived and transformed into a dimensionless
parametric form. Even if the equations of motion obtained through the Rayleigh–Ritz method have a relatively small size,
they can provide accurate analysis results. Therefore the proposed method is more efficient than the conventional one
which employs the finite element method. Furthermore, a parameter study, which is useful for the purpose of system
design, can be carried out with the proposed method since the equations of motion are transformed into a dimensionless
form.

The purpose of the present study is to propose a dynamic model by which the modal characteristics of a rotating multi-
packet blade system can be analyzed efficiently and accurately. Dimensionless parameters are identified with the model so
that the effects of the parameters on the modal characteristics of the system can be investigated. As an example of a
practical system, a multi-packet blade system having eight packets (a packet has six blades) is chosen. The accuracy and the
efficiency of the proposed method need to be verified first through numerical analysis and the effects of the dimensionless
parameters related to the disc angular speed, the disc radius, the disc flexibility, the shroud flexibility, the thickness and
width taper ratios of the beam cross section, the number of packets and the number of blades per packet are investigated.
Since the model proposed in this study is a two-dimensional model, several three-dimensional effects such as pre-twist
angle and orientation angles could not be considered in this study. The effects of such angles on the modal characteristics
of a single blade were discussed in detail in previous studies (see Refs. [17,18]).

2. Formulation for the modal analysis

Fig. 1 shows the configuration of a multi-packet blade system. The equations of motion of the system are derived
based on the following assumptions. All the blades are assumed to have homogeneous and isotropic material
properties, and they are idealized as slender beams having tapered rectangular cross section. The variations of
width b and thickness h of the cross section are described in Fig. 2. The cross section taper characteristics are described
with two dimensionless parameters a and b. If the thickness at the root is h0, that at the free end is ð1� aÞh0. Similarly, if
the width at the root is b0 that at the free end is ð1� bÞb0. The shear, the rotary inertia, the eccentricity and the warping
effects are not considered in this study. The out-of-plane bending rigidity of the blades is assumed to be much larger than
the in-plane bending rigidity. Therefore, only the in-plane bending motions of the blades are considered in this study. The
flexibility effects of the disc and the shroud on the stiffness coupling between two blades are considered by using discrete
springs.

Fig. 3 shows the configuration of an idealized packet which is connected to other packets. In the figure, â1 and â2 are
unit vectors attached to the rotating disc A; x is the distance from point O (fixed end of the beam) to point P0 (the generic
point of the kth beam before deformation occurs); kD and kS, respectively, are the moduli of the idealized springs due to the
disc and the shroud flexibility, respectively; aD and aS are the attachment locations of the idealized springs, respectively;
and ~uhki and shki are the elastic deformation vector and the stretch variable of the kth beam, respectively.

The Rayleigh–Ritz assumed mode method is employed to approximate a set of hybrid deformation variables. The stretch
variable shki and the in-plane bending displacement uhki2 can be approximated with mode functions as follows:

shkiðx; tÞ ¼
Xm1

i¼1

f1iðxÞq
hki
1i
ðtÞ (1)

uhki2 ðx; tÞ ¼
Xm2

i¼1

f2iðxÞq
hki
2i
ðtÞ (2)

where f1i and f2i are the stretching and the bending mode functions of the beam; qhki
1i

and qhki
2i

are the corresponding
generalized coordinates; and m1 and m2 are the numbers of the coordinates qhki

1i
and qhki

2i
, respectively.
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Fig. 1. Configuration of a multi-packet blade system.
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Fig. 2. Variations of the width and thickness of a tapered cross section.
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When a disc having radius r rotates with an angular speed O, the angular velocity of the disc A and the velocity of point P

(the generic point after deformation occurs) can be described as follows:

~oA
¼ Oâ3 (3)
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Fig. 3. Configuration of an idealized packet.
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~vP
¼ ½ _uhki1 �Ouhki2 �â1 þ ½rOþ _uhki2 þOðxþ uhki1 Þ�â2 (4)

If Kane’s method (see Ref. [19]) is employed, the equations of motion of the kth beam can be derived with the following
equation:

Z l

0
rðxÞ q~vP

q _qi

 !
�

d~vP

dt
dxþ

qUhki

qqi
¼ 0 (5)

where l is the length, rðxÞ is the mass per unit length, Uhki is the strain energy of the beam and qi’s are the generalized
coordinates. To obtain q~vP=q_qi, _u

hki
1 in Eq. (4) needs to be expressed with respect to _shki and _uhki2 . For the purpose, the

following equation can be employed (see Refs. [9–11] in detail).

_shki ¼ _uhki1 þ

Z x

0

quhki2

qs

 !
q _uhki2

qs

 !
ds (6)

where s is a dummy variable used for the integration. Now the strain energy of the kth beam (see Ref. [9]) and the springs
attached to the beam can be expressed as follows:

Uhki ¼
1

2

Z l

0
EAðxÞ

qshki

qx

 !2

dxþ EIðxÞ
q2uhki2

qx2

 !2

dx

2
4

3
5

þ
1

2
kD½u

hki
2 ðaDÞ � uhk�1i

2 ðaDÞ�
2 þ

1

2
kD½u

hkþ1i
2 ðaDÞ � uhki2 ðaDÞ�

2

þ
1

2
kS½u

hki
2 ðaSÞ � uhk�1i

2 ðaSÞ�
2 þ

1

2
kS½u

hkþ1i
2 ðaSÞ � uhki2 ðaSÞ�

2 (7)

where E, AðxÞ and IðxÞ are the Young’s modulus, the cross-section area and the second area moment of inertia of the cross
section, respectively. Since the cross section is tapered, AðxÞ and IðxÞ are functions of x. Substituting the strain energy and
the kinematic expressions of Eqs. (4), (6) and (7) into Eq. (5), the equations of motion of the kth beam can be derived as
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Table 1
Comparison of the first natural frequency of a simple rotating blade with and without the coupling effect between the extensional motion and the bending

motion.

d g Coupling ignored Coupling included Error (%)

0 2 3.62 3.62 0

10 5.05 4.97 1.58

50 10.5 7.55 28.1

1 2 4.40 4.40 0

10 13.3 13.1 1.50

50 61.6 41.4 32.8

5 2 6.65 6.64 0.15

10 27.7 27.3 1.44

50 136 74.2 45.4
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follows:

Xm1

j¼1

½m11
ij
€qhki

1j
�O2m11

ij qhki
1j
þ kS

ijq
hki
1j
� �
Xm2

j¼1

½2Om12
ij
_qhki

2j
þ _Om12

ij qhki
2j
� ¼ rO2P1i þO2Q1i ði ¼ 1;2; . . . ;m1Þ (8)

Xm2

j¼1

½m22
ij
€qhki

2j
þ fkB

ij þO2
ðkG

ij �m22
ij Þgq

hki
2j
� þ
Xm1

j¼1

½2Om21
ij
_qhki

1j
þ _Om21

ij qhki
1j
�

� kCd
ij ðq

hk�1i
2j

� 2qhki
2j
þ qhkþ1i

2j
Þ � kCs

ij ðq
hk�1i
2j

� 2qhki
2j
þ qhkþ1i

2j
Þ

¼ �r _OP2i �
_OQ2i ði ¼ 1;2; . . . ;m2Þ (9)

where

mab
ij ¼

Z l

0
rðxÞfaiðxÞfbjðxÞdx

kS
ij ¼

Z l

0
EAðxÞf1i;xðxÞf1j;xðxÞdx

kB
ij ¼

Z l

0
EIðxÞf2i;xxðxÞf2j;xxðxÞdx

kG
ij ¼

Z l

0
GðxÞf2i;xðxÞf2j;xðxÞdx

kCd
ij ¼ kDf2iðaDÞf2jðaDÞ

kCs
ij ¼ kSf2iðaSÞf2jðaSÞ

Pai ¼

Z l

0
rðxÞfaiðxÞdx

Qai ¼

Z l

0
rðxÞxfaiðxÞdx

In the above expressions, f1i;x and f2i;x are the differentiation of the symbols f1i and f2i with respect to x, f2i;xx is the
double differentiation of the symbol, and a and b are indices which change from 1 to 2. In the definition of the mass matrix
element, the mass per unit length r is also a function of x since the area of the cross section changes due to the taper effect.
In the definition of kG

ij , GðxÞ is also a function of x which can be obtained as follows:

GðxÞ ¼ r0 rðl� xÞ þ
½l� ðaþ bÞr�

2l
ðl2 � x2Þ þ

½rab� lðaþ bÞ�
3l

ðl3 � x3Þ þ
ab
4l2
ðl4 � x4Þ

� �
(11)

where r0 is the mass per unit length of the beam at the root.
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For beams, the coupling effect between the extensional motion and the bending motion can be usually ignored without
losing the accuracy of the modal analysis. Table 1 shows the first natural frequencies of a simple rotating blade obtained
with two models: the model of ignoring the coupling effect and the model of including the coupling effect. As shown in the
table, the coupling effect does not influence the modal characteristics significantly until the angular speed become very
large. Such a high angular speed is, however, seldom employed for most of practical turbine blade systems. So the coupling
effect is ignored in this study and the following equation will be employed for the modal analysis. So the bending equation
without the coupling terms can be stated as follows:

Xm2

j¼1

½m22
ij
€qhki

2j
þ fkB

ij þO2
ðkG

ij �m22
ij Þgq

hki
2j
� � kCd

ij ðq
hk�1i
2j

� 2qhki
2j
þ qhkþ1i

2j
Þ

� kCs
ij ðq
hk�1i
2j

� 2qhki
2j
þ qhkþ1i

2j
Þ ¼ 0 ði ¼ 1;2; . . . ;m2Þ (12)

It is useful to rewrite the equations of motion in a dimensionless form and carry out a parameter study. To achieve this,
the following dimensionless variables are employed.

t ¼ t

T
; x ¼

x

l
; yhki

j
¼

qhki
2j

l
(13)

where

T ¼

ffiffiffiffiffiffiffiffiffiffi
r0l4

EI0

s

where I0 is the second area moment of inertia of the cross section at the fixed end. By employing the above dimensionless
variables, Eq. (12) can be rewritten as follows:

Xm2

j¼1

½Mij
€y
hki
j þ fK

B
ij þ g

2ðKG
ij �MijÞgy

hki
j
� � KCd

ij ðy
hk�1i
j

� 2yhki
j
þ yhkþ1i

j
Þ � KCs

ij ðy
hk�1i
j

� 2yhki
j
þ yhkþ1i

j
Þ ¼ 0 (14)

where €y
hki
j is the double differentiation of yhki

j
with respect to t and

g ¼ OT

Mij ¼

Z 1

0
ð1� axÞð1� bxÞjiðxÞjjðxÞdx

KB
ij ¼

Z 1

0
ð1� axÞ3ð1� bxÞji;xxðxÞjj;xxðxÞdx (15)

KG
ij ¼

1

2

Z 1

0
gðxÞji;xðxÞjj;xðxÞdx

KCd
ij ¼ bDjiðxDÞjjðxDÞ

KCs
ij ¼ bSjiðxSÞjjðxSÞ

In the above expressions jj is a function of x which has the same functional value as fjðxÞ, and the additional five
dimensionless parameters shown in the expressions are defined as follows:

d �
r

l
; bD �

kDl3

EI0
; bS �

kSl3

EI0
; xD ¼

aD

l
; xS ¼

aS

l
(16)

In the definition of KG
ij , gðxÞ is given as follows:

gðxÞ ¼ dð1� xÞ þ 1
2½1� ðaþ bÞd�ð1� x2

Þ þ 1
3½abd� a� b�ð1� x3

Þ þ 1
4abð1� x4

Þ (17)

There is an important point to consider here. Since a shroud does not exist between two packets, no shroud spring stiffness
exists between two packets. So Eq. (14) should be modified as follows:

Xm2

j¼1

½Mij
€y
hki
j þ fK

B
ij þ g

2ðKG
ij �MijÞgy

hki
j
� � KCd

ij ðy
hk�1i
j

� 2yhki
j
þ yhkþ1i

j
Þ � KCsf

ij
ðyhkþ1i

j
� yhki

j
Þ � KCsr

ij ðy
hk�1i
j

� yhki
j
Þ ¼ 0 (18)
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where KCsf
ij

and KCsr
ij are defined as follows:

KCsf
ij
� d�F ðkÞK

Cs
ij

KCsr
ij � d�RðkÞK

Cs
ij (19)

In the above equation d�F ðkÞ and d�RðkÞ are defined as follows:

d�F ðkÞ ¼
0 if modðk;mÞ ¼ 0

1 otherwise

�
(20)

d�RðkÞ ¼
0 if modðk;mÞ ¼ 1

1 otherwise

�
(21)

where m is the number of blades in a packet and the integer function mod(k,m) is the remnant when k is divided by m.
Another point to consider carefully is the numbering of the blades. Since the last blade is connected to the first blade, it
should be properly considered in the equations of motion. Suppose that the total number of blades is n. If k ¼ n, kþ 1
should be reset as 1 in Eq. (18).

Now by assembling n sets of the equations written in Eq. (18), the total equation can be written as follows:

½M�f €yg þ h½K� þ g2f½K
G
� � ½M�gifyg ¼ 0 (22)

where

½M� ¼

M 0 0 � � � 0

0 M 0 �

0 0 M �

� � �

� � �

� � 0

0 � � � � 0 M

2
666666666664

3
777777777775

(23)

½K� ¼

KB þ KC �KCd � KCsf 0 0 � � �KCd � KCsr

�KCd � KCsr KB þ KC �KCd � KCsf 0 � � 0

0 �KCd � KCsr KB þ KC � � � 0

� 0 �KCd � KCsr � � � �

� � 0 � � � 0

0 � � � � � �KCd � KCsf

�KCd � KCsf 0 0 � 0 �KCd � KCsr KB þ KC

2
666666666664

3
777777777775

(24)

½K
G
� ¼

KG 0 0 � � � 0

0 KG 0 �

0 0 KG �

� � �

� � �

� � 0

0 � � � � 0 KG

2
666666666664

3
777777777775

(25)

fyg ¼

yh1i

yh2i

�

�

�

yhn�1i

yhni

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(26)
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Table 2
Comparison of modal analysis results obtained with the present method and a commercial finite element code.

Mode a ¼ 0 a ¼ 0.5

b ¼ 0 b ¼ 0.5 b ¼ 0 b ¼ 0.5

1st 4.074 4.525 4.845 5.305

4.047 4.494 4.812 5.268
2nd 5.032 5.300 5.838 6.087

5.003 5.269 5.804 6.050
3rd 5.032 5.300 5.838 6.087

5.003 5.269 5.804 6.050
4th 5.135 5.368 5.935 6.151

5.102 5.334 5.897 6.110
5th 5.135 5.368 5.935 6.151

5.102 5.334 5.897 6.110
6th 5.155 5.381 5.954 6.163

5.122 5.346 5.916 6.122
7th 5.155 5.381 5.954 6.163

5.122 5.346 5.916 6.122
8th 5.159 5.384 5.958 6.166

5.125 5.349 5.919 6.124
9th 6.145 6.951 7.392 8.394

6.113 6.914 7.353 8.349
10th 6.145 6.951 7.392 8.394

6.113 6.914 7.361 8.358
11th 6.145 6.951 7.392 8.394

6.119 6.922 7.361 8.358
12th 6.145 6.951 7.392 8.394

6.120 6.922 7.362 8.359

ðg ¼ 5; d ¼ 0; bD ¼ 2E6; bS ¼ 10; xD ¼ 0:1; xS ¼ 1:0Þ.

Roman: Present; Italic: ANSYS.

Fig. 4. Three sets of natural frequencies versus the angular speed.

H.S. Lim et al. / Journal of Sound and Vibration 325 (2009) 513–531520
In the above expression KC is defined as follows:

KC ¼ 2KCd þ KCsf
ij
þ KCsr

ij (27)
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Even if the stiffness matrix ½K� shown in Eq. (24) looks asymmetric, it is actually symmetric. If Eqs. (20) and (21) are applied,
½K� can be expressed as follows:

½K� ¼

KB þ KC �KCd � KCs 0 0 � � �KCd

�KCd � KCs KB þ KC �KCd � KCs 0 � � 0

0 �KCd � KCs KB þ KC � � � 0

� 0 �KCd � KCs � � � �

� � 0 � � � 0

0 � � � � � �KCd � KCs

�KCd 0 0 � 0 �KCd � KCs KB þ KC

2
666666666664

3
777777777775

(28)

Now for the modal analysis of the system, the column matrix fyg can be expressed as follows:

fyg ¼ ejotfZg (29)
Fig. 5. The lowest 12 mode shapes of the first set of natural frequencies.
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where o is the dimensionless natural frequency of the system. Substituting Eq. (29) into Eq. (22), the following equation
can be obtained.

o2½M�fZg ¼ h½K� þ g2f½K
G
� � ½M�gifZg (30)

Eq. (30) is employed for the modal analysis of the multi-packet blade system in the following section.
In this study, the extensional deflection is not considered. However, it could be an important factor since it can creates a

rub-induced vibration which is another source of dynamic instability (see Refs. [20–24]) such as short time impulse,
periodic pulse loadings, and flow induced loadings. If the extensional deflection exceeds the tip-clearance, it can create
such vibration phenomena. With the coupled equations of motion presented in this study, such phenomena can be
investigated effectively. In this study, however, such phenomena are not investigated.
Fig. 6. The lowest 12 mode shapes of the second set of natural frequencies.
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3. Numerical results

The multi-packet blade system analyzed in this section has eight packets that consist of 48 blades in total, so each
packet consists of six blades. To obtain the numerical results, five assumed modes, which are the bending mode functions
of a cantilever beam, are employed for each blade. In all, 240 mode functions are employed for the analysis. With the
number of mode functions, well converged modal characteristics of the system can be obtained.

To verify the accuracy of the proposed model, modal analysis results of the multi-packet blade system are obtained by
using a finite element code (see Ref. [25]). The beam element of the FE code is BEAM 3node 189 which is used for a tapered
beam. Since 10 beam elements are used for a blade, 480 beam elements are used for the total blade system. The FE results
Fig. 7. The effect of disc stiffness variation on the first set natural frequencies: (a) bD ¼ 2E6; (b) bD ¼ 2E5.
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are compared to those obtained with the proposed model. As shown in Table 2, lowest 16 natural frequencies are compared
with a set of typical parameter values (g ¼ 5; d ¼ 0; bD ¼ 2E6; bS ¼ 10; xD ¼ 0:1; xS ¼ 1:0). The reason why the hub radius
ratio is given as zero is that the direction of the shroud spring force cannot be perpendicular to the blade in ANSYS model
while it is so in the real system. To reduce the modeling error of the ANSYS model, the radius is given as zero here. Two
cases of thickness taper ratios (a ¼ 0, a ¼ 0:5) and width taper ratios (b ¼ 0, b ¼ 0:5) are employed to obtain the 4 sets of
results. The results obtained with the proposed model are in good agreement with those obtained with the finite element
code. The maximum relative difference between the two sets of results is less than 1%.

Fig. 4 shows the dimensionless natural frequencies versus the dimensionless angular speed of the system. All the values
of the dimensionless parameters used for the numerical analysis are given in the figure. These are typical values for a multi-
Fig. 8. The effect of shroud stiffness variation on the first set natural frequencies: (a) bS ¼ 10; (b) bS ¼ 20.
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packet blade turbine system. Since five mode functions are employed for each beam, one can obtain 240 natural
frequencies (5�48) with the model. Only 144 natural frequencies (3�48) are exhibited in this figure. Three sets of
natural frequencies are shown in the figure. Each set consists of 48 natural frequencies. As shown in the figure, all the
natural frequencies increase as the angular speed increases. The lowest natural frequencies in the three sets are same as the
lowest three natural frequencies of a single blade. Due to the stiffness coupling effects caused by the disc and the shroud
flexibilities, the 48 natural frequencies in each set have distinct values in general.

Figs. 5 and 6 show some mode shapes of the first and the second sets of natural frequencies. Nodal diameters of the first
12 mode shapes of the two sets are shown in the figures. The maximum number of nodal diameters is half the number of
Fig. 9. The effect of shroud location variation on the first set natural frequencies: (a) xS ¼ 1:0; (b) xS ¼ 0:7.
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blades when the number of the blades is even. For a system having an odd number of blades, the maximum nodal diameter
is (number of blades�1)/2. The integer numbers m�n(k) shown in the figures indicate the set number, the natural
frequency number in the set, and the number of nodal lines of the mode, respectively. There always exist two natural
frequencies for a number of nodal lines in each set (except the first and the last natural frequencies). The first mode in each
set always has zero nodal lines.

Fig. 7 shows the first set of natural frequencies versus the angular speed. The variation effect of the dimensionless disc
stiffness bD on the natural frequencies is shown in Fig. 7. Comparing the results shown in Fig. 7(a) and (b), it can be easily
found that the natural frequencies are rarely influenced by the variation of bD even though the value of bD employed to
Fig. 10. The effect of hub radius variation on the first set natural frequencies: (a) d ¼ 4; (b) d ¼ 2.
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obtain the results in Fig. 7(b) is one-tenth of that in Fig. 7(a). One can observe that the 48 frequency loci are densely
populated at seven locations which are represented by identical color lines. It is interesting to see that the second lowest
group gets sparse as bD decreases.

Fig. 8 shows the variation effect of the dimensionless shroud stiffness bS on the natural frequencies of the first set.
Fig. 8(b) shows that the lowest frequency is not influenced by the variation effect, but the higher frequencies are
Fig. 11. Separate variation effects of taper parameters on the first set natural frequencies: (a) a ¼ 0:7; b ¼ 0; (b) a ¼ 0; b ¼ 0:7.
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significantly influenced by the variation of bS. The existing range of the natural frequencies that belong to the first set
becomes wider as the value of bS increases.

Fig. 9 shows the variation effect of the dimensionless shroud location xS on the natural frequencies of the first set. As
shown in the figure, the lowest frequency is not influenced by the variation of xS, but the higher frequencies are
significantly influenced by the variation. As shown in Fig. 9(b), the existing range of the natural frequencies that belong to
the first set becomes narrower as the value of xS decreases. Compared to the previous results shown in Fig. 8, the variation
effect of xS on the higher natural frequencies is more significant than that of bS.
Fig. 12. Simultaneous variation effects of taper parameters on the first set natural frequencies: (a) a ¼ 0:3; b ¼ 0:3; (b) a ¼ 0:7; b ¼ 0:7.
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Fig. 10 shows the variation effect of the dimensionless disc radius d on the natural frequencies of the first set. As can be
inspected, the natural frequencies are not influenced by the variation effect when g is equal to 0. However, the increasing
rates of natural frequencies are significantly influenced by the disc radius ratio d.

Fig. 11 shows separate variation effects of the taper parameters a and b on the first set natural frequencies. Comparing to
the results of Fig. 10(a), the slopes of the natural frequency loci become stiffer as the two taper parameters increase up to
0.7. An interesting fact one can observe from Fig. 11(b) is that the gaps among the natural frequency loci increase
significantly as the width taper ratio increases up to 0.7. Fig. 12 shows the simultaneous variation effects of the taper
parameters a and b on the first set natural frequencies. As the taper parameters increase simultaneously, the slopes of the
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natural frequency loci are getting stiffer. One can also observe that the gap between the lowest natural frequency locus and
the highest natural frequency locus becomes uniform as the two taper ratios increase.

Fig. 13 shows the variation effect of the number of packets np on the natural frequencies of the first set. Compared to the
previous results (shown in Fig. 10(a)) for which np ¼ 8 is employed, the highest frequency is slightly influenced by
the variation of np. However, it can be observed that the distribution pattern of the 48 natural frequencies has changed as
the number of packets np varies. The 48 natural frequencies are now populated at five locations in Fig. 13(a) and at nine
locations in Fig. 13(b). In fact, the number of densely populated locations is equal to n=np þ 1. Therefore, if the number of
densely populated locations of natural frequencies needs to be minimized, the number of packets has to be increased.
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Fig. 14 shows the results in which the blades employed for the numerical analysis are equal to 24. Even if the total
number of blades is decreased, the natural frequency distribution pattern remains almost unchanged. Again, the number of
densely populated locations is equal to n=np þ 1.

4. Conclusion

In the present work, a modeling method for the modal analysis of a rotating multi-packet blade system is proposed. The
effects of angular speed, disc flexibility, shroud flexibility, shroud location, disc radius, thickness and width taper ratios of
the beam cross section, number of packets and total number of blades on the modal characteristics of the system are
investigated. The disc flexibility and the total number of blades have little influence on the modal characteristics of
the system when typical values of the parameters are employed. Both the location and the stiffness of the shroud affect the
modal characteristics significantly, while the former parameter has more influence than the latter. As the disc radius
increases, the increasing slopes of the natural frequency loci become stiffer. The thickness and width taper parameters may
also affect the modal characteristics significantly. Variations of the two taper parameters affect the slopes of the natural
frequency loci and the gaps among the loci. Lastly the number of densely populated locations of a set of natural frequencies
is equal to the number of blades divided by the number of packets plus one.
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