Journal of Sound and Vibration 325 (2009) 907-922

Contents lists available at ScienceDirect

Journal of Sound and Vibration

journal homepage: www.elsevier.com/locate/jsvi i

Dynamic response analysis of suspended beams subjected to moving
vehicles and multiple support excitations

J.D. Yau

Department of Architecture, Tamkang University, Taipei 10620, Taiwan

ARTICLE INFO ABSTRACT

Article history: For dynamic analysis of a suspended beam subject to the simultaneous action of moving
Received 2 September 2007 oscillators and multiple support motions, we need to deal with nonlinear interaction
Received in revised form problems in conjunction with time-dependent boundary conditions. In this study, the

24 December 2007 total response of the suspended beam is decomposed into two parts: the pseudo-static
Accepted 4 April 2009

. - response and the inertia-dynamic component. Then, the pseudo-static displacement is

Handling Editor: L.G. Tham . X .

Available online 17 May 2009 analytically obtained by exerting the support movements on the suspended beam
statically and the governing equations in terms of the inertia-dynamic component as
well as moving oscillators are transformed into a set of coupled generalized equations
by Galerkin’s method. Instead of solving the coupled equations containing pseudo-static
support excitations and moving oscillators, this study treats all the nonlinear coupled
terms as pseudo forces and solves the decoupled equations using the Newmark method
with an incremental-iterative approach. Numerical investigations demonstrate that the
present solution technique is available in dealing with the vehicle/bridge interaction
problem involving multiple support motions, and that appropriate adjustments of cable
sag ratios subject to the condition of identical bridge frequencies are beneficial for
mitigating the earthquake-induced vibration of suspended bridge/vehicle coupling
system.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Concerning seismic wave propagation effect in subsoil, the dynamic response analysis of long-span structures like
suspension bridges needs to deal with the time-dependent boundary problem involving multiple support seismic inputs.
For earthquake-induced response analysis of suspension bridges [1-5], an analytical model based on linearized deflection
theory [6,7] was usually adopted to formulate the governing equations of vertical vibration of suspended bridges. One of
concrete indications in these studies is that the multiple support seismic excitations, especially for the longitudinal ground
motions along bridge span, have to be taken into account for the earthquake-induced vertical vibration of suspension
bridges. On the other hand, many researchers have studied the vehicle-induced vibration of suspension bridges in recent
years [8-12]. A key finding in these researches revealed that the cable tensions of short or medium span suspension bridges
caused by moving loads would be amplified significantly.

For train-induced vibration of rail bridges, Yang et al. [13,14] presented a useful resonant condition to predict or keep
away from the resonant speeds for high-speed trains passing over bridges. Concerning the stability problem of a train
moving over a bridge shaken by earthquakes, Yang et al.’s book [13] pointed out that the presence of vertical ground
excitations would affect drastically the stability of the train, especially for near resonant excitations. Xia et al. [15] revealed
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that for a train traveling over a continuous seven-span viaduct shaken by earthquakes, lack of considering seismic traveling
wave effect might reduce the running safety of the train.

Of the large amount of literatures devoted to vibrations of long-span bridges, relatively little research attention so far
seems to conduct the dynamic interaction response of suspension bridges to moving vehicles during earthquakes.
Generally speaking, the dynamic interaction behavior of vehicle-bridge system shaken by earthquakes is of a complicated
structure problem since it involves a time-dependent boundary vibration problem due to multiple support motions [13,15]
and the interaction dynamics of vehicle-bridge coupling system. Considering the non-uniform characteristics of
seismic wave propagation, this study intends to investigate the dynamic interaction response of a suspension bridge
subject to train loadings during earthquakes. The coupled equations of motion for vehicle-bridge system are formu-
lated using a dynamic interaction model of a single-span suspended beam carrying multiple moving oscillators. To
conduct this time-dependent boundary and coupling vibration problem, the total response of the suspended beam is
decomposed into two parts: the pseudo-static and inertia-dynamic components [ 16-18]. Then, a closed form solution for the
pseudo-static displacement is presented, while the inertia-dynamic deflection is expressed as a set of generalized
coordinates in conjunction with admissible shape functions and solved using Galerkin’s method. Instead of solving
the coupled equations for the generalized system containing pseudo-static support excitations and moving oscillators,
this study treats all the nonlinear coupled terms as pseudo forces and solves the decoupled equations using the
Newmark method with an incremental-iterative procedure involving three phases: predictor, corrector, and equilibrium-
checking.

According to the present studies, the inclusion of seismic ground motions will totally amplify both the acceleration
responses of suspended beams and moving oscillators, especially for the non-uniform characteristics of seismic wave
included. Despite of this fact, a parametric investigation indicates that appropriate adjustments of suspended cables by
increasing cable sag but reducing cable stiffness are available in mitigating the acceleration response of the vehicle-bridge
system during earthquakes.

2. Formulation

The dynamic behavior of suspension bridges investigated herein is limited to the vertical vibration of a single-span
suspended beam with hinged supports. Based on the deflection theory [6,7,19], which can take into account the additional
cable tension of a suspended beam due to live loads, appreciable simplifications for the suspended beam and moving trains
over it are outlined as follows:

(1) The stiffening girder is modeled as a linear elastic Bernoulli-Euler beam with uniform cross section.

(2) As shown in Fig. 1, the bridge towers supporting the stiffening girder and suspension cable are assumed so rigid that
their deformations during vibrations are negligible.

(3) The cable sag is adjustable between the suspension cable and bridge deck.

(4) The suspension cable is assumed to be capable of carrying all the dead loads of the stiffening girder with the
aid of inextensible vertical hangers so that the suspended beam is in an un-stressed state before the action of live
loads.

(5) The train loadings running over the suspended beam are modeled as a sequence of equidistant moving oscillators with
identical properties.
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Fig. 1. A suspended beam subject to train loadings and multiple support motions.
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2.1. Governing equations of motion

Consider a parabolic cable under a uniform dead load w alone, the cable sag function y(x) and the horizontal component
T in the tensile cable can be expressed as [20]

Y(x) = 4yolx/L — (x/L)%], (1)
—-w WL2
T=3 =% 2)

where y, is the cable sag at mid-span and L the span length. Based on the deflection theory of small deformations for
suspension bridges [6,7,19], the equation of vertical vibration is

mil + ctt + Elu"”" — (T + AT)Y" +u”) = w + p(x, 1), 3)

where (-) = 0(-)/0x, () = 0(-)/0t, m is the mass of the beam and cable per unit length along x-axis, ¢ the damping coefficient,
u(x,t) the vertical deflection of the beam, EI the flexural rigidity of the beam, T the horizontal component in the initial cable
tension (due to dead loads), AT the additional horizontal component in cable force due to external loads, u(x,t) the beam
deflection, and p(x,t) the loading function of moving oscillators. Consider the multiple seismic support movements depicted
in Fig. 1, the time-dependent boundary conditions for the suspended beam with hinged ends are given as follows:

u(0,t) = ug(t), u(L,t)=ug(),
EIW’(0,t) = ElW"(L, t) = 0,

ux(0,8) = dyo(t),  ux(L,t) = dy (D), (4)
where (ug, uy) and (dyo, dx.) represent the vertical and horizontal support movements at the left and right bridge towers,
respectively. By considering the support movements, the additional horizontal component AT for cable force can be
described as [20]

_ EcAc
AT ==

L EcA 4 8yo [t
ey + [y x| =52 [ d — dio) = 0o +up + 22 [Tuds], (5)
Jo Le L L= Jo

- [ (@) - [ ()

in which E. is the elastic modulus of the cable, A. the area of the cable, and L, the effective length of the cable. Substituting
Egs. (1), (2) and (5) into Eq. (3) yields the following equation of motion for a suspended beam subject to the simultaneous
action of moving oscillators and seismic support inputs

L L
mil + cu + Elu""" — (T + ATsu” + (o0 + xu”) /0 udx = p(x, t) + %[uo +up] — Kk(dyy — dyo), (7)
where
E:A 4
ATs = zcc {(de —dyo) — %(Uo + UL)}‘ (8a)
_ 8yo 2 EcAc _ 8¥0)\ EcAc
= () i = () (85

Since the increment of horizontal component of cable force in Eq. (5) is dependent on both the beam deflection u(x,t) and
support movements (ug, Uy, dy;, dyg), the governing equation of motion in Eq. (7) is nonlinear in nature. As can be seen from
Eq. (7), the coefficient o + xu” in Eq. (7), generally, can be approximated as o + ku” = ;c(8y0/L2 +u”) ~ o based on the
deflection theory of small amplitudes, i.e., [u”’|<|y’| = 8y0/L2. As a result, this approximation will be adopted in the
following formulation.

Fig. 1 depicts a sequence of identical oscillators with equal intervals d is crossing a single-span suspended beam at
constant speed v. In this study, each of the oscillators is composed of a lumped mass supported by a spring-dashpot
system, which is used to model either the front or rear half of a train car. Let the oscillator model has the following
properties: m,, is the mass of wheel-set, m, the lumped mass, ¢, the damping coefficient, and k, the stiffness coefficient.
The loading function p(x,t) is given as [7,13,14]:

N
Pty =Y (P — myily, — mwil)3(x — x[H(t — tg — ) — H(t — tg — ty — L/v), (9a)
k=1

mvuvk + Cl/uvk + kvuvk :ka' (9Db)
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(90)

ky[uxp, t) + p(xp)] + cyli(Xy, £),  O<xp(= v(t — tg — )<L
ky[ug’k(t) + 'V(Xk)] + Cul'lg’k(t), Xy < 0, Xj > L

in which, P = —(m,+m,,)g is the lumped weight of a moving oscillator, g the gravity acceleration, 6 the Dirac’s delta
function, H(t) the unit step function, k = 1,2,3,...,Nth moving load on the beam, ¢, the time lag for the first oscillator
entering the suspension bridge from the left hand side, t, = (k—1)d/v the arrival time of the kth load into the beam, u,, the
vertical displacement of the kth lumped mass, f,, the interaction force between the beam and the kth wheel mass, ugy the
vertical ground displacement under the kth load, y(x;) the track irregularity (vertical profile), and x, the position of the kth
load along the rail line, as defined in Eq. (9c). Here, x; <O represents the kth load is not yet entering the bridge, 0<x;, (=
v(t — tg — t})) <L is running over the bridge deck, and x; >L has left the bridge.

2.2. Method of solution

As indicated in Egs. (4), (7), and (9), they are a set of partial integro-differential equation associated with time-
dependent boundary conditions and oscillator-related coupling terms. Let us focus on the time-dependent boundary
problem, the total deflection u(x,t) of the suspended beam can be divided into two parts: the pseudo-static displacement
U(x,t) and the inertia-dynamic deflection ug(x,t) [18], or

u(x, t) = Ux, t) + ug(x, t). (10)

Here, U(x,t) represents the beam deformation caused by the relative support displacements applied statically [15], and
ug(x,t) the inertia-dynamic deflection due to inertia effect of the beam structure [18]. By adopting this concept, substituting
Eq. (10) into Eq. (7), and discarding all the dynamic terms and external loads, the pseudo-static equation of motion in terms
of the pseudo-static displacement U(x,t) can be written as follows:
otu L ol

EI vy (T+AT5)—+oc/ de:T[u0+uL]—K(de—dx0). (11)
And the pseudo-static response U(x,t) in Eq. (11) has to satisfy the following time-dependent boundary conditions in Egs. (4)
[16-18]:

U(O, t) = U, U(L, f) =uy,
EIU"(0, t) = EIU"(L,t) = 0. (12)

Furthermore, introducing Egs. (10) and (11) into Eq. (7) and removing the inertia force term of (mU + cU) to the right hand
side of Eq. (7), the equation of motion for a suspended beam is converted into

L .. .
mily + cttg + Eluj” — (T + ATs)uj; + oc/ ugdx = p(x,t) — (mU + cU). (13)
0

Since the pseudo-static displacement U(x,t) has satisfied the time-dependent boundary conditions shown in Eqgs. (12),
introducing Egs. (10) and (12) into Egs. (4) yields the following homogeneous boundary conditions for the inertia-dynamic
deflection ug4(x,t):

ud(O, t) = Ud(L, =0
Elu}(0,t) = Eluj(L,t) = 0. (14)
Obviously, once the pseudo-static displacement U(x,t) is known, the response of inertia-dynamic deflection u4(x,t) in Eq. (13)

associated with the homogeneous boundary conditions in Egs. (14) can be solved by Galerkin’s method and computed by
the Newmark method in the time domain [13,21].

3. Solutions of pseudo-static and inertia-dynamic components

In this section, a closed form solution of pseudo-static deflection U(x,t) for the suspended beam undergoing differential
support movements will be first presented. Then, —(mU + cU) in Eq. (13) can be regarded as equivalent dynamic forces
acting on the suspended beam.

3.1. Solution of the pseudo-static displacement

To solve the integro-differential equation shown in Eq. (11), one can transform it into the following non-homogenous
differential equation in terms of U(x,t) as

U 262U(x ol
ox4 ox2 2El

o+ ) 15 @ — o)~ % [ U1,
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2_T+AT3
2= (15)

Then, the general solution for this fourth-order differential equation is expressed as

U(x,t) = dg cosh Ax +d; sinh Ax+cg + ¢ )—<+L /Lde—Eu +u +E(d —dy) (16)
,0)=dp A 1 s 0t Tt 3T ATy \ o 5o +ul+ - (dy — dyo) |-
And the exact solution can be solved as
_ X [Ldy — dyo)] Bx, B)
U, t) = [UO + (U UO)[] + {T} v (17)
2 a
14 2°x(x —L) cosh i(x —L/2) for T + ATs>0
2 cosh(AL/2)
P = 12xx—L) cos(Al(x —L/2)) (182)
1- 5 ~Ccos(IL/2) for T + ATs <0,
2 (912
(T+ ATs)(L? (L) +tar1h(AL/2)7 ; for T4+ AT, >0
L0 VE 12 7L)2 (18b)
PO AT @an? ek ool o
ol3 12 |2IL/2 s

The pseudo-static displacement shown in Eq. (17) reveals that the first term represents the rigid body displacement due to
vertical support movements, and the second term means the pseudo-static natural deformation caused by the relative
horizontal support movements. It is emphasized that the non-uniform nature of horizontal ground motion is of importance
to earthquake-induced vibration of suspension bridges since it is usually assumed as uniform ground motion in seismic
design.

3.2. Solution of inertia-dynamic deflection

Since the closed form solution of the pseudo-static deflection U(x,t) has been presented in Eq. (17), the inertia-dynamic
deflection ug4(x,t) in Eq. (13) can be carried out by Galerkin’s method. Thus the virtual work equation of Eq. (17) is expressed
as [10]:

L
/0 (mily + ciig + Elu)” — (T + ATs)uj)dug dx

L L L
+ <oc/0 Uy dx) /0 ougdx = /0 [p(x, t) — (mU + cUyloug dx. (19)

According to the homogeneous boundary conditions shown in Eqs. (14), the inertia-dynamic deflection (uy) can be
approximated by [7,10]
. nmX
UgX.0) =y _ qn() sin -, (20)

n=1

where g,(t) means the generalized coordinate associated with the nth assumed mode of the suspended beam. Substituting
Eqgs. (17) and (20) into Eq. (19) yields the following equation of motion for the nth generalized system:

. . nmy\2 [ mmy 2 N
miy, + cq, + (Tn) {(%) El+ (T + ATS)} Gn + ITn + ) Fyy(con, v, 1)
k=1

N
2 . .
> Fi(@n.v, t)} — o Im Yy + c ), (1)
k=1

2L 1
Iy = W“ — cos nm) L;E(l — cos kn)qk}, (22a)

_ / 4
Ug — Uy €os N7 + (cos nmw — 1)L(d’§y 7d"0) (1 (AIEX/Z/?I) )2> forT+ ATs>0
0L + nmn
Th = Lidy —d J|L/nmyt ’ (22b)
Ug — Uy €os nx + (cos nw — 1) ( %Ly_y XO)<1 ( (}|)TZ/TE) )2> forT + ATs<0
0x —(|4|L/n7
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where the generalized forces of Fy(wn, v,t) and F,,(tn, v, t) with respect to the kth sprung mass unit are

2p
Fr(wn,v,t) = I Yn(won, t),

2. N
Fyr(@on, v, 6) = 7 Myl g + mwii(x, D)W (w@n, b),

Yn(Ton, t) = sinwn(t — tg — t)[H(t — tg — ty) — H(t — tg — tg — L/v)], (23a—c)

and wn(= nnv/L). Let us consider a special case of uniform support motion, i.e., ug=u;, do=d;, or U(x,t) = ug, the
generalized equation of motion in Eq. (21) is reduced to

(1) n=odd,
. . nmy\ 2 [ /nmy 2 8al dx
mqn + cq, + (T) {(T) El+(T+ ATs,syc)} qn + nZm Lg; ?}
N N 4 ‘
+ ;(Fyk(wn, v,t) + Fy(oon, v,t) = L; Fy(wn, v, t)] - ﬁ[muo + cug], (24a)
(2) n=even,
. . nm\ 2 [ /nmy 2 N N
miy + ey + () [(T) El+ (T + ATs,syc)} Gn+ > Fup@n, v, = >~ Fi(@n. v, ), (24b)
k=1 k=1
8yol
ATs,syc = —EcAC {OLO . (24C)
C

Generally speaking, as a suspended beam is built far from the hypocenter of earthquakes, the additional cable force ATs syc
in Eq. (24c) induced by uniform vertical support motion is relatively small in comparison with the initial cable tension T
due to dead loads, i.e., T 4+ ATssyc ~ T. It indicates that the symmetric modes of inertia-dynamic deflection in Eq. (24a) will
be excited by uniform support motion.

4. Applications of incremental-iterative approach

As shown in Egs. (21) and (22), the generalized equations for all the generalized coordinates are coupled due to the
presence of the coupled terms, such as IT; and Z;:’ZlF,,k(wn,v, t), in which the inertial forces of F,(con, v, t) are time-
dependent on the location of the kth oscillator traveling over the suspended beam. Obviously, the computational efforts
required for solving such a set of time-dependent coupled differential equations are tremendous in CPU time consuming
for updating the structural matrices at each time step. This is especially true for the acceleration response, rather than the
displacement response, is of concern in high speed rail bridges, for which the contribution of higher modes has to be
included [24-27].

For the present purposes, let us treat the time-dependent terms of (nn/L)ZATS(t), Zf{":]F,,k(wn, v,t), and I1, in Eq. (21)
as pseudo forces, remove them to the right hand side of Eq. (21), and recast the differential equations of the suspended
beam/oscillator coupling system as:

My + cqn + knqn = pp(t) — I'n(t),

mvuvk + Cvuvk + kquk :kav (25)
where
nm\2 [ /nmy 2
o= (5]
N 2 . .
pu(t) = {Z Fy(won, v, t)} — o Im Yy + cTa), (26b)
k=1
nm\ 2 N
I'n(t) = (T) AT + In + > Fyp(@n, v, 1), (26¢)

k=1
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and k, is the generalized stiffness associated with the nth generalized system, p,(t) the generalized force, and —I'x(t) the
pseudo-forces acting on the nth generalized system. Apparently, the original time-dependent coupled equations in Eq. (21)
have been converted to an uncoupled equation associated with the nth generalized force p,(t) and pseudo force —I'.

To perform nonlinear time-history procedure, the equations of motion in Egs. (25) are first discretized by the Newmark
method [21], and then the nth equivalent stiffness equation associated with the kth oscillator equation for the incremental
step from time t to t + At is expressed as

Kneq x Adniac = APntiac
Kveq x Aty ryne = A i rrars (27)

where the equivalent stiffness of (Kyeq, Kveq) and the load increments of (App¢yar A pkriar) are, respectively, given
as follows:

Kneq = agm + ayc + kn, Kyeq = agmy + a;cy + ky, (28a,b)
Apneiac = Presac — Unerae + R, (28¢)

Rnt = knqp e — m(axqn; + 3Gy ) — €495 + A5qn ), (28d)
Afpkesae =Forerae — Toke (28e)

Tuke = [Rollygr — Mo (@l e + a3ilyg ) — Co(Aqllypr + asily )] (28f)

and (Aqp rqar AUy ) are the displacement increments generated at the incremental step, and (Rp¢, 1, ;) the effective
resistant forces. In respect to the total inertia-dynamic responses of (qp At dnctarGnerar) for the nth generalized
coordinate and (Uyk r1 Ar» Upk r+At» Uk r+-A¢) TOT the kth sprung mass at time ¢ 4 At, they are, respectively, expressed as [10]

AniyAt = Ant + Agp, Uk trAr = Upkr + Auyy,

Unevar = ne +a60ne + 070n i Ars Upkerar = Ui + A6llyke + A7l e Ar

qn,t+At = apAqy — a2‘7n,t — a3qnt, uvk,HAt = apAuy, — aplUygr — a3ﬁvk,t' (29)
with the following coefficients [21]:
1 Y 1 1 Y
Qh=—"—=, O(l=5">3, O =5—3, G3=55—-1, aqu=5-1,
0= 5 A2 NTRAC TR A BT2p 4=p
as = Azt (% - 2), 4 =(1—PAL a7 =7- At (30)

and f# = 0.25 and y = 0.5. The foregoing procedure can be modified to include the feature of iteration for removing the
unbalanced forces as follows [10]:

Kneq x Aqn AL = Apn t+AL?

. i1

Kv.eq x Ay e e = Mikirar (31)
where (Aq; t+At’Au£/k r+Ap) Tepresent the displacement increments of the nth generalized displacement (qﬁ,, t+At) and the
vertical displacement (uvk HAt) of the kth sprung mass at the ith iteration from time t to t + At, and (Apn HAE Afﬁ,lprm) are
interpreted as the unbalanced forces during the following iterative steps. The unbalanced force Apn AL is equal to the

difference between the external force p;, , A, and the effective internal forces f] n} ¢ for the n-th generalized system of the
suspended beam at time t + At, i.e.,

i1
Apn’HAt = Pnt+At — fn AL fn AL = n t+At + Rn AL (32)
i1 o1 i1 o1 .
i1 knqn trAt — @200 e ar + 0300 e ad) — €45 e ar + 050 epar) for i=1 (33)
nt+At — _ ~i—1 si—1 ;
knqn,prm + Mip ey A + Cln ey At for i>1,

and the unbalanced force Aka ‘t1+A¢ for the kth sprung mass at time ¢ + At is equal to

i1 i i1
Afpktsar = Fokrrar = TokesAr
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(i1 i1 Si1 i1 .
k,,uvk erar — Mu(@Upk ey e + 38k A)) — Co(@allpp o e + A5l ap) fOri=1

Merac =\ 4 i1 i g (34)
Uuuk trar T Moty epar + Collypr ar ori>

In this paper, an incremental-iterative procedure is used to solve the equivalent stiffness equations shown in Egs. (31),

which involves three major phases: predictor, corrector and equilibrium-checking [22,23]. The predictor is concerned with

i1
solution of the structural response increments of (Aqn t+At,Auvk AL for given loadings (Apn t+At’AfVI<,t+At) from the
equivalent structural stiffness equations. The corrector phase relates to recovery of the internal resistant forces
-1 i1 ; ; i i i o
FrtraesT kot A from the dlsplacement increments of (Aqn t+At’Auvk tAd) and the total responses of (@ 4 A Oneacs

qn t+Ar) and (uvk AL Wyper4 AL L il .+ a¢) Made available in the predictor. In this phase, each of the pseudo force Fn AL

containing I1, and Eklevk(wn, v, t), is updated in an iterative way. In the equilibrium-checking phase, the effective internal

forces of (fn trAe T ) computed from the corrector phase is compared with the external loads (pp ri At fukrrar) ID

ri-1
vk,t+A

Egs. (28), the difference being regarded as the unbalanced forces (Api- Afﬁ;} +At)- Whenever the unbalanced forces are

n, t+At’
greater than preset tolerances, another iteration involving the three phases should be conducted.

5. Strategy for incremental-iterative dynamic analysis

In performing the dynamic response analysis of structures containing seismic ground motions, two sets of structure
responses have to be computed each for the pseudo-static response and for the inertia-dynamic response. The incremental-
iterative procedure of nonlinear dynamic analysis for vehicle-bridge system shaken by earthquakes is summarized as follows:

(1) Treat the pseudo-static displacement U(x,t) derived in Section 3.1 as an exciting source to the equivalent dynamic force
(—mU — cU) to act on the beam-oscillator coupling system (see Section 3.2).

(2) Transform the governing differential equation in Eq. (13) into a set of coupled equations of generalized system as
Eq. (21) and then remove the coupled terms to the right hand side of Eq. (21) to form a set of uncoupled equations of
motion (see Eq. (25)).

(3) Discretize each of the uncoupled equations into an equivalent stiffness equations using Newmark’s method
(see Eq. (27)).

(4) Perform the iterative procedure proposed in Section 4 to compute the inertia-dynamic response of the suspended beam.

(5) Update the total responses of the suspended beam by combining the pseudo-static and inertia-dynamic components of
the beam response by using Eq. (10).

(6) Compute the dynamic response of moving oscillators at each iteration.

(7) Check the unbalanced forces to reach preset tolerances. As the root mean square of the sum of the generalized
unbalanced forces is larger than the preset tolerances, go to step (4) for preceding the next iteration to remove the
unbalanced forces.

(8) Repeat the steps (4)-(7) for other time instants.

6. Numerical investigations

Fig. 1 shows a series of moving oscillators with equal intervals d are crossing a single-span suspended beam at constant
speed v. The properties of the suspended beam and sprung mass unit are listed in Tables 1 and 2, respectively. As shown in
Table 1, the first natural frequency (£2;) of anti-symmetric mode of the suspended beam is lower than the second one (£2,)
of symmetric bending mode. It means the cable tension has developed a strengthening effect on the first symmetric
bending mode of the suspended beam.

To take into account the random nature and characteristics of track irregularity that can amplify the vibration response
of a moving train, the following power spectrum density (PSD) function for track class 6 designed by Federal Railroad
Administration (USA) [13] is given to simulate the vertical profile of track geometry variations

Ay Q2
(@ + QH(Q? + Q%)

S(Q) =

Table 1
Properties and natural frequencies of the suspended beam.

L (m) EI (kNm?) EAc (kN) m (t/m) ¢ (kN's/m/m) Yo (m) [yo/L] EAd/L (kN/m) Q; (Hz) Q, (Hz)

125 2.3 x 108 6.0 x 107 16 461 12.5 [0.10] 4.437 x 10° 1.55 173
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Table 2
Properties of moving oscillator and resonant speeds.
N d (m) P (kN) my (t) my (t) ¢y (KN's/m) ky (kN/m) Vres1 (km/h) Vres2 (km/h)
16 27 340 4.7 30.0 5.2 157 152 168
3.0 . | . | . | . | .

Irregularity (cm)
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Y (Xk)
Fig. 2. Track irregularity (vertical profile).
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Fig. 3. Test of convergence.

where Q = spatial frequency, and A, (=15x10"%m), Q; (= 2.06 x 10~%rad/m), and Q. ( = 0.825rad/m) are relevant
parameters. Fig. 2 shows the vertical profile of track irregularity for the simulation of track geometry variations in this
study.

6.1. Resonance of acceleration response

As the passage frequency ( = v/d) of train loadings matches any of natural frequencies (€;) of a bridge, the resonant
response of the bridge will be developed [24-26], and the resonant speed of the train is denoted as vy ; = ©;d [25,26]. This
is so called resonance phenomenon for train-induced response of railway bridges [13,14]. To demonstrate the resonance
phenomenon of a suspended beam induced by moving loads with identical intervals, let the moving oscillators pass
through the suspended beam with the first two resonant speeds, i.e., Vies 1 = 27d =41.9m/s ( = 152km/h) and vies; =
Q,d =46.6m/s ( = 168 km/h), respectively. Generally speaking, the acceleration response of vehicle-bridge system is
usually used to evaluate the running safety of high speed trains over railway bridges [24-26]. In order to verify that a
sufficient number of modes of vibration in Eq. (20) has been used in the analysis, we first compute the acceleration
response at the first quarter-point of the main beam under a series of moving oscillators with the first resonant speed using
either 2, 8, or 16 modes. As can be seen from Fig. 3, the use of 16 modes is considered sufficient. For this reason, the same
number of modes will be used in all the examples to follow.
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Fig. 4. Time history responses of beam acceleration.
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Fig. 5. amax—v-x/L plot of the suspended beam due to multiple moving oscillators.

In addition, the time history responses of acceleration at the positions of mid-span and one quarter of the suspended
beam have been depicted in Fig. 4 as well. As was mentioned earlier, both the acceleration responses are built up as there
are more moving oscillators passing through the beam. But the resonant response at the mid-span is significantly smaller
than that at one-quarter point. One reason for this is that as a series of moving loads, with an equal interval (d = 27 m) far
smaller than the bridge span length (L = 125m), pass through the suspension bridge, the simultaneous presence of
multiple loads moving over the bridge deck may exert a suppression action on the first symmetric mode (i.e., the second
bending mode), which may cause the mid-span acceleration of the bridge deck to be less severe compared with the other
resonant case involving the anti-symmetric mode.

For the purpose of illustration, a three-dimensional (3D) plot for the maximum acceleration response (amax) along the
beam span (x/L) against moving speed (v) for the vibrating beam has been drawn in Fig. 5. Such a 3D plot will be called
amax—V—X/L plot in the following examples. As can be seen from the two resonant peaks, the maximum acceleration
response of the suspended beam at the speed of 152 km/h is governed by the anti-symmetrical modes that have been
excited. Moreover, the maximum vertical accelerations of sprung mass units traveling over the suspended beam with
various speeds have been plotted in Fig. 6. Such a plot is called a,ma.x—v plot. The maximum acceleration response of the
moving oscillators slightly reaches its maximum value in the vicinity of 152 km/h due to the resonant response of the
suspended beam.

6.2. Effect of uniform support motion

To investigate the influence of seismic ground motion on train-induced vibration of suspension bridges, the far-field
ground motions of TAPOO3 station recorded at Taipei during the 1999 Chi-Chi Earthquake in Taiwan [13] are used to
simulate the seismic support inputs. The histograms of ground acceleration, containing both the NS horizontal and vertical
components, have been plotted in Figs. 7(a) and (b), respectively. As can be seen from the ground acceleration records
depicted in Fig. 7(a), the intensive zone of vertical ground acceleration occurs early compared to that of horizontal



J.D. Yau / Journal of Sound and Vibration 325 (2009) 907-922 917

16 I I I I I I I
124 with non-uniform support motions
i‘: E L
s
= 0.8 - -
g %s
G-} 4 with uniform support motion L
0.4 -
0.0 T | 1 L B LI LI
0.0 40.0 80.0 120.0 160.0  200.0  240.0  280.0
Speed (km/h)
Fig. 6. Maximum acceleration of moving sprung masses.
(a)
025 . 1 . 1 .
o
<
E
o) J L
Q
B
[
g
< 0.00 44 o
Z
o
=
=
2 E L
&b
S
3
5
2 -0.25 T T T T -
0.0 25.0 50.0 75.0
Time (s)
(b)
N\’; 1.20 . I . I .
E
o
S 0.60 -
<
3 | L
€
2 000 _..MMMW B
=]
=
g J L
=
= -0.60 -
s
=
g J L
N
b
:E -1.20 - T - T -
0.0 25.0 50.0 75.0
Time (s)

Fig. 7. Histograms of ground acceleration of TAPOO3 station: (a) vertical and (b) NS horizontal.

component in Fig. 7(b) due to the fact that the primarily wave (P-wave) produced by earthquakes travels faster than the
shear one (S-wave).

Let us consider the special case of uniform support motion, i.e., ug = u;, do = d;, with various time lags of t, for the
sprung mass units entering the suspended beam at the first resonant speed of v..s; (= 152 km/h), Fig. 8 shows the
maximum acceleration amplitude in a,,.x—x/L plot of the beam will occur at the critical time lag of 12 s, which is just inside
the intensive zone of vertical ground motions depicted in Fig. 7(a). This critical time of 12's, therefore, will be used as the
time lag for the moving oscillators to start entering the suspended beam in this example. As shown in the amax—v—x/L
plot of Fig. 9 and the corresponding a, m.x—v plot in Fig. 6, the inclusion of uniform ground motions can totally amplify both
the acceleration amplitudes of the suspended beam and sprung masses. Moreover, from the acceleration amplitudes
plotted in Fig. 9, most of the symmetric modes are excited by the uniform ground support motion, as was concluded in
Section 3.2.
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Fig. 9. Effect of vertical uniform support motion on amax-v-x/L plot.

6.3. Effect of multiple support motions

Due to soil conditions at local construction site of bridge foundations depicted in Fig. 1, let us assume that the intensities
of seismic ground inputs transmitting into the right bridge support have comparative attenuation, say, u; = 0.8uyg,
d; = 0.7dy, compared to the left one. Thus, the suspended beam will undergo the action of multiple support movements
during this earthquake excitation. As can be seen, the intensive zone of horizontal ground movements appears nearby 25s.
For this reason, this critical time lag is adopted for the moving oscillators to start entering the suspended beam in the
following examples. Considering the moving effect of the multiple oscillators, Fig. 10 shows the ay,x—v—x/L plot for the
suspended beam shaken by the present seismic excitations. By comparing the maximum acceleration amplitudes in Fig. 9
with those in Fig. 10, the amplification effect of multiple support excitations involving horizontal and vertical components
is rather significant on the response of the suspended beam. Especially in the vicinity of three-quarters span of the
suspended beam at the first resonant speed v..s;, there exists a noticeable peak acceleration amplitude ( = 0.34g).
Moreover, the corresponding a,max—? plot has been plotted in Fig. 6 as well, from which the maximum acceleration
responses of sprung masses are totally amplified, especially at the lower speeds (<50 km/h). It means that as a series of
sprung masses pass through a suspended beam with lower speeds, they will require more time to cross the long-span beam
so that they have more chance to experience the excessive vibration induced by the intensively horizontal support
excitations.

6.4. Response reduction of suspended beams by adjusting cable sags

As was expressed in Eq. (21), the generalized stiffness containing (T + ATs)(nn/L)? and IT, strongly depends on both the
cable sag ratio (yo/L) and the cable stiffness parameter (E.A/L:). Besides, an important conclusion from Egs. (7) and (8)
indicates that reducing the cable stiffness parameter may relieve the horizontal component (T + ATs) of cable tension due
to differential support movements, and that increasing the cable sag ratio (yo/L) can strengthen the bending stiffness of the
suspended beam. This finding gives us a hint that we can appropriately adjust both the sag ratio (yg/L) and cable stiffness
(EAAJ/L.) to diminish the seismic ground excitation into the suspended beam. For this reason, let us consider the following
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Fig. 10. Effect of multiple support motions on a.x—v-x/L plot.

Table 3
Properties and natural frequencies of new suspended beams.

L (m)

EI (kN m?)

EAc (kN) m (t/m) ¢ (kN's/m/m) Yo (m) [yo/L] EAd/Le (KN/m) @, (Hz) Q, (Hz)
125 2.3 %108 2.95 x 107 16 461 18.75 [0.15] 1.981 x 10° 1.55 1.73
125 2.3 x 108 1.88 x 107 16 4.61 25 [0.20] 1.115 x 10° 1.55 1.73
125 23x108 1.4 x 107 16 461 31.25 [0.25] 7.143 x 10* 1.55 1.73
0.4 . | . | . | . |
| ¥o/L =0.10 |
* /L =0.15
03- Yo B
@ »/L=020
= 7 mrimimnm Y /L =0.25 B
vé 0.2 -
BE i L
0.13g
0.1 g AR =
0.11g
I\
0.0 e S
0.0 0.2 0.4 0.6 0.8 1.0

x/L

Fig. 11. Effect of cable sag ratios on amax—X/L plot (without earthquake).

condition for a new suspended beam with adjustable cable sag that its first two frequencies have to remain identical with
those of the initial one. By this requirement, Table 3 lists the sectional properties of suspension cables for the new
suspended beam with three types of cable sags. Let the moving oscillators transverse each of the new suspended beams
given in Table 3 with the first resonant speed of v,es; ( = 152 km/h), respectively. The corresponding ama.x—x/L plots of these
suspended beams have been drawn in Fig. 11. The results show that the variations of acceleration amplitude are limited in a
quite small range even though the cable sag ratio (yo/L) reaches a maximum value of 0.25.

Next, let the multiple seismic support inputs used in Section 6.3 shake the new suspended beams. Consider the first
resonant speed of V.1 ( = 152 km/h), the corresponding aq,.x—x/L plots and a, max—V plots have been depicted in Figs. 12
and 13, respectively. Obviously, under the condition of identical frequencies for the suspended beams, the increase of cable
sag ratios (yg/L) is beneficial to suppressing both the maximum acceleration of the beam/oscillator system.

6.5. Effects of seismic wave propagation

Let us assume that the P-wave velocity for vertical support excitation is 500 m/s, and the S-wave velocity 100 m/s for
horizontal seismic support input. Consider the case that the arrival of seismic wave at the right bridge support is always
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behind the left one with a time delay of L/s,, (s, = seismic wave speed). Fig. 14 shows the aq.x—X/L plots for the new
suspended beams (described in Table 3) subject to the simultaneous action of the train loadings moving at Vyes;
(=152 km/h) and the present seismic ground motions. Besides, the corresponding a, max—v plots for the moving oscillators
over the new suspended beams described in Section 6.4 have been plotted in Fig. 15. Although the acceleration amplitudes
of these suspended beams are amplified significantly due to seismic wave passage effect, under the condition of identical
bridge frequencies, the increase of cable sags is available to reduce both the acceleration responses of the suspended beam/
oscillator system. From the trend of a,ma.x—v plot shown in Fig. 15, as a train crosses a suspension bridge during

earthquakes, raising the moving speed can help the vehicles experience less vertical excitations induced by the vibrating
beam.



J.D. Yau / Journal of Sound and Vibration 325 (2009) 907-922 921

7.0 . . . . . . .
| —— Y,/L=0.10

6.0 - L
| —@— =015 |

5.0 4 * Yo /L =0.20 -
1 —— /=025 T

2
a\’,lﬂﬂx (WY )
~
(=]
|

0] 'NV\\‘\\MMW
2.0 4 e |
o4+ :

T
0.0 40.0 80.0 120.0 160.0 200.0 240.0 280.0
Speed (km/h)

Fig. 15. Effect of seismic wave propagation on maximum acceleration of sprung masses.
7. Concluding remarks

Considering non-uniform characteristics of multiple support excitations, the interaction responses of a single-span
suspended beam subject to multiple moving oscillators have been carried out using a pseudo-decomposition concept. By
treating the nonlinear coupled terms as the pseudo forces, the coupled differential equations for all of the generalized
systems are first converted by Newmark’s  method to a set of equivalent stiffness equations of motion with the
generalized forces and pseudo forces. Finally, these equivalent equations are solved by the proposed incremental-iterative
procedure involving the three phases of predictor, corrector, and equilibrium-checking. From this study, the following
conclusions are reached:

1. As the passage frequency (v/d) caused by a train traveling over a bridge coincides with any of bridge frequencies,
resonance will be developed on the bridge.

2. As successive moving oscillators pass through a suspended beam at the resonant speed of the first symmetric mode, the
simultaneous presence of multiple loads over the beam may exert a suppression action on the symmetric bending mode,
which may cause the mid-span acceleration of the beam to be less severe compared with the other resonant case
involving the anti-symmetric mode.

3. From the derived pseudo-static response, non-uniform horizontal ground motions may affect the response of a
suspended beam. Such a fact is often neglected by the assumption of uniform seismic ground motion in conventional
bridge design.

4. Under the condition of identical frequencies for new suspended beams, the increase of cable sags will not produce
significant difference on the beam responses due to train loadings.

5. Although the seismic wave passage effect may totally amplify the interaction responses of the suspended beam/
oscillator coupling system, under the condition of identical bridge frequencies, appropriate adjustments by increasing
cable sags but reducing cable stiffness can help mitigate the earthquake-induced response of the train/bridge system.
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