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The calculation of eigenvalues of single- and multiple-degree-of-freedom linear

viscoelastic systems is considered. The assumed viscoelastic forces depend on the past

history of motion via convolution integrals over exponentially decaying kernel

functions. Current methods to solve this type of problem normally use the state-space

size of the eigenvalue problem to be solved and can become computationally expensive

for large systems. Here an approximate non-state-space based approach is proposed for

this type of problem. The proposed approximations are based on certain physical

assumptions which simplify the underlying characteristic equation to be solved. Closed-

form approximate expressions of the complex and real eigenvalues of the system are

derived. These approximate expressions are obtained as functions of the elastic

eigenvalues only. This enables one to approximately calculate the eigenvalues of

complex viscoelastic systems by simple post-processing of the elastic (undamped)

eigenvalues. Representative numerical examples are given to verify the accuracy of the

derived expressions.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The characterization of energy dissipation in complex vibrating structures such as aircrafts and helicopters is of
fundamental importance. Noise and vibration are not only uncomfortable to the users of these complex dynamical systems,
but also may lead to fatigue, fracture and even failure of such systems. The increasing use of composite structural materials,
active control and damage tolerant systems in the aerospace and automotive industries have lead to renewed demand for
energy absorbing and high damping materials. Effective applications of such materials in complex engineering dynamical
systems require robust and efficient analytical and numerical methods. Due to the superior damping characteristics, the
dynamics of viscoelastic materials and structures have received significant attention over the past two decades. This paper
is aimed at developing computationally efficient and physically insightful approximate numerical methods for linear
viscoelastic systems.

A key feature of viscoelastic systems is the incorporation of the time history of the state-variables in the
equation of motion. Several different models are available for viscoelastic systems. We use the Biot model [1] which
allows one to incorporate a wide range of functions in the frequency domain by means of summation of simple
‘pole residue forms’. Several authors have considered this model due to its simplicity and generality (see for
example Refs. [2–4]). The equation of motion of a single-degree-of-freedom (SDOF ) linear viscoelastic system can
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be expressed by

mu €uðtÞ þ

Z t

0
Gðt � tÞ _uðtÞdtþ keuðtÞ ¼ f ðtÞ. (1)

Here uðtÞ is the displacement, f ðtÞ is the forcing, mu is the mass, ke is the elastic stiffness and GðtÞ is the viscoelastic stiffness
kernel function. The kernel function GðtÞ, or functions similar to it, is known by many names such as retardation functions,
heredity functions, after-effect functions or relaxation functions in the context of different subjects. Eq. (1) is very general
and for any engineering applications some specific form of GðtÞ have to be assumed. A wide variety of mathematical
expressions could be used for the kernel functions GðtÞ as long as the rate of energy dissipation is non-negative. Here we
will use a viscoelastic material model for which the kernel function has the form

GðtÞ ¼ kv0
dðtÞ þ

Xn

k¼1

ake�bktkvk
(2)

or in the Laplace domain

GðsÞ ¼ kv0
þ
Xn

k¼1

ak

sþ bk
kvk

. (3)

The constants ak; bk; kv0
and kvk

are the viscoelastic material parameters and n denotes the number of terms in the series.
Some other viscoelastic modeling approaches, such as the GHM (Golla–Hughes–McTavish) approach [5,6] uses the
following expression for the kernel function:

sGðsÞ ¼ G1 1þ
X

k

ak
s2 þ 2xkoks

s2 þ 2xkoksþo2
k

" #
. (4)

For the fractional derivative approach proposed by Bagley and Torvik [7], the kernel function takes the form

GðsÞ ¼
E1sa � E0bsb

1þ bsb
ð0oa;bo1Þ. (5)

For the ADF (anelastic displacement field) approach [8,9] one has

GðsÞ ¼ 1þ
Xn

k¼1

Dks

sþ bk
. (6)

Although these models are physically different, it will be seen later that they can be treated in an unified way for the
calculation of some of the eigenvalues of the system.

Eq. (1), together with the kernel in Eq. (2), represents an integro-differential equation. Several authors have proposed
[2,3,5–11] state-space approach based on the internal variables for this type of equation. The main reasons for seeking an
alternative to the state-space approach in this paper include:
�
 although exact in nature, the state-space approach for viscoelastic systems is computationally very intensive for real-life
multiple-degree-of-freedom (MDOF ) systems due to the huge number of internal variables;

�
 the physical insights offered by methods in the original space (e.g., the modal analysis) is lost in a state-space based

approach.
Regarding the first point, McTavish [12], Woodhouse [13] and Adhikari [14] proposed approximate methods in the space of
the original problem. These methods are applied to frequency dependent damping when the damping is small and they
neglect the overdamped modes. A direct time-domain approach to obtain the solution of Eq. (1) was proposed by Adhikari
and Wagner [15]. This method is computationally efficient and accurate but does not provide much physical insight. Based
on a variational principle, Qian and Hansen [16] derived a substructure synthesis method where the viscoelastic system
eigensolution is obtained from the undamped system eigensolution. Daya and Potier-Ferry [17] proposed an asymptotic
numerical method for the calculation of natural frequencies and loss-factors of viscoelastic systems.

The calculation of the eigenvalues by solving the nonlinear eigenvalue problem corresponding to the equation of motion
(1) is the main topic of the paper. The objective is to derive the approximations in a way so that they can be easily extended
to MDOF systems where the computational efficiency can make a real difference. We have derived closed-form
approximate expressions of the eigenvalues of the system for three mathematically different cases based on the number of
kernel functions. First SDOF systems are considered and then the results are extended to MDOF systems. The
approximations utilize Taylor series expansion in the complex domain and are based on certain simplifying physical
assumptions. The validity of the assumptions and the accuracy of the results are verified by numerical calculations.
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2. Nonlinear eigenvalue problem for viscoelastic systems

The equation of motion (1) can be expressed in the Laplace domain as

s2muūðsÞ þ sGðsÞūðsÞ þ keūðsÞ ¼ f̄ ðsÞ (7)

or

dðsÞūðsÞ ¼ f̄ ðsÞ.

Here the dynamic stiffness

dðsÞ ¼ s2mu þ sGðsÞ þ ke (8)

and ūðsÞ, f̄ ðsÞ and GðsÞ are, respectively, the Laplace transforms of displacement, forcing and viscoelastic kernel function. The
eigenvalues of the system can be obtained by solving the characteristic equation

s2
j mu þ sjGðsjÞ þ ke ¼ 0

or

s2
j mu þ sj kv0

þ
Xn

k¼1

ak

sj þ bk
kvk

 !
þ ke ¼ 0; j ¼ 1; . . . ;m, (9)

where m is the order of the characteristic polynomial. Following the approach outlined in Refs. [14,18], the dynamic
response, that is the solution of Eq. (1), can be expressed in terms of the eigenvalues as

uðtÞ ¼
Xm
j¼1

gj

Z t

0
fesjðt�tÞf ðtÞ þGðtÞu0gdtþ esjtfm _u0 þ sjmu0g

� �
; 8t40. (10)

Here u0 and _u0 are, respectively, the initial displacement and velocity and the constants gj can be expressed as

gj ¼
1

qdðsÞ

qs

����
s¼sj

. (11)

For systems with only the elastic stiffness term, the order of the characteristic polynomial m ¼ 2. For viscoelastic
systems in general m is more than two. From Eq. (9) one can observe that in general m ¼ 2þ n. This is the key difference
between a viscoelastic system and an elastic system where the number of eigenvalues is exactly two. The two
conjugated complex eigenvalues correspond to the oscillatory motions of the system and are called elastic mode or
vibration mode. The modes corresponding to the ‘additional’ n eigenvalues are called damping modes or overdamped modes.
For stable passive systems the damping modes are over-critically damped (i.e., negative real eigenvalues) and not
oscillatory in nature. In this paper both the complex-conjugate modes and the damping modes will be derived. In the
following sections closed-form approximate expressions of eigenvalues are derived for the elastic modes and damping
modes.

3. Complex-conjugate eigenvalues

The main motivation behind the proposed approximations is that the approximate eigenvalues can be ‘constructed’
from the eigenvalues of the underlying elastic system. The eigenvalues of the underlying damped elastic system
can in turn be expressed in terms of the undamped eigenvalues. Combining these together, one can therefore
obtain the eigenvalues of viscoelastic systems by simple ‘post-processing’ of the eigenvalues of the underlying undamped
systems only. The eigenvalues (appearing in a complex-conjugatae pair) of the underlying damped elastic system [19] is
given by

s0 ¼ �znon � ion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

n

q
� �znon � ion, (12)

where the undamped natural frequency

on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke=mu

q
(13)

and zn is the viscous damping factor. Viscously damped elastic system can be considered as a special case of Eq. (7) when
the function GðsÞ is replaced by Gðs! 0Þ. Therefore, for the purpose of numerical approximations, we can obtain an
equivalent viscous damping coefficient

c ¼ lim
s!0

GðsÞ ¼ kv0
þ
Xn

k¼1

akkvk
=bk. (14)
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From this expression, the viscous damping factor zn can be obtained as

zn ¼ c=2
ffiffiffiffiffiffiffiffiffiffiffiffi
kemu

p
¼ kv0

þ
Xn

k¼1

akkvk
=bk

 !,
2

ffiffiffiffiffiffiffiffiffiffiffiffi
kemu

p
. (15)

For a truly damped elastic system, the solution given by Eq. (12) would have been the exact solution of the characteristic
equation (9). Since in general this is not the case, the difference between the elastic solution and the true solution of the
characteristic equation (9) is essentially arising due to the ‘varying’ nature of the function GðsÞ. The approximate solution
obtained here are based on keeping this fact in mind.

The central idea is that the actual solution of the characteristic equation (9) can be obtained by expanding the solution
in a Taylor series around s0. The error arising in the resulting solution would then depend on the ‘degree of variability’ of
the function GðsÞ. We assume that the true solution of Eq. (9) can be expressed as

s ¼ s0 þ d, (16)

where d is a small quantity. Substituting this into the characteristic equation we have

ðs0 þ dÞ2mu þ ðs0 þ dÞGðs0 þ dÞ þ ke ¼ 0. (17)

Expanding Gðs0 þ dÞ in a Taylor series in d around s0 one has

ðs0 þ dÞ2mu þ ðs0 þ dÞ Gðs0Þ þ d
qGðs0Þ

qs
þ � � �

� �
þ ke ¼ 0

or

mu þ
qGðs0Þ

qs

� �
d2
þ s0 2mu þ

qGðs0Þ

qs

� �
þ Gðs0Þ

� �
dþ s0ðs0mu þ Gðs0ÞÞ þ ke � 0. (18)

Keeping only the first-order terms in d we have

dð1Þ � �
s0ðs0mu þ Gðs0ÞÞ þ ke

s0 2mu þ
qG

qs
ðs0Þ

� �
þ Gðs0Þ

. (19)

The superscript 1 in Eq. (19) is used to denote that this is a first-order approximation.
One can improve the accuracy by retaining higher-order terms in d. Retaining upto second-order terms in d in the Taylor

expansion of Eq. (18) we have

dð2Þ ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
2A

, (20)

where

A ¼ mu þ
1

2

q2Gðs0Þ

qs2
s0 þ

qGðs0Þ

qs
; B ¼ 2mus0 þ s0

qGðs0Þ

qs
þ Gðs0Þ (21)

and

C ¼ s2
0mu þ s0Gðs0Þ þ ke. (22)

In the above expressions qGðs0Þ=qs and q2Gðs0Þ=qs2 are, respectively, the first- and second-order derivative of GðsÞ evaluated
at s ¼ s0. When the kernel function is given by Eq. (3), we have

qGðs0Þ

qs
¼ �

Xn

k¼1

ak

ðs0 þ bkÞ
2

kvk
,

q2Gðs0Þ

qs2
¼
Xn

k¼1

2ak

ðs0 þ bkÞ
3

kvk
. (23)

Our numerical works show that retaining terms higher than the second-order results considerably complex expressions
and the accuracy gained is not very significant. As a result we have not perused this approach in the rest of the paper. Based
on our numerical works we recommend the second-order expression in Eq. (20) as it gives an excellent accuracy and
additional computation cost is just marginally higher compared to the first-order approximation. The expression of the
approximate eigenvalue derived here shows that the complex-conjugate eigenvalues of a general viscoelastic system can be
obtained by post-processing of the undamped eigenvalue on and equivalent viscous damping factor zn. This approximation
of the complex-conjugate eigenvalues is valid for any kernel function. It could therefore be used with viscoelastic models
given by Eqs. (4)–(6). On the contrary, the real eigenvalues are specific to a particular kernel function. In the next section,
the approximation to the real eigenvalues is derived for the Biot model.
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4. Real eigenvalues

While the complex-conjugate eigenvalues can be expected to be close to the eigenvalues of the equivalent elastic
damped system, no such analogy can be made for the real solution as the equivalent elastic system does not have one. This
makes the calculation of the real eigenvalues more challenging. The nature of the real eigenvalues is expected to be specific
to the corresponding kernel functions. For this reason the methods proposed here are only valid for the Biot model. For the
convenience of analytical developments, the following three cases are considered separately:
�
 single-degree-of-freedom system with single exponential kernel (n ¼ 1);

�
 single-degree-of-freedom system with double exponential kernels (n ¼ 2);

�
 single-degree-of-freedom system with multiple exponential kernels (n42).
4.1. Systems with single exponential kernel

For this case when n ¼ 1 the eigenvalue equation can be simplified from Eq. (9) as

s2mu þ sGðsÞ þ ke ¼ 0 where GðsÞ ¼ kv0
þ

a1

sþ b1
kv1

. (24)

Eq. (24) is a third-order polynomial in s and it can be solved exactly in closed form. A more detailed study on the properties
of the exact solutions have been carried out in Refs. [20–22]. Here we propose an approximate solution so that the
approximation method can be extended to more complex cases.

We first multiply the characteristic equation (24) by ðsþ b1Þ and rewrite

ðs2mu þ skv0
þ keÞðb1 þ sÞ þ sa1kv1

¼ 0. (25)

To obtain an initial guess the ‘small viscoelasticity’ approximation is introduced so that sa1kv1
� 0. Since ðs2mu þ skv0

þ

keÞa0 as we are considering the real solution only, the first guess is obtained as

b1 þ s0 ¼ 0 or s0 ¼ �b1. (26)

We take the first approximation of the real root as

s ¼ s0 þ D ¼ �b1 þD, (27)

where D is a small quantity. Eq. (27) indicates that the real eigenvalues are expected to be close to the relaxation
parameters. This is one of the most crucial observations made in this paper. Substituting s from Eq. (27) into the
characteristic equation one obtains

ðð�b1 þDÞ2mu þ ð�b1 þ DÞkv0
þ keÞDþ ð�b1 þ DÞa1kv1

¼ 0. (28)

Expanding this equation results

muD3
þ ð�b1mu þ kv0

ÞD2
þ ðb2

1mu � b1kv0
þ ke þ a1kv1

ÞD� a1b1kv1
¼ 0. (29)

After neglecting all the terms associated with Dn for n41 this equation results

D �
a1b1kv1

b2
1mu � b1kv0

þ ke þ a1kv1

. (30)

Therefore, the approximate real solution is given by

s ¼ s0 þ D � �b1 þ
a1b1kv1

b2
1mu � b1kv0

þ ke þ a1kv1

. (31)

The third-order characteristic polynomial in Eq. (29) can be solved exactly. However, recall that the main reason for this
approximation is not to solve this specific problem, but to solve MDOF systems with multiple kernels using the insight
obtained from this simple problem. In the next section this approximation technique is extended to SDOF systems with two
kernels.

4.2. Systems with two exponential kernels

This section is the next logical step towards solving the general multiple kernel case. For this case the kernel function
GðsÞ takes the form

GðsÞ ¼ kv0
þ

a1

sþ b1
kv1
þ

a2

sþ b2
kv2

. (32)
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The characteristic function with this type of kernel function can be expressed as

s2mu þ s kv0
þ

a1

sþ b1
kv1
þ

a2

sþ b2
kv2

� �
þ ke ¼ 0. (33)

This a polynomial in s of order four and therefore has four roots. The two complex-conjugate roots can be obtained using
the expressions derived before. In this section only the real roots are considered. Multiplying Eq. (33) by ðsþ b1Þðsþ b2Þ we
have

ðs2mu þ skv0
þ keÞðsþ b1Þðsþ b2Þ þ sða1kv1

ðsþ b2Þ þ a2kv2
ðsþ b1ÞÞ ¼ 0. (34)

Similar to the previous case, the first solution is approximated as

s1 ¼ �b1 þ D1. (35)

Substituting this in Eq. (34) and neglecting the higher-order terms Dn
1; n41 one obtains

D1 �
ðb1 � b2Þa1b1kv1

ðb2 � b1Þðb
2
1mu � b1kv0

þ ke þ a1kv1
Þ � b1ða1kv1

þ a2kv2
Þ
. (36)

Using this, the approximation to the first real solution is given by

s1 � �b1 þ
ðb1 � b2Þa1b1kv1

ðb2 � b1Þðb
2
1mu � b1kv0

þ ke þ a1kv1
Þ � b1ða1kv1

þ a2kv2
Þ
. (37)

The second solution can be obtained from the same expression by swapping the subscripts 1 and 2.

4.3. The general case: systems with multiple exponential kernels

For this case the kernel function GðsÞ is given by Eq. (3). The characteristic equation with this type of kernel function can
be expressed by Eq. (9). This a polynomial in s of order ðnþ 2Þ and therefore, has ðnþ 2Þ roots. In this section we derive
approximate solutions with the view of generalizing them to MDOF systems.

There are n number of pure real roots corresponding to n terms in the series in Eq. (3). Multiplying the characteristic
equation (9) by the product

Qn
j ðsþ bjÞ we have

ðs2mu þ skv0
þ keÞ

Yn
j¼1

ðsþ bjÞ þ s
Xn

l¼1

alkvl

Yn
j¼1
jal

ðbj þ sÞ

0
BBB@

1
CCCA ¼ 0. (38)

Like the previous case, we use the approximation

sk ¼ �bk þ Dk; k ¼ 1;2; . . . ;n. (39)

Substituting this into the characteristic equation results

ðð�bk þDkÞ
2mu þ ðDk � bkÞkv0

þ keÞDk

Yn
j¼1
jak

ðDk þ bj � bkÞ

þ ðDk � bkÞ akkvk

Yn
j¼1
jak

ðDk þ bj � bkÞ
Xn

l¼1

alkvl
Dk

Yn
j¼1
jal
jak

ðDk þ bj � bkÞ

0
BBBBB@

1
CCCCCA ¼ 0. (40)

Expanding further and retaining only the first-order terms in Dk, after some simplifications we have

Dk �
bkakkvk

p1

½b2
kmu � bkkv0

þ ke�p1 þ ½�bkðp2 þ p3Þ þ akkvk
p1�

(41)

with

p1 ¼
Yn
j¼1
jak

ðbj � bkÞ; p2 ¼ akkvk

Xn

j¼1
jak

Yn
r¼1
raj
rak

ðbr � bkÞ
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Table 1
The exact and approximate eigenvalues of an SDOF system with a single kernel.

b1 Exact solution (state-space) Proposed approximate solution Percentage error

1.5 �1:4500 �1:4517 0.12

Complex-conjugate solution �0:0250� 1:4382i �0:0250� 1:4382i �0:00� 0:00i

S. Adhikari, B. Pascual / Journal of Sound and Vibration 325 (2009) 1000–10111006
and

p3 ¼
Xn

j¼1
jak

ajkvj

Yn
r¼1

raj;k

ðbr � bkÞ. (42)

It can be verified that the general expression (41) reduces to Eq. (36) derived in the previous subsection when n ¼ 2.
Eqs. (39), (41) and (42) completely define the n real eigenvalues of an SDOF viscoelastic system with a general kernel
function. In the next section the accuracy of these approximate expressions are verified by numerical examples.

5. Numerical examples

To understand the accuracy provided by the approximate expressions derived in the preceding sections, we consider
three representative numerical examples covering the three cases. The approximate results obtained from these
expressions are compared with the exact solutions obtained from the state-space method. For the calculation of percentage
error, the state-space results are considered as benchmarks.

5.1. An SDOF system with a single kernel

A single-degree-of-freedom system with one kernel is studied to investigate the accuracy of the approximate
eigenvalues derived in Sections 3 and 4.1. For the numerical calculations we consider mu ¼ 1 kg, ke ¼ 2 N=m, kv0

¼ 0. It is
considered that a1kv1

=b1 ¼ 2znon, b1 ¼ 1:5 and the damping factor constant zn ¼ 0:1. The accuracy of the proposed
approximation is shown in Table 1. The complex-conjugate eigenvalues turn out to be almost exact while there is a small
error in the real eigenvalue.

5.2. An SDOF system with two kernels

We consider a single-degree-of-freedom system with two exponential kernels to investigate the accuracy of the
approximate eigenvalues derived in Sections 3 and 4.2. For the numerical calculations we consider mu ¼ 1 kg, ke ¼ 2 N=m
and kv0

¼ 0. It is assumed that all akkvk
=bk are of the same value so that akkvk

=bk ¼ 2znon; 8k ¼ 1;2, b1 ¼ 1; b2 ¼ 5 and
the damping factor constant zn ¼ 0:1. The accuracy of the proposed approximation is shown in Table 2. The complex-
conjugate eigenvalues turn out to be almost exact while there are small errors in the two real eigenvalues. Error
corresponding to the larger value of bk is smaller than error corresponding to the smaller value of bk.

5.3. The general case: an SDOF system with multiple kernels

We consider a single-degree-of-freedom system with eight kernels to investigate the accuracy of the approximate
eigenvalues derived in Sections 3 and 4.3. For the numerical calculations we consider mu ¼ 1 kg, ke ¼ 2 N=m, kv0

¼ 0. It is
assumed that all akkvk

=bk are of the same value so that akkvk
=bk ¼ 2znon; 8k ¼ 1;2; . . . ;8. The damping factor constant

zn ¼ 0:1 and the values of bk for k ¼ 1;2; . . . ;8 are selected as 1.4973, 1.5231, 1.7454, 1.7657, 1.9317, 1.9442, 1.9558 and
2.0677. The approximate eigenvalues obtained using the proposed method are compared with the results obtained from
exact state-space solution in Table 3. The complex-conjugate eigenvalues are obtained very accurately using the proposed
approximation. The real eigenvalues are not as accurate as the complex-conjugate eigenvalues. However, recall that the
motion corresponding to the real eigenvalues are purely dissipative in nature and therefore do not significantly affect the
dynamic response of the system.

6. Multiple-degree-of-freedom system

In this section the results obtained for the SDOF system are extended to general MDOF systems. The equation of motion of an
N-degree-of-freedom linear viscoelastic system can be expressed by extending the corresponding SDOF equation (1) as

M €uðtÞ þ

Z t

0
Gðt � tÞ _uðtÞdtþ KeuðtÞ ¼ fðtÞ. (43)
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Table 2
The exact and approximate eigenvalues of an SDOF system with two kernels.

bk ; k ¼ 1;2 Exact solution (state-space) Proposed approximate solution Percentage error

1.0 �0:9531 �0:9539 0.0868

5.0 �4:9739 �4:9743 0.0084

Complex-conjugate solution �0:0365� 1:4519i �0:0365� 1:4519i 0:00� 0:00i

Table 3
The exact and approximate eigenvalues of an SDOF system with eight kernels.

bk ; k ¼ 1;2; . . . ;8 Exact solution (state-space) Proposed approximate solution Percentage error

1.4973 �1:3025 �1:4003 7.5121

1.5231 �1:5105 �1:4825 1.8499

1.7454 �1:6586 �1:6581 0.0291

1.7657 �1:7560 �1:7286 1.5607

1.9317 �1:8668 �1:7315 7.2454

1.9442 �1:9375 �1:8981 2.0334

1.9558 �1:9513 �1:9313 1.0219

2.0677 �2:0511 �2:0302 1.0184

Complex-conjugate solution �0:1984� 1:5920i �0:1984� 1:5915i 0:0335� 0:0056i
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Here uðtÞ 2 RN is the displacement vector, fðtÞ 2 RN is the forcing vector, M 2 RN	N is the mass matrix, Ke 2 R
N	N is the

elastic stiffness matrix and GðtÞ is the matrix of viscoelastic kernel functions. In the Laplace domain, the equation of motion
can be expressed as

DðsÞū ¼ 0, (44)

where the dynamic stiffness matrix DðsÞ is given by

DðsÞ ¼ s2Mþ sGðsÞ þ Ke 2 C
n (45)

with

GðsÞ ¼ Kv0
þ
Xn

k¼1

ak

sþ bk
Kvk
2 Cn. (46)

Eq. (46) is the extension of the corresponding scalar equation (3) to the matrix case. The eigenvalues of the system sj can be
obtained by solving the characteristic polynomial

det½DðsjÞ� ¼ 0; j ¼ 1;2; . . .m. (47)

We assume that the order of the characteristic polynomial is m so that there are m eigenvalues of the system. In this work
we consider that all the eigenvalues are distinct. For undamped elastic systems or elastic systems with viscous damping,
the order of the characteristic polynomial m ¼ 2N. For viscoelastic systems in general m is more than 2N, that is
m ¼ 2N þ p; pX0. If all of the Kvk

matrices are of full rank, then p ¼ nN. This shows that although the system has N

degrees-of-freedom, the number of eigenvalues is more than 2N. This is a major difference between a viscoelastic system
and an elastic system where the number of eigenvalues is exactly 2N, including any multiplicities. Like the SDOF case, N

complex-conjugate pair of eigenvalues correspond to elastic modes or vibration modes. These modes are related to the N

modes of vibration of the structural system. Physically, the assumption of ‘2N complex-conjugate pairs of eigenvalues’
implies that all the elastic modes are oscillatory in nature, that is, they are sub-critically damped. The additional nN

eigenvalues correspond to non-viscous modes or overdamped modes. Here the complex eigenvalues are derived for a matrix
with general kernel functions. For the real eigenvalues the Biot model with two cases namely, when n ¼ 1 and when n41
are considered for analytical convenience.

6.1. Complex-conjugate eigenvalues

The aim of this section is to obtain the complex-conjugate eigenvalues using the undamped elastic eigenvalues. The
undamped elastic eigenvalue problem of an MDOF system is given by

Kexj ¼ o2
j Mxj; j ¼ 1;2; . . . ;N, (48)
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where o2
j and xj are the eigenvalues and mass-normalized eigenvectors of the system. We define the matrices

X ¼ diag½o1;o2; . . . ;oN � (49)

and

X ¼ ½x1;x2; . . . ;xN �. (50)

There are various efficient methods available to obtain the undamped eigensolution (see for example Ref. [23]) and many of
them have been integrated within the commercially available general purpose finite element software. Using these, the
characteristic equation (47) can be transformed into the modal coordinates as

det½s2
j IN þ sjG

0
ðsjÞ þX2

� ¼ 0; j ¼ 1;2; . . .m, (51)

where IN is an N-dimensional identity matrix. The viscoelastic kernel function matrix in the modal coordinates G0ðsÞ is
defined as

G0ðsÞ ¼ XTGðsÞX ¼ ðXTKv0
XÞ þ

Xn

k¼1

ak

sþ bk
ðXTKvk

XÞ

¼ K0v0
þ
Xn

k¼1

ak

sþ bk
K0vk

, (52)

where the matrices

K0v0
¼ XTKv0

X and K0vk
¼ XTKvk

X; k ¼ 1;2; . . . ;n. (53)

We consider that the system has small non-proportionality so that the off-diagonal entries of the G0 matrix are small
compared to the diagonal entries, that is G0klðsjÞpG0kkðsjÞ; 8sj; kal. This approximation is often employed in the dynamic
analysis of damped systems [24–27]. Considering the j-th set of Eq. (51) one obtains

s2
j þ sjG

0
jjðsjÞ þo2

j � 0. (54)

This equation is similar to Eq. (9) and can be solved in a similar way. The modal damping factor zj can be defined as

zj ¼
lims!0G0jjðsÞ

2oj
¼ K 0v0jj

þ
Xn

k¼1

ak

bk
K 0vkjj

 !,
2oj, (55)

where the matrices K0v0
and K0vk

are defined in Eq. (53). The complete solution can be written as

sj ¼ s0j
þ dj, (56)

where

s0j
¼ �zjoj � ioj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

j

q
, (57)

dj �
�Bj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

j � 4AjCj

q
2Aj

, (58)

Aj ¼ 1þ
1

2

q2G0jjðs0j
Þ

qs2
s0j
þ
qG0jjðs0j

Þ

qs
, (59)

Bj ¼ 2s0j
þ s0j

qG0jjðs0j
Þ

qs
þ G0jjðs0j

Þ (60)

and

Cj ¼ s2
0j
þ s0j

G0jjðs0j
Þ þo2

j . (61)

In the above expressions qG0jjðs0j
Þ=qs and q2G0jjðs0j

Þ=qs2 are, respectively, the first- and second-order derivative of G0jjðsÞ

evaluated at s ¼ s0j
and can be obtained following Eq. (23). Eqs. (55)–(61) completely define the complex-conjugate

eigenvalues of an MDOF viscoelastic system.

6.2. Real eigenvalues

The real eigenvalues are obtained using an approach similar to the SDOF system. After neglecting the off-diagonal terms
of the G0 matrix, the governing characteristic equation for every mode can be expressed by Eq. (54). This equation can be
solved for the real eigenvalues. For systems with single exponential kernel, there are in total 3N number of eigenvalue of
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which N are real. Following Eqs. (27)–(31), the real eigenvalues can expressed as

sj ¼ �b1 þDj; 8j ¼ 1; . . . ;N, (62)

where

Dj �

a1b1K 0v1jj

b2
1 � b1K 0v0jj

þo2
j
þ a1K 0v1jj

. (63)

This equation and Eq. (62) completely define all the N real eigenvalues.
For systems with n kernels, there are in general nN number of purely real eigenvalues. The approximate eigenvalues can

be obtained extending Eqs. (39) and (41) as

sjk ¼ �bk þDjk; 8j ¼ 1; . . . ;N; k ¼ 1; . . . ;n, (64)

where

Djk �

bkakK 0vkjj

p1

½b2
k � bkK 0v0jj

þo2
j
�p1 þ ½�bkðp2 þ p3Þ þ akK 0vkjj

p1�
(65)

with

p1 ¼
Yn
l¼1
lak

ðbl � bkÞ; p2 ¼ akK 0vkjj

Xn

l¼1
lak

Yn
r¼1
ral
rak

ðbr � bkÞ

and

p3 ¼
Xn

m¼1
mak

amK 0vmjj

Yn
r¼1

ram;k

ðbr � bkÞ. (66)

From Eq. (64) note that there are N real solutions around each bk. Eqs. (64)–(66) completely define all the nN number of real
eigenvalues.
Table 4
Exact and approximate eigenvalues of the three-DOF system.

Exact solution (state-space) Proposed approximate solution Percentage error

Real eigenvalues

�0:9380 �0:9425 0.4797

�1:2995 �1:3044 0.3771

�1:4507 �1:7413 20.0317

�1:5754 �1:8096 14.8661

�1:7405 �1:5761 9.4456

�1:8095 �1:4507 19.8287

�0:6301 �0:6301 0

�1:1276 �1:1276 0

�1:4505 �1:7096 17.8628

�1:5507 �1:8081 16.5990

�1:7096 �1:5507 9.2946

�1:8081 �1:4505 19.7777

�0:6798 �0:6731 0.9856

�1:1295 �1:1289 0.0531

�1:4505 �1:7085 17.7870

�1:5501 �1:8080 16.6376

�1:7086 �1:5501 9.2766

�1:8080 �1:4505 19.7732

Complex-conjugate eigenvalues

�0:4109� 2:6579i �0:4116� 2:6591i 0:1704� 0:0451i

�0:4359� 2:0939i �0:4359� 2:0939i 0� 0i

�0:1674� 0:8523i �0:1649� 0:8528i 1:4934� 0:0587i
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6.3. Numerical example

We consider a three degree-of-freedom system to illustrate the proposed method and verify the accuracy of the
approximate expressions. The mass, stiffness and viscoelastic matrices in the Laplace domain for the problem are
considered as

M ¼

mu 0 0

0 mu 0

0 0 mu

2
64

3
75; Ke ¼

2ku �ku 0

�ku 2ku �ku

0 �ku 2ku

2
64

3
75 (67)

and

GðsÞ ¼ Kv

X6

k¼1

ak

sþ bk
where Kv ¼

0:30 �0:15 �0:05

�0:15 0:30 �0:15

�0:05 �0:15 0:30

2
64

3
75. (68)

For the numerical value we consider mu ¼ 1 kg, ku ¼ 1 N=m and ak ¼ bk. It is assumed that Kv0
¼ 0, all the Kvk

matrices are
the same and the values of bk for k ¼ 1;2; . . . ;6 are selected as 1.4565, 1.0185, 1.8214, 1.4447, 1.6154, and 1.7919. The
approximate eigenvalues obtained using the proposed method are compared with the results obtained from exact state-
space solution in Table 4. Like the SDOF examples considered before, the complex-conjugate eigenvalues are obtained very
accurately using the proposed approximation. The real eigenvalues are not as accurate as the complex-conjugate
eigenvalues. However, recall that the motion corresponding to the real eigenvalues are purely dissipative in nature and
therefore may not significantly contribute to the dynamic response of the system around the resonant frequencies.

7. Conclusions

Single and multiple-degree-of-freedom linear viscoelastic systems are considered. The calculation of eigenvalues of
viscoelastic systems requires the solution of a nonlinear eigenvalue problem. So far mainly state-space based methods
involving additional internal variables have been used for this type of problems. In this paper a new non-state-space
approach has been proposed for such nonlinear eigenvalue problems. A key motivation behind this is to reduce the
additional computational cost necessary for viscoelastic systems compared to undamped elastic systems. Approximate
expressions have been derived for the complex and real eigenvalues with single and multiple exponential kernels. It is
assumed that all the eigenvalues are distinct. For the SDOF system it has been assumed that the viscoelastic system can be
considered as a small perturbation from the underlying elastic system. For the MDOF system, it has been additionally
assumed that the system can be approximately diagonalized using the undamped elastic modes. These approximations
allow one to obtain the eigenvalues of viscoelastic systems by simple post-processing of the undamped elastic eigenvalues,
which in turn can be obtained using a general purpose finite element software. The complex eigenvalues are close to the
eigenvalues of the underlying damped elastic system while the real eigenvalues are close to the relaxation parameters. The
expression for the complex eigenvalues is applicable to any general viscoelastic kernel while the expression for the real
eigenvalues is specific to the Biot model only. Although the real solution is applicable to the Biot model only, the novel
technique developed for this purpose may inspire solutions to other type of viscoelastic models discussed literature.

The accuracy of the proposed approximations were verified numerically against the exact state-space eigenvalues for
few example problems. The complex-conjugate eigenvalues turn out to be more accurate compared to the real eigenvalues.
This is particularly encouraging because complex eigenvalues dominate the dynamic response of linear systems. The
method presented offers a reduction in computational effort because neither the state-space formalisms nor the additional
internal variables are employed. This approach might provide further physical insight and computational advantage for
MDOF systems as only familiar undamped natural frequencies and damping factors are required to obtain the eigenvalues
of the system.
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