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The Van der Pol–Mathieu equation, combining self-excitation and parametric excitation,

is analysed near and at 1:2 resonance, using the averaging method. We analytically

prove the existence of stable and unstable periodic solutions near the parametric

resonance frequency. Above a certain detuning threshold, quasiperiodic solutions arise

with basic periods of order 1 and order 1=� where � is the (small) detuning parameter.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In an early but not widely known monograph, Tondl [1] formulated the Van der Pol–Mathieu equation to model various
engineering problems. The analysis in [1] employs harmonic balance and analogue computer methods. Recently, the Van
der Pol–Mathieu equation has played an important role in various other models of dynamical systems with parametric
resonance. Momeni et al. [2] studied the dynamical behaviour of charged dust grains near parametric resonance, while
Pandey et al. [3] use the Van der Pol–Mathieu equation to model MEMS devices. The analysis in [2], however, is
mathematically deficient and does not describe all the periodic solutions and bifurcations. The analysis in [1,3] aims
at observing a number of interesting phenomena without proofs.

In the present paper, we use averaging and the second Bogoliubov theorem to obtain a more complete picture of the
dynamics in the case of small self-excitation and parametric excitation. We locate, approximate and prove the existence of
stable and unstable periodic solutions for parametric frequency near the 1:2 resonance. Interestingly, we find also stable
quasiperiodic (multifrequency) solutions on increasing the detuning of the parametric frequency.
2. Averaging

Following [2], we analyse the Van der Pol–Mathieu equation

d2x

dt2
� ða� bx2Þ

dx

dt
þo2

0ð1þ h cos gtÞx ¼ 0 (1)

where we assume a, b, h and o0 to be nonnegative. Our goal is to analyse this equation for small parameter values. We
therefore write a ¼ �a0, b ¼ �b0 and h ¼ �h0 with a0, b0, h0 2 R

þ
¼ fx 2 Rjx � 0g. Furthermore, we consider the parametric

excitation frequency to be g ¼ 2o0 þ 2d�. This way,we introduce a 2:1-resonance with a small frequency detuning,
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controlled by the detuning parameter d. We introduce a new timescale t ¼ ðo0 þ d�Þt, for which Eq. (1) transforms into

d2x

dt2
þ x ¼

�
o0
ða0 � b0x2Þ

dx

dtþ ð2d� h0o0 cos 2tÞx
� �

þ Oð�2Þ (2)

A number of aspects of this equation were discussed in [1]. As usual in averaging we introduce slowly varying quantities by

xðtÞ ¼ aðtÞ cos tþ bðtÞ sin t

dx

dt ðtÞ ¼ �aðtÞ sin tþ bðtÞ cos t (3)

with a and b varying slowly in time. This allows us to apply the averaging method discussed in [4] (for a more fundamental
treatment see [5]) to obtain

da

dt ¼
�

2o0
a0a�

h0o0

2
þ 2d

� �
b�

b0

4
ða2 þ b2

Þa

� �
þ Oð�2Þ

db

dt
¼

�
2o0

a0b�
h0o0

2
� 2d

� �
a�

b0

4
ða2 þ b2

Þb

� �
þ Oð�2Þ (4)

From this point on, we will omit the terms of order �2 since treatment up to second order has not revealed any new
phenomena; only higher precision is achieved.
3. Equilibrium points

The system of equations (4) has, next to the trivial equilibrium ða; bÞ ¼ ð0;0Þ, four nontrivial equilibrium points. If the
four equilibria are hyperbolic, according to the second Bogoliubov theorem (sometimes called ‘‘theorem for periodic
solutions by averaging’’) they correspond with periodic solutions with the same stability characteristics. The theorem can
be found in [6, Chapter 6]. We follow the formulation in [4], Theorems 11.5–6, where the proof is based on the implicit
function theorem.

Theorem. Consider the equation

_x ¼ �f ðt; xÞ þ �2gðt; x; �Þ; x 2 D � Rn; t � 0 (5)

and suppose that
(a)
 the vector functions f , g, @f=@x, @2f=@x2 and @g=@x are defined, continuous and bounded by a constant M (independent of �) in

½0;1Þ � D, 0 � � � �0;

(b)
 f ðt; xÞ and gðt; x; �Þ are T-periodic in t (T independent of �);
If p is a critical point of the averaged equation

_y ¼ �f 0
ðyÞ (6)

whereas

@f 0
ðyÞ

@y

�����
�����
y¼p

a0 (7)

then there exists a T-periodic solution of fðt; �Þ of Eq. (5) which is close to p such that lim�!0fðt; �Þ ¼ p.

In addition, if the eigenvalues of the critical point y ¼ p of the averaged Eq. (6) all have negative real parts, the corresponding

periodic solution fðt; �Þ of Eq. (5) is asymptotically stable for � sufficiently small. If one of the eigenvalues has positive real part,

fðt; �Þ is unstable.

Notice that, using the transformation (3) we can bring system (2) in the desired form (5).
Returning to the nontrivial equilibrium points, we divide these four points into two pairs, which are labelled symmetric

and antisymmetric:

a

b

� �s

�

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

b0h0o0
a0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

0o2
0

4
� 4d2

s0
@

1
A

vuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0o0

2
þ 2d

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0o0

2
� 2d

r
0
BBB@

1
CCCA (8)
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a

b

� �a

�

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

b0h0o0
a0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

0o2
0

4
� 4d2

s0
@

1
A

vuuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0o0

2
þ 2d

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0o0

2
� 2d

r
0
BBB@

1
CCCA (9)

We see that for any nontrivial equilibrium point to exist, the reality condition

2jdj �
h0o0

2
(10)

must be satisfied. Furthermore, existence of the symmetric pair demands that

C:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

0o2
0

4
� 4d2

s
� a0 (11)

This puts limits on the detuning d of the resonance frequency for the periodic solutions to exist.

4. Stability

We determine the stability of the equilibria by computing the eigenvalues at the equilibrium points.
For the trivial equilibrium point ða; bÞ ¼ ð0;0Þ, we find the associated eigenvalues l0

� to be

l0
� ¼

�
2o0
½a0 � C� (12)

We see that if reality condition (10) is not satisfied, the equilibrium point is an unstable focus. If (10) is satisfied but (11) is
not, we obtain a saddle point. If both reality conditions (10) and (11) are satisfied, the equilibrium point is an unstable node.

For the nontrivial equilibrium points, we observe that both points in each pair exhibit the same stability behaviour,
because for each pair, its position and the system of equations (4) is invariant under the double reflection ða;bÞ ! ð�a;�bÞ.
The eigenvalues for the symmetric ðls

�Þ and antisymmetric ðla
�Þ pair are

ls
� ¼

�
o0

�1� 1

2
a0 þ C

� �
(13)

la
� ¼

�
o0

�1� 1

2
a0 � C

� �
(14)

Both points of the antisymmetric pair are stable nodes, while both points of the symmetric pair are saddle points. The
behaviour of the equilibrium points is illustrated in Fig. 1. The relevant bifurcation parameter turns out to be C.

Looking at our transformation (3), it is clear that an equilibrium point of the system of equations (4) corresponds with a
periodic solution of the original equation (2). Since we have found two stable equilibrium points (the antisymmetric pair),
Fig. 1. Bifurcation analysis of the equilibrium points of the system of equation (4). The points of the symmetric pair are indicated by s� and those of the

antisymmetric pair by a�. The relevant bifurcation parameter is G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2

0o2
0=4Þ � 4d2

q
. We see that if Goa0, four nontrivial equilibrium points exist while

the origin is an unstable node. For G4a0, only two nontrivial equilibrium points exist; the origin has turned into a saddle point. We can therefore identify

a subcritical pitchfork bifurcation at G ¼ a0 and two simultaneous saddle-node bifurcations at G ¼ 0.
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we can translate this into two stable periodic solutions (limit-cycles) of Eq. (2):

xðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ða0 þ GÞ
b0h0o0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0o0

2
þ 2d

r
cos t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0o0

2
� 2d

r
sin t

 !
(15)

The behaviour of this periodic solution of x is illustrated in Fig. 2. Notice that the period is equal to 2p for our rescaled time
t; for the original time t, the period is 2p=ðo0 þ d�Þ ¼ 2p=o0ð1� d�=o0Þ þOð�2Þ. As mentioned before, the rigorous
existence of these periodic solutions follows from the second Bogoliubov theorem, see Section 3.
5. Quasiperiodic behaviour

We look for a stable manifold in the ða; bÞ-plane which is invariant under the flow of the system of equation (4). We
assume this manifold to be described by a quadric Aa2

þ 2Babþ Cb2
¼ R. This assumption turns out to be correct, with

A ¼ a2
0 � 2d

h0o0

2
� 2d

� �
; B ¼ a0

h0o0

2

C ¼ a2
0 þ 2d

h0o0

2
þ 2d

� �
; R ¼

4a0

b0
a2

0 �
h2

0o2
0

4
� 4d2

 ! !
(16)

Calculating the determinant of the coefficient matrix, we find AC � B2 ¼ ða2
0 þ 4d2

Þða2
0 � ððh

2
0o2

0=4Þ � 4d2
ÞÞ. We conclude

that the quadric is an ellipse when the reality condition (10) is not met, or when both (10) and (11) are satisfied. This is
equivalent to G 2 iRþ respectively Goa0. When condition (11) is not met ðG4a0Þ, the quadric describes a hyperbola.

Straightforward calculation shows that all nontrivial equilibrium points lie on the quadric. This means that several
asymptotic solutions in the ða; bÞ-plane can be identified:
Fig. 2. The periodic behaviour of xðtÞ, as described by Eq. (15). The function is plotted for a0 ¼ 1, b0 ¼ 1, h0 ¼ 2, o0 ¼ 2 and d ¼ 1. The sign in (15) is

chosen to be positive.

Fig. 3. The quasiperiodic behaviour of xðtÞ. The function is plotted for a0 ¼ 1, b0 ¼ 1, h0 ¼ 2, o0 ¼ 2 and d ¼ 1, while � ¼ 0:1. Since 2jdj4h0o0=2, a and b

exhibit periodic behaviour. This period of order 1=� is indicated in the figure. The initial frequency of order 1 is also visible.
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Fig
xðtÞ

Fig
poi

par

nod
When both (10) and (11) are satisfied, system (4) has four nontrivial equilibria, all of which lie on the quartic describing
an ellipse. This situation is depicted in Fig. 5. The ellipse consists of four orbits ðae; beÞ, for which limt!�1ðae; beÞ ¼

ðas; bs
Þ� and limt!1ðae; beÞ ¼ ðaa; ba

Þ�.
. 4. The Poincare section (also known as the ‘‘time ¼ 2p’’-map or stroboscopic map) based on the original system (1), of the quasiperiodic solution of

in phase space ðxðtÞ; x0ðtÞÞ. The first 13 iterations are shown. In this plot, o0 ¼ 1.

. 5. The phase plane of the system (4) has been drawn for a0 ¼ 1, b0 ¼ 1, o0 ¼ 1, h0 ¼ 1 and d ¼ 0. In this case, Goa0 so all four nontrivial equilibrium

nts exist. The quadric, which is an ellipse for these parameter values, is visible. The four nontrivial equilibrium points lie on the ellipse. For these

ameter values the origin is an unstable node, both points of the symmetric pair are saddle points and both points of the antisymmetric pair are stable

es.
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Fig
equ

elli
When only (10) is satisfied, system (4) has two nontrivial equilibria (the antisymmetric pair). Each of them is located on
a different branch of the quartic describing a hyperbola. Since both nontrivial equilibrium points are stable, they are
positive attractors so all orbits converge to one of these two equilibria. The symmetry axis between the two branches of
the hyperbola divides the ða; bÞ-plane in two stability regions in each of which one of the equilibrium points is the only
attractor. In the caption of Fig. 1 we identify the corresponding subcritical pitchfork and saddle-node bifurcations.
In addition, if the reality condition (10) is not met (no nontrivial equilibrium points exist), the quadric (which is an ellipse
in this case) contains a periodic orbit. This follows from the fact that, for these parameter values, the origin is an unstable
focus, while for a; bb1 (outside the ellipse) the direction field points inwards. Applying the Poincaré–Bendixson theorem
to the averaged system (4) yields the existence of a periodic orbit on the ellipse. This situation is depicted in Fig. 6.
The periodic orbit corresponds with a torus in the original system (2) as follows from [5, appendix C].

The period of this orbit can be found if we write the system of equation (4) in polar coordinates. Choosing
aðtÞ ¼ rðtÞ cos yðtÞ and bðtÞ ¼ rðtÞ sin yðtÞ, we obtain

dr

dt ¼
�

2o0
a0 �

h0o0

2
sin 2y

� �
r �

b0

4
r3

� �
(17)

dy
dt ¼

�
2o0

2d�
h0o0

2
cos 2y

� �
(18)

Substituting yðtÞ ¼ tanyðtÞ, we can solve Eq. (18), yieldingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dþ

h0o0

2

2d�
h0o0

2

vuuuuut tanyðtÞ ¼ tan
�

2o0
jGjðt� t0Þ þf0

� �
(19)
. 6. The phase plane of the system (4) has been drawn for a0 ¼ 1, b0 ¼ 1, o0 ¼ 1, h0 ¼ 2 and d ¼ 1. In this case, 2jdj4h0o0=2 so no nontrivial

ilibrium points exist. The quadric, which is an ellipse for these parameter values, is clearly visible. All drawn solutions converge to the periodic

ptical orbit.
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with tanf0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2dþ h0o0=2Þ=ð2d� h0o0=2Þ

p
tanyðt0Þ. Notice that, since (10) is not satisfied, jGj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2
� h2

0o2
0=4

q
. From

(19) we infer that the frequency o� of this orbit is o� ¼ �=o0jGj, so the period of the orbit is 2p=o� ¼ 2po0=�jGj.
This means that xðtÞ exhibits quasiperiodic behaviour. We can distinguish two frequencies: the first one equal to unity

for our time scale t, the second one of order �, equal to �=o0jGj. This behaviour is illustrated in Fig. 3; a Poincaré section is
depicted in Fig. 4. Notice that this behaviour only occurs when no nontrivial equilibrium points in the ða; bÞ-plane exist. This
is equivalent to the situation that the reality condition (10) is not satisfied, so that the detuning jdj is above the threshold
h0o0=4.

For our original time scale t, the new period becomes 2po0=�ðo0 þ d�ÞjGj ¼ ð2p=�jGjÞð1� d�=o0Þ þ Oð�Þ (see Figs. 5
and 6).

6. Conclusion

We studied Eq. (1) for small (order �) values of a, b and h. As in [2] we considered the main resonance frequency
g ¼ 2o0 þ 2d�, which means that we are perturbing around the 1:2 resonance. As new features with respect to [2], we
found stable periodic and stable quasi-periodic solutions. These more complicated modulations, quasiperiodic solutions,
arise if the detuning crosses a certain threshold.
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