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In this paper, a semi-analytical method is developed to solve the dynamic response of a

pair of parallel elliptic tunnels embedded in an infinite poroelastic medium. The

surrounding poroelastic medium of tunnels is described by Biot’s poroelastic theory,

while the tunnels are treated as a single-phase elastic medium. By introducing

solutions of the Helmholtz equations are obtained by the wave function expansion

method. The surrounding poroelastic medium and the tunnels are coupled together via

the stresses and the displacements continuation conditions. Numerical results

demonstrate that the dimensionless wavenumber, distance between two tunnels,

elliptic ratio and thickness of liner have a considerable influence on the dynamic

response of the tunnels and the poroelastic medium.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Tunnel in soft ground is an increasingly common geotechnical activity for construction of urban transportation or water
management facility in many large cities around the world. For this reason, numerous researcher use various methods to
investigate this problem. In practice, most underground soils must use various liners to support tunnels. Therefore, a better
understanding of the dynamic interaction between the tunnel and its surrounding media subjected to seismic wave is
desirable in earthquake engineering and civil engineering.

Numerous investigations for seismic response of cavity or tunnel have been carried out in the past years. Among these,
Zitron [1] dealt with the multiple scattering of plane elastic wave by two arbitrary cylinders in a homogeneous medium.
Glazanov and Shenderov [2] studied the plane wave scattering by a cylindrical cavity in an isotropic elastic medium.
Varadan [3] studied the scattering of P, SV and SH waves by an elliptic cavity using the scattering matrix approach. Lee and
Trifunac [4] analyzed the two-dimensional scattering and diffraction of SH wave by a circular tunnel in a homogeneous
elastic half-space using the series solution method. Chen [5] analyzed the dynamic response of a circular lined tunnel
subject to SH wave using the wave function expansion method. Fotieva [6] studied the two parallel circular tunnels
subjected to the compressional and the shear waves. Sancar and Pao [7] gave the solution for the scattering of plane
harmonic wave by two cylindrical cavities in an elastic solid using the eigenfunction expansion method. Datta et al. [8]
studied the dynamic stress and the displacement around a cylindrical cavity in an elastic medium using the combined
finite element method and the eigenfunction expansion method. Zeng and Cakmak [9] investigated the scattering of SH
All rights reserved.

hotmail.com (X.-L. Zhou).

www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.04.001
mailto:zhouxl@sjtu.edu.cn,
mailto:zhoux199@hotmail.com


ARTICLE IN PRESS

X.-L. Zhou et al. / Journal of Sound and Vibration 325 (2009) 816–834 817
wave by multiple cavities in both an infinite and a half-space using the series expansion method. Moeen-Vaziri and
Trifunac [10] solved the problem of the scattering and diffraction of SH wave by a cylindrical canal of arbitrary shape in an
elastic half-space using the boundary element method. Providakis et al. [11] studied the stress concentration around
multiple circular cavities using the boundary element method and the Laplace transform method. Shi et al. [12] studied the
interaction of SH wave and a lined in an anisotropic medium using the conformal mapping method and the wave function
expansion method. Stamos et al. [13] studied the three-dimensional dynamic response of the long-lined tunnel in a half-
space using the boundary element method. Davis et al. [14] investigated the transverse response of an underground
cylindrical cavity subjected to incident shear wave using the Fourier–Bessel series method. Eisenberger and Efraim [15]
studied the dynamic response of a piecewise tunnel consists of several liner pieces and connecting joints using the curved
beam theory. Okumura et al. [16] investigated the dynamic interaction of the twin circular tunnels subjected to an incident
SV wave using the two-dimensional finite element method. Moore and Guan [17] studied the dynamic interaction of a lined
tunnel subjected to seismic loading in an infinite medium using the successive reflection method. More recently, Rembert
et al. [18] applied the multichannel resonant scattering theory to study the wave interaction with an infinite fluid cylinder
in an elastic medium. Rhee and Park [19] also presented a new method to analyze the elastic wave resonance scattering
from a water-filled cylindrical cavity embedded in an aluminum matrix. Robert et al. [20] studied the scattering of elastic
wave by a cylindrical cavity embedded in an elastic medium.

The preceding review has primarily focused on the research work involving cavities or tunnels in a single-phase elastic
medium. However, many geotechnical engineering applications require multi-phase model of the soil. In fact, the growing
body of literature suggested that under certain conditions there are significant differences in modeling the soil as a
saturated poroelastic medium rather than a single-phase elastic medium. For the saturated porous media, several scholars
have also addressed the scattering of elastic wave by an embedded cavity. Mei et al. [21] used the boundary layer
approximation to study the scattering by a cylindrical cavity in a boundless porous solid. Krutin et al. [22] solved the
problem of elastic harmonic wave by a fluid-filled cylindrical cavity embedded in a saturated medium. Zimmerman [23]
used the boundary element method to study the problem of wave diffraction by a spherical cavity in an infinite poroelastic
medium. Senjuntichat and Rajapakse [24] employed Biot’s equations for poroelastodynamics in combination with the
Laplace transform technique to investigate the transient response of a long cylindrical cavity in an infinite poroelastic
medium. Hu et al. [25] studied the scattering and refraction of plane strain wave by a cylindrical cavity in a saturated
medium. Lin et al. [26] investigated the effect of stiffness and Possion’s ratio for P and SV wave reflected by a free surface of
a poroelastic half-space. Kattis et al. [27] investigated the two-dimensional dynamic response of the unlined and lined
tunnel in a porous soil due to harmonic wave. Gatmiri and Eslami [28] presented the complex function approach to analyze
the scattering of harmonic wave by a circular cavity in an infinite poroelastic medium. Lu and Wang [29] used the complex
variable method to solve the problem of the scattering of elastic wave by cavity of arbitrary shape in a saturated soil. Wang
et al. [30] used the potential function and the complex function method to solve the scattering of plane wave by multiple
elliptic cavities in a saturated medium. Lu et al. [31] investigated the frequency domain response of a circular tunnel with
prefabricated piecewise lining subjected to seismic wave using the wave function expansion method. Hasheminejad and
Avazmohammadi [32] studied the dynamic interaction of a pair of parallel cylindrical cavities embedded in a boundless
porous saturated medium due to incident plane wave.

The above review indicates that a relative large body of literature on the elastic wave scattering by cavities or tunnels
embedded in a single-phase elastic medium is studied, but the analytic or numerical solutions involving multiple lined
tunnels in a poroelastic medium seem to be nonexistent. Our purpose of the present study is to develop a semi-analytical
method for addressing the scattering of elastic wave by a pair of elliptic lined tunnels in a poroelastic medium. The
attention has been focused on the multiple scattering and the interaction effect between two tunnels. The poroelastic
medium is described by Biot’s theory [33,34]. By introducing three potentials, the governing equations for Biot’s theory are
decoupled and reduced to three Helmholtz equations. The lined tunnel is treated as a single-phase elastic medium. The two
regions are coupled through the continuation conditions at the interface of the poroelastic medium and tunnels. To
illustrate the result of this solution, the dimensionless wavenumber, elliptic ratio, distance between two tunnels and
thickness of liner influence on the dynamic stresses and the pore pressures around tunnels are studied.

2. Governing equations for poroelastic medium

In this study, the two elliptic lined tunnels are considered to be infinitely long, while the incident plane wave has a
direction perpendicular to the axis of the tunnels. Thus, the dynamic interaction between two tunnels and its surrounding
medium can be reduced to a plane strain problem (Fig. 1). The surrounding medium of the tunnels is considered as a
saturated porous medium and described by Biot’s theory [33,34].

2.1. Biot’s theory

Based on Biot’s theory, the constitutive equations for a homogeneous poroelastic medium are expressed as [33,34]

sij ¼ 2m�ij þ ldije� adijpf (1)
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Fig. 1. Incident wave by a pair of elliptic lined tunnels in a poroelastic medium.
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pf ¼ �aMeþMW (2)

e ¼ ui;i; W ¼ �wi;i (3)

where sij is the stress of the bulk material; �ij and e are the strain tensor and the dilatation of the solid skeleton,
respectively; l and m are Lamé constants; dij is the Kronecker delta; W is the volume of fluid injection into unit volume of
the bulk material; a and M are Biot parameters; pf is the excess pore pressure; ui and wi denote the average solid
displacement and the infiltration displacement of the pore fluid.

The equations of motion for the poroelastic medium can be expressed in terms of the displacements ui and wi

mui;jj þ ðlþ a2M þ mÞuj;ji þ aMwj;ji ¼ r €ui þ rf €wi (4)

aMuj;ji þMwj;ji ¼ rf €ui þ
rf

n
€wi þ

Z
k
_wi (5)

where r and rf denote the bulk density of the porous medium and the density of the pore fluid, respectively;
r ¼ ð1� nÞrs þ nrf , rs is the density of the solid skeleton and n is the porosity of the porous medium; k and Z
represent the permeability and the fluid viscosity, respectively; a superimposed dot denotes the derivative with respect to
time t.

In order to eliminate time derivatives in Eqs. (4)–(5), the Fourier transformation with respect to time t is performed on
Eqs. (1)–(5). As a result, all the governing equations are transformed into the frequency domain. Accordingly, the following
derivations will be developed in the frequency domain.

To derive the general solutions for Biot’s equations, two scalar potentials jf , js and one vector potential c are
introduced to express the displacement and the pore pressure of the porous medium. The displacement and the pore
pressure are expressed by the potentials in the following form [31]:

ûi ¼ ĵ;i þ eijkĉk;j ¼ ĵf ;i þ ĵs;i þ eijkĉk;j (6)

p̂f ¼ Af ĵf ;ii þ Asĵs;ii (7)

where a caret denotes the Fourier transform with respect to time; eijk is the Levi–Civita symbol; ĵf , ĵs denote the scalar
potentials corresponding to P1 wave and P2 wave, respectively; Af and As are two constants to be determined by the
governing equations of Biot’s theory.

Using the frequency domain expressions of Eq. (2) and Eqs. (4)–(5) as well as Eqs. (6)–(7) leads to [29,30]

½ðlþ 2m� b2Af Þĵf ;jj þ b3ĵf �;i þ ½ðlþ 2m� b2AsÞĵs;jj þ b3ĵs�;i þ eiml½mĉi;jj þ b3ĉi�;m ¼ 0 (8)

Fulfillment of the above equation requires that the expressions in braces vanish independently, which gives the following
equations for the potentials:

ðlþ 2m� b2Af Þĵf ;jj þ b3ĵf ¼ 0 (9)

ðlþ 2m� b2AsÞĵs;jj þ b3ĵs ¼ 0 (10)

mĉi;jj þ b3ĉi ¼ 0 (11)

where b3 ¼ ro2 þ r2
f
o4=b1; b2 ¼ aþ rfo2=b1; b1 ¼ �rfo2=n� iZo=k and o is the frequency.

Substituting of Eqs. (2)–(3) into Eq. (5) yields

p̂f ;ii �
b1

M
p̂f � ðab1 þ rfo

2Þûi;i ¼ 0 (12)
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Likewise, substituting Eqs. (6)–(7) into the above equation yields

½Af ĵf ;ii þ ðb5Af � b4Þĵf �;jj þ ½Asĵs;ii þ ðb5As � b4Þĵs�;jj ¼ 0 (13)

The following equations can be derived from Eq. (13)

Af ĵf ;ii þ ðb5Af � b4Þĵf ¼ 0 (14)

Asĵs;ii þ ðb5As � b4Þĵs ¼ 0 (15)

where b4 ¼ ab1 þ rfo2; b5 ¼ �b1=M. In terms of Eqs. (9)–(10) and (14)–(15), the following equation determining Af and As

is obtained

A2
f ;s þ

b3 � ðlþ 2mÞb5 � b2b4

b2b5
Af ;s þ

ðlþ 2mÞb4

b2b5
¼ 0 (16)

It should be noted that the values of Af and As can be determined by Eq. (16), if the following quantities are introduced.

k2
f ¼ b3=ðlþ 2m� b2Af Þ ¼ ðb5Af � b4Þ=Af (17)

k2
s ¼ b3=ðlþ 2m� b2AsÞ ¼ ðb5As � b4Þ=As (18)

k2
t ¼ b3=m (19)

where kf , ks and kt are the complex wavenumbers for P1, P2 and S wave of the porous medium. Since the speed of the P1

wave is faster than that of the P2 wave, as a result, the inequality Reðkf ÞpReðksÞ should also hold.
Then, Eqs. (9)–(11) can be reduced to the following Helmholtz equations:

r2ĵf þ k2
f ĵf ¼ 0 (20)

r2ĵs þ k2
s ĵs ¼ 0 (21)

r2ĉþ k2
k ĉ ¼ 0 (22)

As mentioned previously, the proposed problem can be treated as a plane strain problem. For the plane strain problem,
u3 and w3 should vanish, consequently, the vector potential ĉ in Eq. (22) has only one component, i.e. ĉ3. For simplicity, ĉ3
is written as ĉ in what follows. Obviously, ĉ satisfies the following Helmholtz equation.

r2ĉþ k2
t ĉ ¼ 0 (23)

2.2. Expressions of displacements, stresses and pore pressures

For plane strain problem of a poroelastic medium, the displacement of the solid skeleton, the stress and the pore
pressure can be represented by three potentials ĵf , ĵs and ĉ. When introducing complex variables z ¼ xþ iy, z̄ ¼ x� iy,
one can obtain the following displacement and stress combinations:

û~xI
þ iû~yI

¼ 2
q
qz̄
ðĵf þ ĵs � iĉÞe�ig (24)

û~xI
� iû~yI

¼ 2
q
qz
ðĵf þ ĵs þ iĉÞeig (25)

ŵ~xI
¼

q
qz
ðZ1ĵf þ Z2ĵs þ ia1ĉÞe

ig þ
q
qz̄
ðZ1ĵf þ Z2ĵs � ia1ĉÞe

�ig (26)

ŝ~xI
� iŝx~yI

¼ af ĵf þ asĵs þ 4mI
q2

qz2
ðĵf þ ĵs þ iĉÞe2ig (27)

ŝ~xI
þ iŝx~yI

¼ af ĵf þ asĵs þ 4mI
q2

qz̄2
ðĵf þ ĵs � iĉÞe�2ig (28)

p̂f I
¼ �Af k2

f ĵf � Ask2
s ĵs (29)

where af ¼ aAf k2
f � ðlþ mIÞk

2
f ; as ¼ aAsk2

s � ðlþ mIÞk
2
s ; Z1 ¼ a1 � a2Af k2

f ; Z2 ¼ a1 � a2Ask2
s ; a1 ¼ rfo2=b1; a2 ¼ �1=b1,

and subscript I designates the functions in the poroelastic medium; superscript � denotes the functions in the coordinate
transform.
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Note that the displacement and stress combinations in above equations are in the coordinate system ~xo~y in the z plane,
which is obtained rotating the coordinate system xoy by an angle g. Also, the expression for the pore pressure Eq. (29) does
not vary when performing coordinate rotation.

We selected elliptic tunnel as example, the equation of the j-th elliptic tunnel can be expressed as:

f ðxj; yjÞ ¼
x2

j

a2
j

þ
y2

j

b2
j

� 1 ¼ 0 (30)

where aj and bj are the long axial radius and the short axial radius, respectively.
On the boundary of the j-th elliptic tunnel

xj ¼ rj cos y; yj ¼ rj sin y (31)

rj ¼
ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 yþ
a2

j

b2
j

sin2 y

vuut
(32)

gj ¼ tg�1
a2

j

b2
j

tgy

0
@

1
A (33)

2.3. The incident wave and the scattered wave

Due to the presence of the two elliptic tunnels (Fig. 1), the total wave in the poroelastic medium in presence of the
tunnels consists of two parts: the incident wave field and the scattered wave field. The total wave field can be expressed as:

jf ¼ jðIÞ
f
þ
X2

j¼1

jðSÞ
fj
¼ jðIÞ

f
þjðSÞ

f
; js ¼ jðIÞs þ

X2

j¼1

jðSÞ
sj
¼ jðIÞs þj

ðSÞ
s ; c ¼ cðIÞ þ

X2

j¼1

cðSÞ
j
¼ cðIÞ þ cðSÞ (34)

where superscript I denotes the incident wave; superscript S denotes the scattered wave.
Since the potential for the incident wave field satisfies the Helmholtz equations, accordingly, the potential for the

scattered field should also satisfy the corresponding Helmholtz equations. Therefore, the general solutions of Eqs. (20)–(22)
may be expressed in terms of Hankel functions as:

jðSÞ
fj
¼

X1
n¼�1

ajnHð1Þn ðkf jzjjÞ
zj

jzjj

 !n

(35)

jðSÞ
sj
¼

X1
n¼�1

bjnHð1Þn ðksjzjjÞ
zj

jzjj

 !n

(36)

cðSÞ
j
¼

X1
n¼�1

cjnHð1Þn ðkt jzjjÞ
zj

jzjj

 !n

(37)

where Hð1Þn ð
nÞ is the first kind of Hankel function; ajn, bjn, cjn are arbitrary functions to be determined from the boundary

conditions of the j-th tunnels (j ¼ 1,2).
The total scattered waves can also be expressed as:

jðSÞ
f
¼
X2

j¼1

X1
n¼�1

ajnHð1Þn ðkf jz� djjÞ
z� dj

jz� djj

 !n

(38)

jðSÞs ¼
X2

j¼1

X1
n¼�1

bjnHð1Þn ðksjz� djjÞ
z� dj

jz� djj

 !n

(39)

cðSÞ ¼
X2

j¼1

X1
n¼�1

cjnHð1Þn ðktjz� djjÞ
z� dj

jz� djj

 !n

(40)

where dj is the distance between the origin of j-th tunnel and the origin of total coordinate system.
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3. Governing equations for the liners

In this study, as the interaction between the tunnels and its surrounding poroelastic medium is treated as a plane strain
problem, and the equation for liner can be expressed as

mui;jj þ ðlþ mÞuj;ji ¼ r €ui (41)

where r denotes the density of the liner; l, m represent Lamé constants of the liner.
There are four refracted wave in the j-th liner: two inward propagating waves and two outward propagating waves

excited by the incident plane wave.

jðFÞ
j
¼

X1
n¼�1

ðdjnHð1Þn ðkpjzjjÞ þ ejnHð2Þn ðkpjzjjÞÞ
zj

jzjj

 !n

(42)

cðFÞ
j
¼

X1
n¼�1

ðmjnHð1Þn ðksjzjjÞ þ njnHð2Þn ðksjzjjÞÞ
zj

jzjj

 !n

(43)

where superscript F denotes the refracted wave; Hð2Þn ð
nÞ denotes the second kind of Hankel function; k2

p ¼ o2=V2
p;

Vp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=r

p
; k2

s ¼ o2=V2
s ; Vs ¼

ffiffiffiffiffiffiffiffiffi
m=r

p
; kp, ks denote the complex wavenumbers for the compressional wave

and the shear wave; djn, ejn, mjn, njn are arbitrary functions to be determined from the boundary conditions of the j-th
tunnel (j ¼ 1, 2).

When rotating the coordinate system xoy by an angle g and introducing complex variables z ¼ xþ iy, z̄ ¼ x� iy, the
displacement and the stress of liner have the following expressions:

û~xII
þ iû~yII

¼ 2
q
qz̄
ðĵ� iĉÞe�ig (44)

û~xII
� iû~yII

¼ 2
q
qz
ðĵþ iĉÞeig (45)

ŝ~xII
� iŝx~yII

¼ 4mII
q2

qz2
ðĵþ iĉÞe2ig (46)

ŝ~xII
þ iŝx~yII

¼ 4mII
q2

qz̄2
ðĵ� iĉÞe�2ig (47)

where subscript II designates functions in liner.

4. Formulation of the boundary value problems

The surrounding poroelastic medium and the tunnels are treated separately in the above sections. When subjected to
seismic wave, the stresses and the displacements should be continuous at the boundary between the tunnels and the
poroelastic medium. At the conjunctive surface of the poroelastic medium and the tunnels, the continuation conditions
between the poroelastic medium and the tunnels are as follows

û~xI
þ iû~yI

¼ û~xII
þ iû~yII

(48)

û~xI
� iû~yI

¼ û~xII
� iû~yII

(49)

ŝ~xI
� iŝx~yI

¼ ŝ~xII
� iŝx ~yII

(50)

ŝ~xI
þ iŝx~yI

¼ ŝ~xII
þ iŝx ~yII

(51)

For impermeable boundary condition, the displacement of the fluid relative to the solid skeleton should vanish.
Therefore, Eq. (26) obtains

ŵ~xI
¼ 0 (52)

At inner surface of the liner, the stress free conditions are

ŝ~xII
� iŝx~yII

¼ 0 (53)

ŝ~xII
þ iŝx~yII

¼ 0 (54)
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Substituting of Eqs. (24)–(25), (44)–(45) into Eqs. (48)–(49), using Eqs. (34)–(37) and (42)–(43), one obtains

X7

p¼1

X2

i¼1

X1
n¼�1

E1
kpinxpin ¼ r1

kj ðk; j ¼ 1;2Þ (55)

where

E1
11in ¼ �kf Hð1Þnþ1ðkf jxijjÞ

xij

jxijj

 !nþ1

e�irj (56a)

E1
12in ¼ �ksHð1Þnþ1ðksjxijjÞ

xij

jxijj

 !nþ1

e�irj (56b)

E1
13in ¼ iktHð1Þnþ1ðkt jxijjÞ

xij

jxijj

 !nþ1

e�irj (56c)

E1
14in ¼ kpHð1Þnþ1ðkpjxijjÞ

xij

jxijj

 !nþ1

e�irj (56d)

E1
15in ¼ kpHð2Þnþ1ðkpjxijjÞ

xij

jxijj

 !nþ1

e�irj (56e)

E1
16in ¼ �iksHð1Þnþ1ðksjxijjÞ

xij

jxij

 !nþ1

e�irj (56f)

E1
17in ¼ �iksHð2Þnþ1ðksjxijjÞ

xij

jxijj

 !nþ1

e�irj (56g)

E1
21in ¼ kf Hð1Þn�1ðkf jxijjÞ

xij

jxijj

 !n�1

eirj (56h)

E1
22in ¼ ksHð1Þn�1ðksjxijjÞ

xij

jxijj

 !n�1

eirj (56i)

E1
23in ¼ iktHð1Þn�1ðktjxijjÞ

xij

jxijj

 !n�1

eirj (56j)

E1
24in ¼ �kpHð1Þn�1ðkpjxijjÞ

xij

jxijj

 !n�1

eirj (56k)

E1
25in ¼ �kpHð2Þn�1ðkpjxijjÞ

xij

jxijj

 !n�1

eirj (56l)

E1
26in ¼ �iksHð1Þn�1ðksjxijjÞ

xij

jxijj

 !n�1

eirj (56m)

E1
27in ¼ �iksHð2Þn�1ðksjxijÞ

xij

jxij

 !n�1

eirj (56n)

r1
1j ¼ �2

q
qz̄j
ðjðIÞ

fI
þjðIÞsI � icðIÞI Þe

�igj (57a)

r1
2j ¼ �2

q
qzj
ðjðIÞ

fI
þjðIÞsI þ icðIÞI Þe

igj (57b)
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x1in ¼ ain; x2in ¼ bin; x3in ¼ cin; x4in ¼ din; x5in ¼ ein; x6in ¼ min; x7in ¼ nin (58)

where xij ¼ zje
iaj þ dj � di; zj ¼ rje

iy.
Multiplying both sides of Eq. (55) with e�isy and integrating over the interval [�p, p] yields

X7

p¼1

X2

i¼1

Xn¼1
n¼�1

E1s
kpinxpin ¼ r1s

kj ðk; j ¼ 1;2Þ ðs ¼ 0;�1;�2; . . .Þ (59)

where

E1s
kpin ¼

1

2p

Z p

�p
E1

kpine�isy dy ðs ¼ 0;�1;�2; . . .Þ (60a)

r1s
kj ¼

1

2p

Z p

�p
r1

kje
�isy dy ðs ¼ 0;�1;�2; . . .Þ (60b)

Likewise, substituting of Eqs. (26)–(27), (46)–(47) into Eqs. (50) and (51) , using Eqs. (34)–(37) and (42)–(43)

X7

p¼1

X2

i¼1

X1
n¼�1

E2
kpinxpin ¼ r2

kj ðk; j ¼ 1;2Þ (61)

where

E2
11in ¼ af Hð1Þn ðkf jzijjÞ

zij

jzijj

 !n

þ mIk
2
f Hð1Þn�2ðkf jzijjÞ

zij

jzijj

 !n�2

e2igj (62a)

E2
12in ¼ asHð1Þn ðksjzijjÞ

zij

jzijj

 !n

þ mIk
2
s Hð1Þn�2ðksjzijjÞ

zij

jzijj

 !n�2

e2igj (62b)

E2
13in ¼ imIk

2
t Hð1Þn�2ðkt jzijjÞ

zij

jzijj

 !n�2

e2igj (62c)

E2
14in ¼ �mIIk

2
pHð1Þn�2ðkpjzijjÞ

zij

jzijj

 !n�2

e2igj (62d)

E2
15in ¼ �mIIk

2
pHð2Þn�2ðkpjzijjÞ

zij

jzijj

 !n�2

e2igj (62e)

E2
16in ¼ �imIIk

2
s Hð1Þn�2ðksjzijjÞ

zij

jzij

 !n�2

e2igj (62f)

E2
17in ¼ �imIIk

2
s Hð2Þn�2ðksjzijjÞ

zij

jzijj

 !n�2

e2igj (62g)

E2
21in ¼ af Hð1Þn ðkf jzijjÞ

zij

jzijj

 !n

þ mIk
2
f Hð1Þnþ2ðkf jzijjÞ

zij

jzijj

 !nþ2

e�2igj (62h)

E2
22in ¼ asHð1Þn ðksjzijjÞ

zij

jzijj

 !n

þ mIk
2
s Hð1Þnþ2ðksjzijjÞ

zij

jzijj

 !nþ2

e�2igj (62i)

E2
23in ¼ �imIk

2
t Hð1Þnþ2ðkt jzijjÞ

zij

jzijj

 !nþ2

e�2igj (62j)

E2
24in ¼ �mIIk

2
pHð1Þnþ2ðkpjzijjÞ

zij

jzijj

 !nþ2

e�2igj (62k)
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E2
25in ¼ �mIIk

2
pHð2Þnþ2ðkpjzijjÞ

zij

jzijj

 !nþ2

e�2igj (62l)

E2
26in ¼ imIIk

2
s Hð1Þnþ2ðksjzijjÞ

zij

jzijj

 !nþ2

e�2igj (62m)

E2
27in ¼ imIIk

2
s Hð2Þnþ2ðksjzijjÞ

zij

jzijj

 !nþ2

e�2igj (62n)

r2
1j ¼ �afj

ðIÞ
f
� asjðIÞs � mI

q2

qz2
j

ðjðIÞ
fI
þjðIÞsI þ iĉ

ðIÞ
I Þe

2igj (63a)

r2
2j ¼ �afj

ðIÞ
f
� asjðIÞs � mI

q2

qz̄2
j

ðjðIÞ
fI
þjðIÞsI � iĉ

ðIÞ
I Þe
�2igj (63b)

Multiplying both sides of Eq. (61) with e�isy, and integrating over the interval [�p, p] yields

X7

p¼1

X2

i¼1

Xn¼1
n¼�1

E2s
kpinxpin ¼ r2s

kj ðk; j ¼ 1;2Þ ðs ¼ 0;�1;�2; . . .Þ (64)

where

E2s
kpin ¼

1

2p

Z p

�p
E2

kpine�isy dy ðs ¼ 0;�1;�2; . . .Þ (65a)

r2s
kj ¼

1

2p

Z p

�p
r2

kje
�isy dy ðs ¼ 0;�1;�2; . . .Þ (65b)

For impermeable boundary condition, the normal displacement of the fluid to the solid skeleton of the j-th cavities
should vanish. Eq. (52) gives

X3

p¼1

X2

i¼1

X1
n¼�1

E3
pinxpin ¼ r3

j ðj ¼ 1;2Þ (66)

where

E3
1in ¼

Z1kf

2
Hð1Þn�1ðkf jzijjÞ

zij

jzijj

 !n�1

eigj �
Z1kf

2
Hð1Þnþ1ðkf jzijjÞ

zij

jzijj

 !nþ1

e�igj (67a)

E3
2in ¼

Z2ks

2
Hð1Þn�1ðksjzijjÞ

zij

jzijj

 !n�1

eigj �
Z2ks

2
Hð1Þnþ1ðksjzijjÞ

zij

jzijj

 !nþ1

e�igj (67b)

E3
3in ¼

ia1kt

2
Hð1Þn�1ðkt jzijjÞ

zij

jzijj

 !n�1

eigj þ
ia1kt

2
Hð1Þnþ1ðkt jzijjÞ

zij

jzijj

 !nþ1

e�igj (67c)
Table 1
Input parameter values used in porous medium and liner.

Parameter Porous medium Parameter Liner

rs (kg/m3) 2000 r (kg/m3) 3000

rf (kg/m3) 1000 n 0.35

n 0.25 m (Pa) 3.0�105

m (Pa) 1.0�107

n 0.25

a 0.999

M (Pa) 1.0�108

Z (Pa) 1.0�10�2

k0 (m2) 1.0�10�7
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r3
j ¼ �

q
qzj
ðZ1j

ðIÞ
f
þ Z2j

ðIÞ
s þ a1iĉ

ðIÞ
Þeigj �

q
qz̄j
ðZ1j

ðIÞ
f
þ Z2j

ðIÞ
s � a1iĉ

ðIÞ
Þe�igj (68)

Multiplying both sides of Eq. (66) with e�isy, and integrating over the interval [�p, p] yields

X3

p¼1

X2

i¼1

X1
n¼�1

E3s
pinxpin ¼ r3s

j ðj ¼ 1;2Þ ðs ¼ 0;�1;�2; . . .Þ (69)
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Fig. 2. A convergence test for two lined tunnels: (a) Re(kfa) ¼ 0.1; (b) Re(kfa) ¼ 0.2; and (c) Re(kfa) ¼ 0.3.
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where

E3s
pin ¼

1

2p

Z p

�p
E3

pine�isy dy ðs ¼ 0;�1;�2; . . .Þ (70a)

r3s
j ¼

1

2p

Z p

�p
r3

j e�isy dy ðs ¼ 0;�1;�2; . . .Þ (70b)

Substituting of Eqs. (46) and (47) into Eqs. (53) and (54), using Eqs. (34)–(37) and (42) (43)

X4

p¼1

X2

i¼1

X1
n¼�1

E4
kpinxpin ¼ r4

kj ðk; j ¼ 1;2Þ (71)

where

E4
11in ¼ mIIk

2
pHð1Þn�2ðkpjzijjÞ

zij

jzijj

 !n�2

e2igj (72a)

E4
12in ¼ mIIk

2
pHð2Þn�2ðkpjzijjÞ

zij

jzijj

 !n�2

e2igj (72b)
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Fig. 3. Dynamic response of a pair of lined tunnels subject to an incidence P1 wave with Re(kfa) ¼ 0.1; a2/a1 ¼ 1.2; d/a1 ¼ 3.0: (a) dimensionless stress s�;
(b) dimensionless pore pressure p�

f
.



ARTICLE IN PRESS

X.-L. Zhou et al. / Journal of Sound and Vibration 325 (2009) 816–834 827
E4
13in ¼ imIIk

2
s Hð1Þn�2ðksjzijjÞ

zij

jzijj

 !n�2

e2igj (72c)

E4
14in ¼ imIIk

2
s Hð2Þn�2ðksjzijjÞ

zij

jzijj

 !n�2

e2igj (72d)

E4
21in ¼ mIIk

2
pHð1Þnþ2ðkpjzijjÞ

zij

jzijj

 !nþ2

e�2igj (72e)

E4
22in ¼ mIIk

2
pHð2Þnþ2ðkpjzijjÞ

zij

jzijj

 !nþ2

e�2igj (72f)

E4
23in ¼ �imIIk

2
s Hð1Þnþ2ðksjzijjÞ

zij

jzijj

 !nþ2

e�2igj (72g)

E4
24in ¼ �imIIk

2
s Hð2Þnþ2ðksjzijjÞ

zij

jzijj

 !nþ2

e�2igj (72h)

r4
1j ¼ 0 (73a)
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Fig. 4. Dynamic response of a pair of lined tunnels subject to an incidence P1 wave with Re(kfa) ¼ 0.2; a2/a1 ¼1.2; d/a1 ¼ 3.0: (a) dimensionless stress s�;
(b) dimensionless pore pressure p�

f
.



ARTICLE IN PRESS

X.-L. Zhou et al. / Journal of Sound and Vibration 325 (2009) 816–834828
r4
2j ¼ 0 (73b)

Multiplying both sides of Eq. (71) with e�isy, and integrating over the interval [�p, p] yields

X4

p¼1

X2

i¼1

Xn¼1
n¼�1

E4s
kpinxpin ¼ r4s

kj ðk; j ¼ 1;2Þ ðs ¼ 0;�1;�2; . . .Þ (74)

where

E4s
kpin ¼

1

2p

Z p

�p
E4

kpine�isy dy ðs ¼ 0;�1;�2; . . .Þ (75)

r4s
kj ¼

1

2p

Z p

�p
r4

kje
�isy dy ðs ¼ 0;�1;�2; . . .Þ (75b)

Eqs. (59), (64), (69) and (74) form a set of infinite algebraic equations for determining the constants ajn, bjn, cjn, djn, ejn, mjn,
njn. It should be pointed out that the above equations are all in infinite sums, therefore, the system of equations must be
solved by truncating the infinite terms into the finite terms.
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Fig. 5. Dynamic response of a pair of lined tunnels subject to an incidence P1 wave with Re(kfa) ¼ 0.6; a2/a1 ¼1.2; d/a1 ¼ 3.0: (a) dimensionless stress s�;
(b) dimensionless pore pressure p�
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5. Numerical results

In the frequency domain, the harmonic incident plane P1 wave can be written as

jðIÞ
f
¼ j0 exp½ikf ðx cos bþ y sin bÞ�e�iot ¼ j0 exp

ikf

2
ðz̄eib þ ze�ibÞ

" #
e�iot (76)

where b denotes the incident angle; j0 represents the potential amplitude for the incident P1 wave. The dynamic stress
concentration factor s� is defined as the ratio of the tangential effective stress along the boundary of the tunnel to the
normal effective stress of the incident wave at the wave front passing through the origin.

s� ¼
s~y
s0

(77)

where

s0 ¼ Re½�ðlþ 2mÞk2
f j0� (78)

For the case of impermeable condition, the pore pressure concentration factor is defined as the ratio of the pore pressure
along the boundary of the lined tunnel to the pore pressure of the incident wave at the wave front passing through the origin.

p�f ¼
pf

pf 0
(79)
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Fig. 6. Dynamic response of a pair of lined tunnels subject to an incidence P1 wave with Re(kfa) ¼ 0.1; a2/a1 ¼1.2; b1/a1 ¼ 0.8: (a) dimensionless stress s�;
(b) dimensionless pore pressure p�
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where

pf 0 ¼ Re½�Af k2
f j0� (80)

First, the convergence of the proposed scheme will be verified. Then, the dynamic response of a pair of lined tunnels to
seismic wave with selected the dimensionless wavenumber, elliptic ratio, thickness of liner and distance between two
tunnels parameter will be calculated as numerical examples.

5.1. Convergence tests

In this example, the response of a pair of lined tunnels subject to seismic wave is used to check the convergence of the
proposed approach. The input parameter values for the porous medium and the liner are compiled in Table 1. The incident
angle is b ¼ 01; the elliptic ratio b1/a1 ¼ 1.0; the thickness of the liner a2/a1 ¼ 1.1; the distance of two tunnels d/a1 ¼ 3.0; the
dimensionless wavenumber Re(kfa) ¼ 0.1, 0.2, 0.3; the number of terms in series solution N takes 6, 7, 8 and 9.

The stresses and the pore pressures around the right tunnel are given when the dimensionless wavenumber
Re(kfa) ¼ 0.1, 0.2, 0.3. Fig. 2 shows that the stresses converge much slower than the pore pressures. For the number of terms
in series solution N takes 8 and 9, the stresses and the pore pressures have a good convergence. Therefore, the number of
terms truncated from the infinite series N is takes as 8 for each part of numerical results.

5.2. Dynamic response of a pair of tunnels with different dimensionless wavenumber and elliptic ratio

The elliptic ratio is represented by the ratio of the short axial radius to the long axial radius b1/a1. The input parameter
values of the porous medium and the liner use in Table 1. The most important incident angle is b ¼ 01 (end-on), as it
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Fig. 7. Dynamic response of a pair of lined tunnels subject to an incidence P1 wave with Re(kfa) ¼ 0.2; a2/a1 ¼1.2; b1/a1 ¼ 0.8: (a) dimensionless stress s�;
(b) dimensionless pore pressure p�
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best helps to expose the physics of the problem. Here, the dynamic response of a pair of lined tunnels to P1 wave
with different elliptic ratio and dimensionless wavenumber will be calculated as a numerical example. Figs. 3–5 show
the stress amplitudes and the pore pressure amplitudes at the surface of two tunnels at selected dimensionless
wavenumber (Re(kfa) ¼ 0.1, 0.2, 0.6) and elliptic ratio (b1/a1 ¼1.0, 0.9, 0.8, 0.7), distance between two tunnels d/a1 ¼ 3.0.
Careful examination of Figs. 3–5 reveal some interesting features of the problem. The most important observations
are as follows. For the lower dimensionless wavenumber Re(kfa) ¼ 0.1 (Fig. 3), the only very small difference of the pore
pressures are observed when changing elliptic ratio b1/a1. However, for the stresses, the difference is observable
when changing elliptic ratio. The stresses increase with decreasing elliptic ratio b1/a1. As the dimensionless wave-
number Re(kfa) is increased to 0.2 (Fig. 4), the stress amplitudes increase when elliptic ratio b1/a1 decreasing from 1.0 to
0.8. The pore pressures have small difference with decreasing elliptic ratio b1/a1 from 1.0 to 0.7. For the higher
dimensionless wavenumber Re(kfa) ¼ 0.6 (Fig. 5), the elliptic ratio have a significance influence on the dynamic stresses
and the pore pressures. Figs. 3–5 indicate the multiple scattering and the wave interaction effect increase when increasing
wavenumber.

5.3. Dynamic response of a pair of tunnels with different dimensionless wavenumber and distance between two tunnels

To further assess the multiple scattering and the interaction effect, Figs. 6 and 7 show the distribution of the
stress amplitudes and the pore pressure amplitudes at the surface of two tunnels for incident P1 wave at selected
dimensionless wavenumber (Re(kfa) ¼ 0.1, 0.2) and distance between two tunnels (d/a1 ¼ 3, 7, 9, 16). The input parameter
values of the porous medium and the liner use in Table 1. Comments similar to the previous case can readily be made.
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Fig. 8. Dynamic response of a pair of lined tunnels subject to an incidence P1 wave with Re(kfa) ¼ 0.1; d/a1 ¼ 3; b1/a1 ¼ 0.8: (a) dimensionless stress s�;
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The main distinction is that the multiple scattering and the interaction effect nearly vanish, as the distance between
two tunnels increase to d/a1 ¼ 16. For the lower wavenumber Re(kfa) ¼ 0.1 (Fig. 6), the stresses decrease when distances
between two tunnels increase from d/a1 ¼ 3 to d/a1 ¼ 9. When distance arrive to d/a1 ¼16, the stress contribution of two
tunnels is similar to that of single tunnel. The pore pressures decrease when increasing distances between two tunnels. For
the wavenumber Re(kfa) ¼ 0.2 (Fig. 7), the largest of the stresses occur at d/a1 ¼16 and the smallest of the stresses occur at
d/a1 ¼ 7. The stresses for the case d/a1 ¼ 9 is larger than that for the case d/a1 ¼ 3. For the left tunnel, the pore pressures
decrease with increasing distances between two tunnels d/a1. For the right tunnel, the largest of the pore pressures occur at
d/a1 ¼ 3 and the smallest of the pore pressures occur at d/a1 ¼ 9.
5.4. Dynamic response of a pair of tunnels with different thickness of liner and distance between two tunnels

Finally, we check the stress amplitudes and the pore pressure amplitudes for incidence P1 wave at selected thickness of
liner (a2/a1 ¼ 1.1, 1.2, 1.4, 1.5) and distance between two tunnels d/a1 ¼ 3, 9, 16. The input parameter values of the porous
medium and the liner use in Table 1. Figs. 8–10 show the difference of the stresses is more pronounced than the pore
pressures when increasing thicknesses of liner. Figs. 8–10 indicate the pore pressures have no obviously change when
increasing thicknesses of liner. Figs. 8 and 10 show that the largest of the stresses occurs at a2/a1 ¼1.2 and the smallest of
the stresses occurs at a2/a1 ¼1.4 and 1.5 for distances between two tunnels d/a1 ¼ 3 and 16. Fig. 9 shows that the largest
of the stresses occurs at a2/a1 ¼ 1.4 and the smallest of the stresses occurs at a2/a1 ¼1.5 for distances between two tunnels
d/a1 ¼ 9.
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6. Conclusion

The complex variable function method and the wave function expansion method are used to develop a semi-analytical
solution for the problem of the dynamic interaction between a pair of elliptic lined tunnels in a poroelastic medium. The
primary objectives are to investigate the multiple scattering and the interaction effect between two tunnels. Based on the
derivation and numerical examples presented above, the following conclusions are drawn:
(1)
 Numerical results show that the complex variable function method and the wave function expansion method can be used
in the calculation of lined tunnels embedded in a porous medium and subjected to plane harmonic wave. The convergence
of the method has been examined numerically and a good convergence has been observed in the calculation.
(2)
 The numerical results include the dynamic stresses and the pore pressures of a pair of tunnels at selected wavenumber,
thickness, elliptic ratio and distance parameters. The numerical results show that the wavenumber, thickness of liner,
elliptic ratio and distance of two tunnels has a significance influence on the dynamic stresses and the pore pressures.
(3)
 The multiple scattering and the interaction effect at two lined tunnels are fairly pronounced, in particular, when the
tunnels are closely located. The influence of the multiple scattering and the multiple interactions between two tunnels
on the stresses becomes more observable with the decreasing distance between the two tunnels.
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