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Nonlinear vibrations of a general model of continuous system is considered. The model

consists of arbitrary linear and cubic operators. The equation of motion is solved by the

method of multiple scales (a perturbation method). The primary resonances of external

excitation is analysed. The amplitude and phase modulation equations are presented.

discussed. Finally, the solution algorithm is applied to two different engineering

problems. One of the application is the transverse vibration of an axially moving

Euler–Bernoulli beam and the other is a viscoelastic beam.

& 2009 Published by Elsevier Ltd.
1. Introduction

Many different nonlinear models addressing vibrations of continuous systems appear in the literature. In most cases,
the nature of nonlinearities does not permit exact solutions, hence approximate analytical solutions such as perturbation
methods are sought for understanding the physics of the problem. Although the nonlinearities differ much, they possess
some common features. For example, in the context of quadratic and cubic nonlinearities, many different forms may be
encountered.

In an attempt to understand the effects of arbitrary quadratic and cubic nonlinearities on the solutions, an operator
notation was developed by Pakdemirli [1]. The motivation behind the study was to compare the direct-perturbation
methods with discretization-perturbation methods by employing a fairly general equation with quadratic and cubic
nonlinearities. The discussion was for single mode approximations of free vibrations. Later the analysis was generalized to
infinite number of modes for forced vibrations [2]. The advantages of direct-perturbation methods were discussed in detail.
Comparison of both methods for a parametically excited linear system expressed by arbitrary linear operators were also
done [3]. It is concluded that finite mode truncations of both methods yield different results with direct-perturbation
method yielding more precise solutions. Forced vibrations of an arbitrary cubic nonlinear system was employed to compare
results of different versions of method of multiple scales [4]. For systems modelled with more than one partial differential
equation, a solution procedure was developed [5]. One-to-one internal resonances were considered. Using the model of Ref.
[5], arbitrary internal resonance cases were further discussed [6]. For a general cubic nonlinear system, three-to-one
internal resonances were considered by Pakdemirli and Özkaya [7]. For the case of arbitrary quadratic nonlinearities,
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B. Burak Özhan, M. Pakdemirli / Journal of Sound and Vibration 325 (2009) 894–906 895
two-to-one internal resonances were analysed in a general sense [8]. The new operator notation developed in the previous
studies [1–8] were used by other researchers also (see Refs. [9,10] for example).

In this work, additional linear and cubic operators with time derivatives are incorporated into the model. In all previous
studies with cubic nonlinearities, only spatial operators were employed. An additional linear and cubic operator containing
spatial as well as time derivatives enables to analyse a more general class of continuous systems such as gyroscopic
systems which are encountered in axially moving media or pipes conveying fluids. First a general solution procedure is
developed for arbitrary operators. Method of multiple scales, a perturbation technique is used in the analysis. Amplitude
and phase modulation equations, steady-state solutions and their stability are discussed in a general sense. The formalism
is applied to two different problems: (1) nonlinear vibrations of stretched axially moving Euler–Bernoulli beam and (2)
nonlinear vibrations of axially moving viscoelastic beam. Applications have very different nonlinearities, one of integro-
differential type and the other of differential type. Nevertless, both models possess the common feature of being cubic
nonlinear which enables the algorithm developed to be applied directly to these equations. The application problems are
discussed in detail. Stability analysis is presented and frequency-response curves are drawn to depict the effects of various
parameters on the vibrations of the system. Apart from the examples considered, the general solution procedure developed
can be applied to a wide range of physical problems.

2. Equation of motion

The dimensionless model considered is as follows:

€wþ L1ðwÞ þ L2ð _wÞ þ �m _w ¼ �F cos Ot þ �fC1ðw;w;wÞ þ C2ð _w;w;wÞg (1)

B1ðwÞ ¼ 0 x ¼ 0; B2ðwÞ ¼ 0 x ¼ 1 (2)

In this general partial differential equation, the dependent variable wðx; tÞ represents deflection, independent variables
x and t are the spatial and time variables, respectively. Note that there may be more than one spatial variable and a 3-D
problem in spatial variables x, y and z has not been excluded from the analysis. L1 and L2 are linear differential and/or
integral operators. C1 and C2 are cubic nonlinear operators. m represents damping coefficient. F and O represents external
excitation amplitude and external excitation frequency, respectively. B1 and B2 are linear operators of boundary conditions.
The representation of boundary conditions should be expressed in a modified form for a 3-D problem. e is a small
dimensionless physical parameter. Dot denotes differentiation with respect to time. To capture the effects of gyroscopic
systems, additional linear and cubic operators containing time derivatives are included to the model.

Note that model (1) is a fairly general model and any vibration problem that can be cast into the formalism of Eq. (1) can
be solved approximately through the algorithm developed in the following analysis. A restriction of the boundary value
problem comes from the boundary conditions, i.e. they are assumed to be linear. If the specific problem contains nonlinear
boundary conditions, the general solution algorithm cannot be directly applied to it. This case needs further analysis since
the solvability condition brings more terms for nonlinear boundary conditions which are hard to express in a general way.
Although the boundary conditions given here represent a 1-D problem such as normalized length, in fact the solution
algorithm is more general than that and can be successfully applied to 2- or 3-D problems in spatial variables. Note that
both equation of motion and boundary conditions should be expressed in a non-dimensional form for applications.

The cubic operator may not be symmetric with respect to the inner variable and possesses the property of being
multilinear as follows:

Cðc1w1 þ c2w2; c3w3 þ c4w4; c5w5 þ c6w6Þ ¼ c1c3c5 Cðw1;w3;w5Þ þ c1c3c6 Cðw1;w3;w6Þ

þ c1c4c5Cðw1;w4;w5Þ þ c1c4c6 Cðw1;w4;w6Þ

þ c2c3c5 Cðw2;w3;w5Þ þ c2c3c6 Cðw2;w3;w6Þ

þ c2c4c5 Cðw2;w4;w5Þ þ c2c4c6 Cðw2;w4;w6Þ (3)

The above property will be used extensively in the perturbation calculations and the order of terms is extremely important.
The cubic operators may be of differential type or integral type or a mixture of both. Sample cubic nonlinearities which are
encountered frequently in continuous systems are

Cðw;w;wÞ ¼ w3; Cðw;w;wÞ ¼ w00
Z

D
w02 dx; Cðw;w;wÞ ¼ w00w02

Cð _w;w;wÞ ¼ _w0w0w00; Cð _w;w;wÞ ¼ _w00w02 (4)

In general, if the nonlinearity is not completely symmetric such as Eq. (4), a change of arguments will produce different
results.

Cðw1;w2;w3ÞaCðw1;w3;w2ÞaCðw2;w1;w3Þ

aCðw2;w3;w1ÞaCðw3;w1;w2ÞaCðw3;w2;w1Þ

Cð _w1;w2;w3ÞaCð _w1;w3;w2Þ (5)
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Note that although initially the arguments w are the same as expressed in Eq. (4), when explicit solutions are replaced with
w in the subsequent analysis, each term might be different and the different terms are expressed as w1, w2 and w3 in Eq. (3)
and (5).

3. Perturbation solution

The method of multiple scales [11] is applied directly to the model to find the general solution of Eq. (1). The following
expansion for wðx; tÞ is assumed:

wðx; T0; T1; �Þ ¼ w0ðx; T0; T1Þ þ �w1ðx; T0; T1Þ þ � � � (6)

where T0 ¼ t is the usual fast time scale and T1 ¼ �t is the slow time scale. Time derivatives are expressed in terms of fast
and slow time scales as follows:

d

dt
¼ D0 þ �D1 þ � � � (7)

d2

dt2
¼ D2

0 þ 2�D0D1 þ � � � (8)

Where Dk ¼ q=qTk. Inserting Eqs. (6)–(8) into Eqs. (1) and (2) and separating at each order of e, one obtains

Oð�0Þ

D2
0w0 þ L1ðw0Þ þ L2ðD0w0Þ ¼ 0 (9)

B1ðw0Þ ¼ 0 at x ¼ 0; B2ðw0Þ at x ¼ 1 (10)

Oð�1Þ

D2
0w1 þ L1ðw1Þ þ L2ðD0w1Þ ¼ � 2D0D1w0 � mD0w0 � L2ðD1w0Þ þ C1ðw0;w0;w0Þ

þ C2ðD0w0;w0;w0Þ þ F cos OT0 (11)

B1ðw1Þ ¼ 0 at x ¼ 0; B2ðw1Þ ¼ 0 at x ¼ 1 (12)

At Oð�0Þ, the solution is

w0ðx; T0; T1Þ ¼ AnðT1Þe
ionT0 YnðxÞ þ ĀnðT1Þe

�ionT0 ȲnðxÞ (13)

where An and Ān are complex amplitudes and their conjugates, respectively. YnðxÞ satisfy the following equations and
boundary conditions:

L1ðYnÞ �o2
nYn þ ionL2ðYnÞ ¼ 0; n ¼ 1;2; . . . (14)

B1ðYnÞ ¼ 0 at x ¼ 0; B2ðYnÞ ¼ 0 at x ¼ 1 (15)

Due to the dissipative term at the zeroth order, YnðxÞ may not be real and the complex conjugate of the function is
incorporated in the zeroth-order solution (13). The above equation and boundary conditions constitute an eigenvalue–
eigenfunction problem. on are the eigenvalues and YnðxÞ are the eigenfunctions of the system, respectively. For continuous
system, it is clear that there are infinite number of eigenvalues and corresponding eigenfunctions. In this work one mode
approximation is assumed with no internal resonances. Substituting Eq. (13) to the right hand side of Eq. (11), one has

D2
0w1 þ L1ðw1Þ þ L2ðD0w1Þ ¼ fð�2ionD1An � imonAnÞYn � D1AnL2ðYnÞge

ionT0

þ ðA3
n e3ionT0 C1ðYn;Yn;YnÞ þ A2

nĀn eionT0 C1ðYn;Yn; ȲnÞ

þ A2
nĀn e�ionT0 C1ðȲn;Yn;YnÞ þ A2

nĀn eionT0 C1ðYn; Ȳn;YnÞÞ

þ ionðA
3
n e3ionT0 C2ðYn;Yn;YnÞ þ A2

nĀn eionT0 C2ðYn;Yn; ȲnÞ

� A2
nĀn e�ionT0 C2ðȲn;Yn;YnÞ þ A2

nĀn eionT0 C2ðYn; Ȳn;YnÞÞ

þ 1
2F eiOT0 þ cc (16)

B1ðw1Þ ¼ 0 at x ¼ 0; B2ðw1Þ ¼ 0 at x ¼ 1 (17)

where cc stands for complex conjugates of the preceding terms. At order �, assuming primary resonances, the nearness of
external excitation frequency to one of the natural frequencies is expressed as follows:

O ¼ on þ �s (18)
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where s is a detuning parameter of order 1. Substituting Eq. (18) into Eq. (16), after re-arranging yields

D2
0w1 þ L1ðw1Þ þ L2ðD0w1Þ ¼ � ionð2D1An þ mAnÞe

ionT0 Yn

� D1An eionT0 L2ðYnÞ þ A2
nĀneionT0 fC1ðYn;Yn; ȲnÞ

þ C1ðYn; Ȳn;YnÞ þ C1ðȲn;Yn;YnÞ þ ion½C2ðYn;Yn; ȲnÞ

þ C2ðYn; Ȳn;YnÞ � C2ðȲn;Yn;YnÞ�g þ
1
2F eionT0 eisT1

þ cc þ N:S:T (19)

where N.S.T stands for non-secular terms. One assumes a solution for w1 of the form

w1ðx; T0; T1Þ ¼ f1ðx; T1Þe
ionT0 þ cc þWðx; T0; T1Þ (20)

where Wðx; T0; T1Þ represent solution associated with non-secular terms. Substituting Eq. (20) into Eq. (19) yields

L1ðf1Þ �o2
nf1 þ ionL2ðf1Þ ¼ � ionð2D1An þ mAnÞYn � D1AnL2ðYnÞ

þ A2
nĀnfC1ðYn;Yn; ȲnÞ þ C1ðYn; Ȳn;YnÞ þ C1ðȲn;Yn;YnÞ

þ ion½C2ðYn;Yn; ȲnÞ þ C2ðYn; Ȳn;YnÞ � C2ðȲn;Yn;YnÞ�g

þ 1
2F eisT1 (21)

B1ðf1Þ ¼ 0 at x ¼ 0; B2ðf1Þ ¼ 0 at x ¼ 1 (22)

Since the homogenous part of Eq. (21) have non-trivial solutions, non-homogenous Eq. (21) have a solution only if a
solvability condition is satisfied [11]. For the present model the solvability condition is

D1An þ mk1An � k2A2
nĀn �

1
2f eisT1 ¼ 0 (23)

The coefficients are as follows:

k1 ¼
ion

R 1
0 YnȲn dx

2ion
R 1

0 YnȲn dxþ
R 1

0 L2ðYnÞȲn dx
(24)

k2 ¼

Z 1

0
Ȳn C1ðYn;Yn; ȲnÞ þ C1ðYn; Ȳn;YnÞ þ C1ðȲn;Yn;YnÞ þ ion½C2ðYn;Yn; ȲnÞ
�(

þ C2ðYn; Ȳn;YnÞ � C2ðȲn;Yn;YnÞ�
�

dx

),
2ion

Z 1

0
YnȲn dxþ

Z 1

0
L2ðYnÞȲn dx

( )
(25)

f ¼

R 1
0 FȲn dx

2ion
R 1

0 YnȲn dxþ
R 1

0 L2ðYnÞȲn dx
(26)

The coefficients have real and imaginary parts

k1 ¼ k1R þ ik1I; k2 ¼ k2R þ ik2I; f ¼ f R þ if I (27)

Representing the complex amplitudes in polar form

An ¼
1
2anðT1Þe

ibnðT1Þ (28)

substituting into Eq. (23), separating into real and imaginary parts, one finally has the amplitude and phase modulation
equations

a0n ¼ �mk1Ran þ
1
4k2Ra3

n þ f R cos gn � f I sin gn (29)

ang0n ¼ ansþ mk1Ian �
1
4k2Ia

3
n � f R sin gn � f I cos gn (30)

where

gn ¼ sT1 � bn (31)

For steady-state solutions

a0n ¼ g0n ¼ 0 (32)

Substituting Eq. (32) into Eqs. (29) and (30), one has

mk1Ran �
1
4k2Ra3

n � f R cos gn þ f I sin gn ¼ 0 (33)
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san þ mk1Ian �
1
4k2Ia

3
n � f R sin gn � f I cos gn ¼ 0 (34)

Elimination of gn between the equations yield

s ¼ �mk1I þ
1

4
k2Ia

2
n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

R þ f 2
I

a2
n

� mk1R �
1

4
k2Ra2

n

� �2
vuut (35)

For analysing the stability of the system, Eqs. (29) and (30) are rewritten as follows:

a0n ¼ �mk1Ran þ
1
4k2Ra3

n þ f R cos gn � f I sin gn ¼ F1ðan; gnÞ (36)

g0 ¼ sþ mk1I �
1

4
k2Ia

2
n �

1

an
f R sin gn �

1

an
f I cos gn ¼ F2ðan; gnÞ (37)

To determine the stability of fixed points, the Jacobian matrix is constructed

qF1
qan

qF1
qgn

qF2
qan

qF2
qgn

2
64

3
75
an ¼ an0

gn ¼ gn0

(38)

Eigenvalues of the Jacobian matrix should not have positive real parts for stability. The approximate solution of the
system is

wðx; t; �Þ ¼ an cosðOt � gnÞYnR � an sinðOt � gnÞYnI þ Oð�Þ (39)

where Yn can be decomposed into its real and imaginary parts

Yn ¼ YnR þ iYnI (40)

an and gn in the approximate solution are governed by Eqs. (36) and (37). Hence, for the general problem, an approximate
solution algorithm is developed. The algorithm will be applied to two specific problems in the next section. Note that the
approximate solution developed can trivially be extended to three spatial dimensions by expressing the eigenfunctions in
3-D. A restriction of the solution is the absence of internal resonances and natural frequencies should be checked to avoid
such resonances before direct implication of the algorithm.

4. Applications

In this section, the general solution algorithm will be applied to two specific vibration problems. Both problems are from
axially moving continua. See Refs. [12–20] for some example studies on axially moving continua vibrations. One of the
problems contains integro-differential type nonlinearity and the other differential type nonlinearity. Although the
nonlinearities are much different in nature, their common feature of being cubic nonlinearity makes them suitable
applications for the general model considered.

4.1. Axially moving Euler–Bernoulli beam

For an axially moving Euler–Bernoulli beam, following Ref. [12], the kinetic energy is

T ¼
rA

2

Z L

0
f½ _uþ v0ð1þ u0Þ�2 þ ð _wþ v0w0Þ2gdx (41)

where rA is the mass per unit length of the beam. u(x, t) and w(x, t) are the longitudinal and transverse displacements
of the beam, dot denotes differentiation with respect to time and prime denotes differentiation with respect to
the spatial variable. v0 is the axial transport velocity which is constant. The first term in the parenthesis is the
longitudinal and the second term is the transverse velocity components as measured by a stationary observer. The potential
energy is

U ¼

Z L

0
Pexx þ

1

2
EAe2

xx þ
1

2
EIw002

� �
dx (42)

where the nonlinear strain is

exx ¼ u0 þ 1
2w02 (43)
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where P is the axial tension force, EI the flexural rigidity and EA the axial stiffness. Invoking the Hamilton’s principle

d
Z t2

t1

ðT � UÞdt ¼ 0 (44)

and introducing the dimensionless quantities

u� ¼
u

L
; w� ¼

w

L
; x� ¼

x

L
; t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

q
(45)

with the new dimensionless parameters

v�0 ¼ v0=
ffiffiffiffiffiffiffiffiffiffiffiffi
P=rA

p
; v‘ ¼

ffiffiffiffiffiffiffiffiffiffiffi
EA=P

p
; vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=PL2

q
(46)

yield finally the coupled equations

€uþ 2v0 _u
0
þ v2

0u00 � v2
‘ ðu
0 þ 1

2w02Þ0 ¼ 0 (47)

€wþ 2v0 _w
0
þ v2

0w00 � f½1þ v2
‘ ðu
0 þ 1

2w02Þ�w0g0 þ v2
f wIV ¼ 0 (48)

Asterisk notation is dropped for convenience. v‘ is the longitudinal and vf the flexural stiffness parameter. The boundary
conditions for the problem are

uð0; tÞ ¼ uð1; tÞ ¼ 0; wð0; tÞ ¼ wð1; tÞ ¼ w00ð0; tÞ ¼ w00ð1; tÞ ¼ 0 (49)

The explicit appearance of u in the transverse equation of motion is suppressed by approximating the dynamic tension
component as a function of time alone. Over a technologically useful range of parameter values, longitudinal disturbances
propagate significantly faster than the transverse ones. On the time scales of the lower transverse modes, tension variations
propagate almost instantaneously as the influence of longitudinal inertia is small. With this in mind, Eq. (47) can be
integrated with the axial strain and longitudinal displacement yielding

exx ¼
1

2

Z 1

0
w02 dx (50)

uðx; tÞ ¼
x

2

Z 1

0
w02 �

1

2

Z x

0
w02 dx (51)

The final Eq. (48) reads

€wþ ðv2
0 � 1Þw00 þ 2v0 _w

0
þ v2

f wIV ¼
1

2
v2
‘w00

Z 1

0
w02 dx (52)

Adding a viscous damping and harmonic excitation to the equation with introducing a book-keeping small parameter e to
re-order the relative quantities of the terms yields

€wþ ðv2
0 � 1Þw00 þ 2v0 _w

0
þ v2

f wIV þ �m _w ¼ �F cos Ot þ
1

2
�v2
‘w00

Z 1

0
w02 dx (53)

wð0; tÞ ¼ wð1; tÞ ¼ w00ð0; tÞ ¼ w00ð1; tÞ ¼ 0 (54)

For some example studies on axially moving Euler Bernoulli beams see [12–15]. For this special problem, the operators are
defined to be as follows:

L1ðwÞ ¼ ðv
2
0 � 1Þw00 þ v2

f wIV (55)

L2ð _wÞ ¼ 2v0 _w
0 (56)

C1ðw;w;wÞ ¼
1

2
v2
‘w00

Z 1

0
w02 dx (57)

C2ð _w;w;wÞ ¼ 0 (58)

The associated eigenfunction–eigenvalue problem given in Eqs. (14) and (15) reduces to

v2
f YIV

n þ ðv
2
0 � 1ÞY 00n þ 2v0ionY 0n �o

2
nYn ¼ 0 (59)

Ynð0Þ ¼ Ynð1Þ ¼ Y 00nð0Þ ¼ Y 00nð1Þ ¼ 0 (60)
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The solution is

YnðxÞ ¼ C1n eib1nx þ C2n eib2nx þ C3n eib3nx þ C4n eib4nx (61)

where bin satisfy the dispersive relation

v2
f b

4
in þ ð1� v2

0Þb
2
in � 2v0onbin �o2

n ¼ 0; i ¼ 1;2;3;4 . . . ; n ¼ 1;2; . . . (62)

Applying the simply supported boundary conditions yield

C1n þ C2n þ C3n þ C4n ¼ 0 (63)

C1nb
2
1n þ C2nb

2
2n þ C3nb

2
3n þ C4nb

2
4n ¼ 0 (64)

C1n eib1n þ C2n eib2n þ C3n eib3n þ C4n eib4n ¼ 0 (65)

C1nb
2
1n eib1n þ C2nb

2
2n eib2n þ C3nb

2
3n eib3n þ C4nb

2
4n eib4n ¼ 0 (66)

The support condition is found by nontrivial solutions of Eqs. (63)–(66)

ðeiðb1nþb2nÞ þ eiðb3nþb4nÞÞðb2
1n � b2

2nÞðb
2
3n � b2

4nÞ

þ ðeiðb1nþb3nÞ þ eiðb2nþb4nÞÞðb2
2n � b2

4nÞðb
2
3n � b2

1nÞ

þ ðeiðb2nþb3nÞ þ eiðb1nþb4nÞÞðb2
1n � b2

4nÞðb
2
2n � b2

3nÞ ¼ 0 (67)

on and bin can be numerically calculated by using the dispersive relation and the support condition. Coefficients are
obtained by elimination from Eqs. (63)–(66) . Finally the mode shapes are [13]

YnðxÞ ¼ c1 eib1nx �
ðb2

4n � b2
1nÞðe

ib3n � eib1n Þ

ðb2
4n � b2

2nÞðe
ib3n � eib2n Þ

eib2nx �
ðb2

4n � b2
1nÞðe

ib2n � eib1n Þ

ðb2
4n � b2

3nÞðe
ib2n � eib3n Þ

eib3nx

(

þ �1þ
ðb2

4n � b2
1nÞðe

ib3n � eib1n Þ

ðb2
4n � b2

2nÞðe
ib3n � eib2n Þ

þ
ðb2

4n � b2
1nÞðe

ib2n � eib1n Þ

ðb2
4n � b2

3nÞðe
ib2n � eib3n Þ

" #
eib4nðxÞ

)
(68)

In Fig. 1, fundamental frequency versus axial transport velocity graphics are shown for different flexural stiffness values.
Natural frequencies decrease with increasing flexural stiffness values. Frequency-response graphics are shown in Figs. 2–4.
All curves show the hardening effect of nonlinear system.

The next step is to calculate the coefficients in the amplitude and phase modulation equations. Substituting the
operators (55)–(58) into Eqs.(24)–(26) yields

k1 ¼
ion

R 1
0 YnȲn dx

2ion
R 1

0 YnȲn dxþ 2v0
R 1

0 Y 0nȲn dx
(69)

k2 ¼
1

2
v2
‘

Z 1

0
Ȳn 2Y 00n

Z 1

0
Y 0nȲ

0

n dxþ Ȳ
00

n

Z 1

0
Y 02n dx

( )
dx

( ),
2ion

Z 1

0
YnȲn dxþ 2v0

Z 1

0
Y 0nȲn dx

( )
(70)
Fig. 1. Fundamental frequencies versus axial transport velocities for various flexural stiffness values.
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Fig. 2. Frequence-response curves for various external excitation values ðvf ¼ 0:2; v‘ ¼ 0:2; m ¼ 0:5; v0 ¼ 0:8Þ.

Fig. 3. Frequence-response curves for various longitudinal stiffness values ðvf ¼ 0:2; m ¼ 0:5; v0 ¼ 0:8; F ¼ 1Þ.

Fig. 4. Frequence-response curves for various flexural stiffness values ðv‘ ¼ 1:0; m ¼ 0:5; v0 ¼ 0:8; F ¼ 1Þ.

B. Burak Özhan, M. Pakdemirli / Journal of Sound and Vibration 325 (2009) 894–906 901
f ¼

R 1
0 FȲn dx

2ion
R 1

0 YnȲn dxþ 2v0
R 1

0 Y 0nȲn dx
(71)

Substitution of YnðxÞ further into these equations yields the numerical values for the coefficients.
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In Fig. 2, frequency response curves are drawn for specific values of external excitation amplitude F ¼ 1, 5 and 10 with
vf ¼ 0:2, v‘ ¼ 0:2, v0 ¼ 0:8, m ¼ 0:5, o1 ¼ 2:42739. The coefficients of amplitude and phase modulation equations for F ¼ 1
are

k1 ¼ 0:3962; k2 ¼ 3:0865i; f ¼ �0:0640þ 0:0504i (72)

Curves show that nonlinear effects increase by increasing external excitation.
Fig. 3 shows the effects of longitudinal stiffness values on the frequency response curves. Increasing longitudinal

stiffness bends the curves more to the right, increasing the multi-valued region responsible for the well known jump
phenomenon.

Fig. 4 shows the influence of flexural stiffness on the frequency response curves. The maximum amplitudes decrease for
increasing flexural stiffness. Note that the solutions presented are valid in the subcritical velocity regimes.

4.2. Axially moving viscoelastic beam

The second model represents nonlinear vibrations of an axially moving viscoelastic beam. Following Ref. [17], Newton’s
second law of motion for a uniform axially moving beam is

rAð €wþ 2v0 _w
0
þ v2

0w00Þ ¼ ½ðP þ AsÞw0�0 �M00 (73)

where s(x,t) is the axial disturbed stress and M(x,t) is the bending moment. Other notation is the same as in the previous
example. Viscoelastic material obeys the Kelvin model

s ¼ Eexx þ Z_exx (74)

with the strain

exx ¼
1
2w02 (75)

which is used to account for geometric nonlinearity due to small but finite stretching of the beam. For a slender beam, the
linear moment–curvature relationship can be used

M ¼ EIw00 þ ZI _w00 (76)

Substituting Eqs. (74)–(76) into Eq. (73) yields the equation of transverse motion of an axially moving viscoelastic beam

rAð €wþ 2v0 _w
0
þ v2

0w00Þ � Pw00 þ EIwIV þ ZI _wIV
¼ 3

2Ew02w00 þ 2Zw0 _w0w00 þ Zw02 _w00 (77)

Introducing similar non-dimensionless parameters as in the previous example, adding a harmonic external excitation and
reordering nonlinear and harmonic excitation terms with a book keeping small parameter yields finally

€wþ ðv2
0 � 1Þw00 þ 2v0 _w

0
þ v2

f wIV þ a _wIV�m _w ¼ �F cos Ot þ �f32v2
‘w00w02 þ 2ak _w0w0w00 þ ak _w00w02g (78)

with boundary conditions

wð0; tÞ ¼ wð1; tÞ ¼ w00ð0; tÞ ¼ w00ð1; tÞ ¼ 0 (79)

where

v‘ ¼

ffiffiffiffiffiffi
EA

P

r
; vf ¼

ffiffiffiffiffiffiffiffi
EI

PL2

s
; a ¼ IZ

L3
ffiffiffiffiffiffiffiffiffi
rAP

p ; k ¼
AZ

L
ffiffiffiffiffiffiffiffiffi
rAP

p (80)

Z represents viscosity, a and k are dimensionless parameters related to the viscosity. For similar studies on viscoelastic
axially moving beams, the reader is referred to Refs. [17–20]. Note that if the spatial variation of tension is rather small, one
can use the averaged value of the disturbed tension

1

L

Z L

0
Asdx

to replace the exact value of As in Eq. (73). Selecting this choice and neglecting viscoelastic terms yield exactly the same
integro-differential model discussed in the previous example [17].

For this specific problem, the general operators are defined as

L1ðwÞ ¼ ðv
2
0 � 1Þw00 þ v2

f wIV (81)

L2ð _wÞ ¼ 2v0 _w
0
þ a _wIV (82)

C1ðw;w;wÞ ¼
3
2v2
‘w00w02 (83)

C2ð _w;w;wÞ ¼ 2ak _w0w0w00 þ ak _w00w02 (84)



ARTICLE IN PRESS
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The associated eigenvalue–eigenfunction problem as given in Eqs. (14) and (15) reduces to

ðv2
f þ ionaÞYIV

n þ ðv
2
0 � 1ÞY 00n þ 2v0ionY 0n �o

2
nYn ¼ 0 (85)

Ynð0Þ ¼ Ynð1Þ ¼ Y 00nð0Þ ¼ Y 00nð1Þ ¼ 0 (86)

for which a solution is assumed of the below form

YnðxÞ ¼ C1n eib1nx þ C2n eib2nx þ C3n eib3nx þ C4n eib4nx (87)

where bin satisfies the dispersive relation

ðv2
f þ ionaÞb4

in þ ð1� v2
0Þb

2
in � 2v0onbin �o2

n ¼ 0; i ¼ 1;2;3;4 . . . ; n ¼ 1;2; . . . (88)

After applying the simply supported boundary conditions, the following equations will be found for the coefficients

C1n þ C2n þ C3n þ C4n ¼ 0 (89)

C1nb
2
1n þ C2nb

2
2n þ C3nb

2
3n þ C4nb

2
4n ¼ 0 (90)

C1n eib1n þ C2n eib2n þ C3n eib3n þ C4n eib4n ¼ 0 (91)

C1nb
2
1n eib1n þ C2nb

2
2n eib2n þ C3nb

2
3n eib3n þ C4nb

2
4n eib4n ¼ 0 (92)

The support condition is also found by nontrivial solution condition of Eqs. (89)–(92)

ðeiðb1nþb2nÞ þ eiðb3nþb4nÞÞðb2
1n � b2

2nÞðb
2
3n � b2

4nÞ

þ ðeiðb1nþb3nÞ þ eiðb2nþb4nÞÞðb2
2n � b2

4nÞðb
2
3n � b2

1nÞ

þ ðeiðb2nþb3nÞ þ eiðb1nþb4nÞÞðb2
1n � b2

4nÞðb
2
2n � b2

3nÞ ¼ 0 (93)

Numerical values of on and bin can be numerically calculated by using the dispersive relation and the support condition in
a similar way. Coefficients can be obtained by elimination of Eqs. (89)–(92). Finally the mode shapes are found to be

YnðxÞ ¼ c1 eib1nx �
ðb2

4n � b2
1nÞðe

ib3n � eib1n Þ

ðb2
4n � b2

2nÞðe
ib3n � eib2n Þ

eib2nx �
ðb2

4n � b2
1nÞðe

ib2n � eib1n Þ

ðb2
4n � b2

3nÞðe
ib2n � eib3n Þ

eib3nx

(

þ �1þ
ðb2

4n � b2
1nÞðe

ib3n � eib1n Þ

ðb2
4n � b2

2nÞðe
ib3n � eib2n Þ

þ
ðb2

4n � b2
1nÞðe

ib2n � eib1n Þ

ðb2
4n � b2

3nÞðe
ib2n � eib3n Þ

" #
eib4nx

)
(94)

The coefficients of amplitude and phase modulation equations are found by substituting the operators (81)–(84) into
Eqs. (24)–(26)

k1 ¼
ion

R 1
0 YnȲn dx

2ion
R 1

0 YnȲn dxþ 2v0
R 1

0 Y 0nȲn dxþ a
R 1

0 YIV
n Ȳn dx

(95)

k2 ¼

Z 1

0
Ȳn 3v2

‘ Y 00nY 0nȲ
0

n þ
3

2
v2
‘ Ȳ
00

nY 02n þ akionY 02n Ȳ
00

n2akiwnY 00nY 0nȲ
0

n

� �
dx

= 2ion

Z 1

0
YnȲn dxþ 2v0

Z 1

0
Y 0nȲn dxþ a

Z 1

0
YIV

n Ȳn dx

( )
(96)

f ¼

R 1
0 FȲn dx

2ion
R 1

0 YnȲn dxþ 2v0
R 1

0 Y 0nȲn dxþ a
R 1

0 YIV
n Ȳn dx

(97)

By substituting YnðxÞ further into these equations yields the numerical values for the coefficients.
Figs. 5 and 6 show the fundamental frequency and mean velocity relation of axially moving viscoelastic beam for

different flexural stiffness by taking a ¼ 0:001 and 0:05. For an increase in a values, fundamental frequencies decrease for
each flexural stiffness. Variation of frequencies with velocity as given in Figs. 5 and 6 has not been reported before.
Frequency-response curves are shown in Figs. 7–10.

In Fig. 7, nonlinear effect of k parameter is shown for specific values of vf ¼ 1:0, v‘ ¼ 0:2, v0 ¼ 0:5, m ¼ 0:2,
o1 ¼ 10:20142, F ¼ 1 , a ¼ 0:01.

The coefficients for k ¼ 1 are

k1 ¼ 0:4926þ 0:0238i; k2 ¼ �0:9965þ 24:8335i; f ¼ �0:0284þ 0:0027i (98)

Curves show that maximum amplitudes decrease by increasing k values.
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Fig. 5. Fundamental frequencies versus axial transport velocities for various flexural stiffness values ða ¼ 0:001Þ.

Fig. 6. Fundamental frequencies versus axial transport velocities for various flexural stiffness values ða ¼ 0:05Þ.

Fig. 7. Frequence-response curves for various k parameter values ðvf ¼ 1:0; v‘ ¼ 0:2; m ¼ 0:2; v0 ¼ 0:5; a ¼ 0:01; F ¼ 1Þ.

B. Burak Özhan, M. Pakdemirli / Journal of Sound and Vibration 325 (2009) 894–906904
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Fig. 8. Frequence-response curves for various flexural stiffness values ðv‘ ¼ 0:2; m ¼ 0:2; v0 ¼ 1:1; a ¼ 0:001; k ¼ 5; F ¼ 1Þ.

Fig. 9. Frequence-response curves for various longitudinal stiffness values ðvf ¼ 0:6; m ¼ 0:2; v0 ¼ 0:5; a ¼ 0:01; k ¼ 1; F ¼ 1Þ.

Fig. 10. Frequence-response curves for various a parameter values ðvf ¼ 0:6; v‘ ¼ 0:2; m ¼ 0:2; v0 ¼ 1:0; k ¼ 5; F ¼ 1Þ.

B. Burak Özhan, M. Pakdemirli / Journal of Sound and Vibration 325 (2009) 894–906 905
Fig. 8 shows the effects of flexural stiffness on the frequency response curves. Maximum amplitudes decrease by
increasing flexural stiffness. Curves bend more to the right by decreasing flexural stiffness.

Fig. 9 shows the influence of longitudinal stiffness on the frequency response curves. The maximum amplitudes and
multi-valued regions responsible for jump phenomena increase for increasing longitudinal stiffness.
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Fig. 10 shows the influence of a parameter. The maximum amplitudes decrease for increasing a parameter. As in the
previous section, results in this section are also valid in the subcritical velocity regimes.

5. Concluding remarks

A general solution procedure is developed for vibrations of continuous systems with cubic nonlinearities. The arbitrary
linear and cubic operators with spatial and time derivatives allow to generalize a wide range class of problems including
gyroscopic systems. The approximate solutions, the amplitude and phase modulation equations are derived in terms of the
operators. Method of multiple scales is employed in the analysis. The formalism developed is applied to two different
problems namely the axially moving Euler–Bernoulli beam and the axially moving viscoelastic beam. Natural frequencies
and frequency response curves are presented and variations of the curves with respect to the dimensionless parameters are
discussed. The algorithm developed may be applied to many more problems in nonlinear vibrations of continuous systems.
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