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In this paper, the modeling and design of a multirate output feedback based discrete

sliding mode control scheme application for the vibration control of a smart flexible

Timoshenko cantilever beam for a single input single output (SISO) case by retaining the

first two dominant vibratory modes is presented. In our work, the effect of shear and

axial displacement has been considered. The algorithm uses a fast output sampling

based sliding mode control strategy that would avoid the use of switching in the control

input and hence avoids chattering. This method does not need the measurement of the

system states for feedback as it makes use of only the output samples for designing the

controller. Thus, this methodology is more practical and easy to implement. Piezo-

electric patches are bonded as sensor/actuator to the master structure at different

locations along the length of the beam. The beam structure is modeled in the state space

form using the concept of piezoelectric theory, the Timoshenko beam theory and the

FEM technique and by dividing the beam into four finite elements and placing the

piezoelectric sensor/actuator at one location as a collocated pair at a time, i.e., as surface

mounted sensor/actuator, say, at finite element position 1 or 2 or 3 or 4, thus giving rise

to four SISO models of the same smart structure plant. Controllers are designed for the

above four models of the same plant by retaining the first two dominant vibratory

modes. The performance of the smart system for higher modes (say three vibratory

modes) is also investigated. The piezo sensor/actuator pair is moved from the free end to

the fixed end of the beam. The effect of placing the sensor/actuator at various locations

along the length of the beam is observed and the conclusions are drawn for the best

performance (best model) and for the smallest magnitude of the control input required

to control the vibrations of the smart flexible beam.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of sliding model control (SMC) is based on the concept of varying the structure of the controller by changing
the state of the system in order to obtain a desired response [1]. Generally, a switching control action is used to switch
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Nomenclature

ai (i ¼ 1,2,3,4) unknown coefficients
A area of cross-section of beam element
Ap area of the piezoelectric patch
A,B,C,D state space matrices (CT): system matrix,

input matrix, output matrix, transmission
matrix

b width of the beam
bj (j ¼ 1,2,3) unknown coefficients
C* generalized damping matrix
C0, D0 lifted system matrices
d piezoelectric constant
d31 piezoelectric strain constant
D dielectric displacement
e permittivity of the medium
e31 piezoelectric stress/charge constant
E external load matrix which couples the

disturbance to the system
Eb Young’s modulus of the beam
Ef electric field
Ep Young’s modulus of piezoelectric
fext external force input
fctrl control force applied by the actuator
f�ext and f�ctrl generalized external force vector and

generalized control force vector
F state feedback gain
g principal coordinates
g31 piezoelectric stress constant
G shear modulus (modulus of rigidity)
Gc signal-conditioning device with gain
hT constant vector, which depends on actuator

characteristics
i(t) current generated by the sensor surface
I mass MI of beam element
I identity matrix
K shear coefficient
K assembled stiffness matrices (global stiff-

ness matrix)
K* generalized stiffness matrix
Kb stiffness matrix of the regular beam element

(also called as the local stiffness matrix)
Kc controller gain Kc

Kp stiffness matrix of piezoelectric element
l length of the beam
lb length of beam element
lp length of piezoelectric patch element
lp length of the piezoelectric patch
L fast output sampling feedback gain
Lj output feedback gains
m moment along the length of the beam
Mb mass matrix of the regular beam element

(also called as the local mass matrix)
Mp mass matrix of the piezoelectric element
M assembled mass matrices (global mass matrix)
M* generalized mass matrix
MA resultant moment acting on the beam

because of electric field
[MrA] mass matrix associated with translational

inertia
[MrI] mass matrix with rotary inertia
N number of subintervals

[Na]T mode shape functions for accelerations tak-
ing f into consideration

[Nw]T mode shape functions for displacement
taking f into consideration

[Ny]T mode shape functions for rotations taking f
into consideration

pT constant vector, which depends on sensor
characteristics

q vector of displacements and slopes
_q strain rate
qd distributed force along length of the beam
Q(t) charge developed on the sensor surface
r(t) external input to the system
<n n dimension space
sE compliance of the medium
t time in seconds
ta thickness of actuator
tb thickness of beam
ts thickness of sensor
T modal matrix containing the eigenvectors

representing the first two modes
T, U kinetic energy and strain energy
u axial displacement along X-axis
u(t) control input
uk, yk input and output at the kth instant
v lateral displacement along the Y-axis
Va(t) actuator voltage
Vs(t) sensor voltage
Vs sensor voltage Vs

w time dependent transverse displacement of
Z-axis

_w linear velocity
W external work done
We work done due to the external forces
x(t) state vector
_xðtÞ derivative of the state vector
X, Y and Z the 3-axis of 3D space
y(t) output of the system, i.e., the sensor output

voltage
a, b structural constants
b shear angle
g shear strain
gxz, gyz, gxy shear strains induced in the beam along the

three directions
dU, dT, dWe variations of the strain energy, kinetic

energy, work done due to the external forces
e linear strain
exx, eyy, ezz longitudinal or the tensile strains in the three

directions
y bending angle (rotation about Y-axis)
rp mass density of piezoelectric
r, rb mass density of beam
r1, r2, r3 spectral norms of the LMI
sxz, sxx shear stress, tensile stress
t sampling interval
u observability index of the system
f ratio of beam bending stiffness to shear

stiffness
F, G system matrix, input matrix discretized at

sampling interval of D s
Ft, Gt system matrix, input matrix discretized at

sampling interval of t s
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between different structures and the system state is forced to move along the chosen manifold, called the switching
manifold which determines the closed loop system behavior [2,3]. In the recent years, considerable efforts have been put
into studying the concepts of discrete sliding mode (DSM) controller design [4–6]. In the case of DSM design, the control
input is applied only at certain sampling instants and the control effort remains constant over the entire sampling period.
Moreover, when the states reach the switching surface, the subsequent control would be unable to keep the states confined
to the surface. As a result, DSM can undergo only quasi-sliding mode, i.e., the system states would approach the sliding
surface, but would generally be unable to stay on it. Thus, in general, DSM does not possess the invariance property found
in continuous time sliding mode [44,46].

Bartoszewicz [7] proposed a state feedback based control law for uncertain systems that guarantees discrete sliding
mode. Moreover, this law avoids the switching function present in other sliding mode control algorithms [6] and thus
avoids chatter. However, the above-mentioned sliding mode control strategies require full-state feedback. But, in practice,
all the states of the system are not always available for measurement. Since the system output is always available for
measurement, output feedback can be used for controller design. The problem of static output feedback is a well-
researched one. However, no results are available till today which show that guaranteed closed loop stability can be
achieved by using static output feedback [8,36]. The guaranteed stability of the closed loop system can be achieved
by using fast output sampling (FOS) technique [9,35]. In [9,35] Werner has used the fast output sampling feedback which
has the features of static output feedback and makes it possible to arbitrarily assign the closed loop poles of the system.
Unlike static output feedback, fast output sampling feedback [34,35] always guarantees the stability of the closed loop
system.

In fast output sampling, each sampling period t is subdivided into N subintervals of width D ¼ t=N. N must be chosen to
be greater than or equal to the observability index of the system [49]. The last N output samples are measured at time
instants t ¼ lD, l ¼ 0,1,2,y and a constant control signal u is applied over a period t. The control signal is constructed as a
linear combination of the last N output samples. In this paper, an application of the discrete-time output feedback sliding
mode control algorithm is presented [43–48] that is based on Bartoszewicz’s control law [7] and fast output sampling
feedback [9,35] for systems with disturbance. Here, the disturbance is the external force (impulse) signal r(t), which is
applied to the beam at its free end. This algorithm has the advantage that it does not require the state information for control
purpose. The control input is deduced using the past output samples and the immediate past input signal alone. Moreover,
the strategy used here eliminates the restriction on the closed loop system poles not being at the origin as imposed in [9,35].

Piezoelectric materials are capable of altering the structure’s response through sensing, actuation and control.
Piezoelectric elements can be incorporated into a laminated composite structure, either by embedding it or by mounting it
onto the surface of the host structure [22]. Vibration control of any system is always a formidable challenge for any system
designer. Active control of vibrations relieves a designer from strengthening the structure from dynamic forces and the
structure itself from extra weight and cost. The need for intelligent structures such as smart structures arises from the high
performance requirements of such structural members in numerous applications. Intelligent structures are those which
incorporate actuators and sensors that are highly integrated into the structure and have structural functionality, as well as
highly integrated control logic, signal conditioning and power amplification electronics [20].

A vibration control system consists of four parts, viz., actuator, controller, sensor and the system or the plant, which is to
be controlled. When an external force fext is applied to the beam, it is subjected to vibrations. These vibrations should be
suppressed in no time (quickly). Fully active actuators like the Piezoelectrics, MR fluids, piezoceramics, ER fluids, shape
memory alloys, PVDF, etc., can be used to generate a secondary vibrational response in a mechanical system. This could
reduce the overall response of the system plant by the destructive interference with the original response of the system,
caused by the primary source of vibration [18,20,27,28].

Extensive research in modeling of piezoelectric materials in building actuators and sensors for structure modeled using
Euler–Bernoulli beam theory is reported in this paragraph. Investigations of Crawley and Luis [20] emphasized on the
derivation of sensor/actuator modeling of piezo-electric materials. Moreover, the controller analysis of cantilever beams
using these sensors/actuators have been studied by Bailey and Hubbard [18]. Culshaw [22] gave a brief introduction to the
concept of smart structure, its benefits and applications. Hanagud et al. [28] developed a finite element (FE) model for an
active beam with many distributed piezoceramic sensors/actuators coupled by signal conditioning systems and applied
optimal output feedback control. Fanson et al. [27] performed some experiments on a beam with piezoelectrics using
positive position feedback. Hwang and Park [29] presented a FE model for piezoelectric sensors and actuators. Choi et al.
[24] discussed about the control techniques of flexible structures using distributed piezoelectric sensors/actuators.
Mathematical analysis of beams using piezoelectric sensors and actuators was carried out by Hermann Shen [38].

Feedback control of vibrations in mechanical systems has numerous applications, like in aircrafts, active noise and
shape control, acoustic (sound, pressure) control, control of antennas, earthquakes, structural health monitoring, control of
space structures and in the control of flexible manipulators. A precise mathematical model is required for the controller
design for vibration control to predict the structure’s response. Two different models are normally used, viz.,
Euler–Bernoulli model and the Timoshenko model.

In Euler–Bernoulli beam theory, the assumption made is, before and after bending, the plane cross-section of the beam
remains plane and normal to the neutral axis. This assumption is valid if the length to thickness ratio is large and for small
deflections of the beam. However, if length to thickness ratio is small, plane section will not remain normal to the neutral
axis after bending. In practical situations, a large number of modes of vibrations contribute to the structure’s performance.
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Since the shear forces, axial displacement are neglected in Euler–Bernoulli theory, slightly inaccurate results may be
obtained. Timoshenko beam theory is used to overcome the drawbacks of the Euler–Bernoulli beam theory.

In Timoshenko beam theory, cross-sections remains plane and rotate about the same neutral axis as the Euler–Bernoulli
model, but do not remain normal to the deformed longitudinal axis. The deviation from normality is produced by a
transverse shear that is assumed to be constant over the cross-section. Thus, the Timoshenko beam model is superior to
Euler–Bernoulli model in precisely predicting the beam response. Timoshenko beam theory is used in the present work to
generate the FE model of a single input single output (SISO) cantilever beam with surface mounted sensors and actuators as
collocated pair, i.e., one above and below the corresponding finite element of the beam. Further, an application of the fast
output feedback based sliding mode control design and its application to control the first two structural vibration modes of
the smart flexible Timoshenko cantilever beam is being considered [49].

Numerous identification and control techniques have been proposed for active vibration suppression of flexible
structures in recent years. Some of the various methods used for vibration control in systems are the periodic output
feedback control [10], fast output sampling feedback control [9,35], the wave suppression method, sliding mode control
[5,43–48], positive position feedback control [27,32], HN control and the PID control techniques. In our work, we discuss
about an application of the multirate output feedback based discrete sliding mode method of controlling the vibrations of a
smart flexible Timoshenko beam [49].

The work done in this paper is organized as follows. A brief review about the control technique in this paper was presented
in the introductory section. Section 2 gives a brief introduction to the various types of beam models such as the
Euler–Bernoulli model, Timoshenko model, etc. Literature survey about the Timoshenko beams is also presented in this
section. Brief introduction to the state space modeling of smart Timoshenko beam for a single input single output case starting
from the finite element model is presented in Section 3. Modeling of the regular beam element and the piezoelectric element
using Timoshenko theory is discussed brief in this section. Controller design for the developed four SISO state space models of
the smart plant in Section 3 is given in Section 4 with a deep insight into the application of the design of the multirate output
feedback based discrete sliding mode control algorithm using Bartoszewicz law. Simulation results are presented in Section 5
along with the discussions and conclusions. This is followed by Acronyms, Nomenclature, Appendix and References.

2. Review of beam models

The study of physical systems such as beams frequently results in partial differential equations, which either cannot be
solved analytically, or lack an exact analytic solution due to the complexity of the boundary conditions. For a realistic and
detailed study, a numerical method must be used to solve the problem. The finite element method (FEM) [13] is often
found the most adequate. Over the years, with the development of modern computers, the finite element method has
become one of the most important analysis tools in engineering. Basically, the finite element method consists of a
piecewise application of classical variational methods to smaller and simpler subdomains called finite elements connected
to each other in a finite number of points called nodes. Two beam models in common use in structural mechanics are the
Euler–Bernoulli beam model and the Timoshenko beam model, which are considered here below.

2.1. Euler–Bernoulli model

This model often called as the classical beam model accounts for the bending moment effects on stresses and
deformations. The effect of transverse shear forces on beam deformation is neglected. Its fundamental assumption is that
cross-sections remain plane and normal to the deformed longitudinal axis before and after bending as shown in Fig. 1. Here,
the total rotation y is due to bending stress alone neglecting transverse shear stress. This rotation occurs about a neutral
axis that passes through the centroid of the cross-section of the beam as shown in Fig. 1. Crawley et al. [20] has developed
analytical models of beams with piezoelectric actuators. These models illustrate the mechanics of Euler–Bernoulli beams
with surface mounted actuators and the analytical results have been verified by carrying out experiments.

2.2. Timoshenko model

This model corrects the classical beam model with first-order shear deformation effects. In this model, the cross-
sections of the beam remain plane and rotate about the neutral axis, but do not remain normal to the deformed
longitudinal axis as shown in Fig. 2. The total slope of the beam in this model consists of two parts, one due to bending y,
and the other due to shear b. Chandrashekhara and Varadarajan [21] have presented a finite element model of a composite
beam using a higher-order shear deformation theory. Piezoelectric elements have been used to produce a desired deflection
in beams with clamped–free (C–F), clamped–clamped (C–C) and simply supported beams. Aldraihem et al. [14] have
developed a laminated beam model using two theories; namely, Euler–Bernoulli beam theory and Timoshenko beam
theory. Here, the piezoelectric layers have been used to control the vibration in a cantilever beam. Donthireddy and
Chandrashekhara [26] presented a new technique of modeling and shape control of composite beam with embedded
piezoelectric actuators. A finite element model was designed for the dynamic analysis of Timoshenko beam by Thomas and
Abbas [33]. Doschner and Enzmamam [25] presented a new type of controller for the vibrations of a Timoshenko beam.
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Fig. 2. Timoshenko beam model.
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Fig. 1. Euler–Bernoulli beam model.
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Closed form of solutions for the deflection control of laminated composite beams were presented by Abramovich and
others [12,15].

Recently, shear piezoelectric actuators have been used to generate deflection and to reject vibration in beams. The
idea of exploiting the shear mode to create transverse deflection in beams was first suggested by Sun and Zhang [31].
A finite element approach was used by Benjeddou et al. [19] to model a beam with shear and extension piezoelectric
elements. The finite element model employed the displacement field of Zhang and Sun [37]. It was shown that the finite
element results agree quite well with the analytical results. Raja et al. [30] extended the finite element model of
Benjeddou’s research [19] team to include a vibration control scheme. It was observed that the shear actuator is more
efficient in rejecting vibration than without considering the shear for the same control effort. Aldraihem and Khdeir [16]
proposed analytical models and exact solutions for beams with shear piezoelectric actuators. The models are based on
Timoshenko beam theory and higher-order beam theory (HOBT). Exact solutions were obtained by using the state space
approach. The deflections of beams with various boundary conditions were investigated. The effect of shear coefficient was
discussed in the Timoshenko beam theory by Cooper [23]. A new beam model was developed by Friedman and Kosmataka
in [11] which is used in our work for the design of the controller to suppress the vibrations. Abramovich and Livshits
presented the free vibrations of non-symmetric cross-ply laminated composite beams in [42] which is also
used in our work. Deflection analysis of the beam with extension & shear piezoelectrics was reported by Ahmed and
Osama in [17].

Few researchers have well established a mathematical finite element Euler–Bernoulli model. These models do not
consider the shear effects, axial effects, etc. Modeling of smart structures by shear deformable (Timoshenko) theory is
limited. In our work, the effect of shear has been considered. An external force input fext is applied at the free end of the
smart beam as shown in Fig. 3(b). There are two inputs to the plant. One is the external force input fext, which is considered
as the disturbance. The other input is the control input u to the actuator from the controller. Simulations are performed in
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Fig. 3. A flexible beam and a smart beam: (a) a regular flexible beam and (b) a smart Timoshenko cantilever beam embedded with PZT.

Fig. 4. Smart Timoshenko beam divided into four finite elements (piezo-patch placed at positions 1, 2, 3 and 4)—four SISO models: (a) Model 1 (PZT

placed at FE position 1), (b) Model 2 (PZT placed at FE position 2), (c) Model 3 (PZT placed at FE position 3) and (d) Model 4 (PZT placed at FE position 4).
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Matlab. In the work considered [50,51], the plot of the time derivative of the transverse displacement, i.e., the sensor output
y as a function of time, the magnitude of the control input u w.r.t. t and the sliding function s w.r.t. t are observed.

3. Modeling of the smart beam

Consider a aluminum cantilever beam as shown in Fig. 3(a) divided into four finite elements as shown in Figs. 4(a)–(d).
The piezoelectric element is bonded on one discrete section (one finite element) of the surface of the beam as surface
mounted sensor/actuator pair (only one pair considered at a time). The mass and stiffness of the adhesive used to bond the
sensor/actuator pairs to the master structure is being neglected. The smart cantilever beam model is developed using two
piezoelectric beam elements, which includes sensor and actuator dynamics and the remaining beam elements as regular
beam elements based on Timoshenko beam theory assumptions [11,12,49]. The dimensions and properties of the
aluminum cantilever beam and piezoelectric sensor/actuator used are given in Tables 1 and 2, respectively [50,51].

3.1. Finite element modeling of the regular beam and the piezoelectric beam element

Consider a regular beam element is shown in Fig. 3(a). The longitudinal axis of the regular beam element lies along the
X-axis. The element has constant moment of inertia, modulus of elasticity, mass density and length. The element is
assumed to have two degrees of freedom (DOF) w, y. A bending moment and a transverse shear force acts at each nodal
point [11,12]. The displacement relation in the x, y and z directions of the beam can be written as

uðx; y; z; tÞ ¼ zyðx; tÞ ¼ z
qw

qx
� bðxÞ

� �
; vðx; y; z; tÞ ¼ 0; wðx; y; z; tÞ ¼ wðx; tÞ, (1)



ARTICLE IN PRESS

Table 1
Physical parameters of the Al beam.

Parameter Symbol Values

Length of beam L 0.5 m

Width b 0.024 m

Young’s modulus Eb 193.096 GPa

Density rb 8030 kg/m3

Constants used in C* a, b 0.001, 0.0001

Thickness tb 1 mm

Table 2
Properties of piezoelectric sensor/actuator.

Parameter Symbol Values

Length of PE lp 0.125 m

Width b 0.024 m

Thickness ta, ts 0.5 mm

Young’s modulus Ep 68 GPa

Density rp 7700 kg/m3

PE strain constant d31 125�10�12 m/V

PE stress constant g31 10.5�10�13 V m/N
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where w is the time dependent transverse displacement of the centroidal axis (along z-axis), y is the time dependent
rotation of the cross-section about y-axis, u is the axial displacement along the x-axis and v is the lateral displacement
along the y-axis which is assumed equal to be zero. The total slope of the beam consists of two parts, one due to bending,
which is y(x) and the other due to shear, which is b(x). The axial displacement of a point at a distance z from the centerline
is only due to the bending slope and the shear slope has no contribution to this. The strain components of the beam are
given as [11,12,42,49]

�xx ¼
qu

qx
¼
qu

qy
qy
qx
¼ z

qy
qx
; �yy ¼

qv

qy
¼ 0; �zz ¼

qw

qz
¼ 0, (2)

where �xx; �yy; �zz are the longitudinal strains or the tensile strains in the three directions, viz., in the x, y, z directions.
The shear strains g induced in the beam along the three directions (viz., along x, y, z directions) are given by

gxz ¼
1

2

qu

qz
þ
qw

qx

� �
¼

1

2
yþ

qw

qx

� �
, (3)

gyz ¼
1

2

qv

qz
þ
qw

qy

� �
¼ 0, (4)

gxy ¼
1

2

qu

qy
þ
qv

qx

� �
¼ 0. (5)

The effect of shear strains along y and z directions is equal to zero. Thus, the stresses in the beam element are given as
[11,12,42,49]

sxx ¼ E�xx ¼ Ez
qy
qx

, (6)

sxz ¼ Ggxz ¼
1

2
G

qw

qx
þ y

� �
¼ K

qw

qx
þ y

� �
, (7)

where E is the young’s modulus of the beam material, G is the shear modulus (or modulus of rigidity) of the beam material,
sxz is the shear stress, sxx is the tensile stress and K is the shear coefficient which depends on the material definition and on
the cross-sectional geometry, usually taken equal to 5

6.
The strain energy of the beam element depends upon the linear strain e, the shear strain g. The total strain energy of the

beam is finally written as [11,12,42,49]

U ¼
1

2

Z L

0

qy
qx

qw

qx
þ y

2
664

3
775

T

EI 0

0 KGA

� � qy
qx

qw

qx
þ y

2
664

3
775dx, (8)
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where I is the mass moment of inertia of the beam element, A is the area of cross-section of the beam element and L is the
length of the beam.

The kinetic energy T of the beam element depends on the sum of the kinetic energy due to the linear velocity _w and due
to the angular twist y. The total kinetic energy is finally written as [11,12,42,49]

T ¼
1

2

Z L

0

qw

qt
qy
qt

2
664

3
775

T

rA 0

0 rI

" # qw

qt
qy
qt

2
664

3
775dx, (9)

where r is the mass density of the beam material.
The total work done due to the external forces in the system is given by [11,12,42,49]

We ¼

Z L

0

w

y

� �T qd

m

� �
dx, (10)

where qd represents distributed force along the length of the beam at the free end and m represents the moment along the
length of the beam.

The equation of motion is derived using Hamilton’s principle, which states as the total strain energy is equal to the sum
of the change in the kinetic energy and the work done due to the external forces. Finally, the equation of motion is given by
[11,12,42,49]

dP ¼
Z t2

t1

ðdU � dT � dWeÞdt ¼ 0. (11)

Here, dU, dT and dWe are the variations of the strain energy, the kinetic energy, work done due to the external forces and T is
the kinetic energy, U is the strain energy, W is the external work done, L is the length of the beam and t is the time.
Substituting the values of strain energy from Eq. (8), kinetic energy from Eq. (9) and external work done from Eq. (10) in
Eq. (11) and integrating by parts, we get the governing equation of motion of a general shaped beam modeled with
Timoshenko beam theory as [11,12,42,49]

q KGA
qw

qx
þ y

� �� �
qx

þ qd ¼ rA
q2w

qt2
, (12)

q EI
qy
qx

� �
qx

� KGA
qw

qx
þ y

� �
þm ¼ rI

q2y
qt2

. (13)

The right-hand side (RHS) of the first part of the Eq. (12) is the force, which is equal to mass multiplied by the linear
acceleration, i.e., F ¼ ma. The RHS of the second part of the Eq. (13) is the moment which is equal to mass moment of inertia
multiplied by the angular acceleration, i.e., mass moment of inertia ¼ Ia. For the static case with no external forces acting
on the beam, the governing equation of motion [11,12] reduces to [11,12,42,49]

q KGA
qw

qx
þ y

� �� �
qx

¼ 0 (14)

and

q EI
qy
qx

� �
qx

� KGA
qw

qx
þ y

� �
¼ 0. (15)

From Eqs. (14) and (15), it can be seen that this governing equation of the beam based on Timoshenko beam theory can
only be satisfied if the polynomial order for w is selected one order higher than the polynomial order for y [39–42]. Let w be
approximated by a cubic polynomial and y be approximated by a quadratic polynomial as [11,12,42,49]

w ¼ a1 þ a2xþ a3x2 þ a4x3, (16)

y ¼ b1 þ b2xþ b3x2. (17)

Because, there are four nodal variables for the beam element, we assume a cubic polynomial function in the expression
for w. Here, in Eqs. (16) and (17), x is the distance of the finite element node from the fixed end, ai and bj ði ¼ 1;2;3;4Þ and
ðj ¼ 1;2;3Þ are the unknown coefficients and are found out using the boundary conditions at the beam ends x ¼ (0,L) as
[11,12,42,49]

w ¼ w1; y ¼ 0 at x ¼ 0 and w ¼ w2; y ¼ �y2 at x ¼ L, (18)
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After applying boundary conditions from Eq. (18) on Eqs. (16) and (17), the unknown coefficients ai and bj can be
resolved. Substituting the unknown coefficients ai and bj in Eqs. (16) and (17) and writing them in matrix form, we get,
the transverse displacement, the first spatial derivative of the transverse displacement, the second spatial derivative of the
transverse displacement and the time derivative of Eq. (16) as

½wðx; tÞ� ¼ ½Nw�½q�, (19)

½w0ðx; tÞ� ¼ ½Ny�½q�, (20)

½w00ðx; tÞ� ¼ ½Na�½q�, (21)

½ _wðx; tÞ� ¼ ½Nw�½ _q�, (22)

where q (nodal variable vector) is the vector of displacements and slopes, _q is the strain rate, [Nw]T, [Ny]
T, [Na]T are the

shape functions (for displacement, rotations and accelerations) taking the shear f into consideration [11,12,42,49] and are
obtained as

½Nw�
T ¼

1

ð1þ fÞ
2

x

L

� 	3
� 3

x

L

� 	2
� f

x

L

� 	
þ ð1þ fÞ

� �
L

ð1þfÞ
x

L

� 	3
� 2þ

f
2

� �
x

L

� 	2
þ 1þ

f
2

� �
x

L

� 	� �

�
1

ð1þ fÞ
2

x

L

� 	3
� 3

x

L

� 	2
� f

x

L

� 	� �
L

ð1þfÞ
x

L

� 	3
� 1�

f
2

� �
x

L

� 	2
�

f
2

� �
x

L

� 	� �

2
66666666666664

3
77777777777775

, (23a)

½Ny�
T ¼

6

ð1þ fÞL
x

L

� 	2
�

x

L

� 	� �
1

ð1þfÞ
3

x

L

� 	2
� ð4þfÞ

x

L

� 	
þ ð1þ fÞ

� �

�
6

ð1þfÞL
x

L

� 	2
�

x

L

� 	� �
1

ð1þfÞ
3

x

L

� 	2
� ð2�fÞ

x

L

� 	� �

2
66666666666664

3
77777777777775

, (23b)

½Na�
T ¼

6

ð1þfÞL
2x

L2
�

1

L

� �
1

ð1þ fÞL
6x

L
� ð4þfÞ

� �

�
6

ð1þfÞL
2x

L2
�

1

L

� �
1

ð1þ fÞ
6x

L2
�

2�f
L

� �� �

2
6666666666664

3
7777777777775

, (24)

where L is the length of beam element and f is the ratio of the beam bending stiffness to shear stiffness and is given by

f ¼
12

L2

EI

KGA

� �
¼

24

L2

I

KA

� �
ð1þ nÞ, (25)

where n is the Poisson’s ratio. The mass matrix of the regular beam element (also called as the local mass matrix) is the sum
of the translational mass and the rotational mass and is given in matrix form as

½Mb� ¼

Z L

0

½Nw�

Ny

 �" #T rA 0

0 rIyy

" #
½Nw�

Ny

 �" #

dx. (26)

Substituting the mode shape functions [Nw], [Ny] into Eq. (26) and integrating, we get the mass matrix of the regular
beam element as [11,12,42,49]

½Mb� ¼ ½MrA� þ ½MrI�. (27)
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Here, [MrA] and [MrI] in Eq. (27) is associated with the translational inertia of the regular beam element as

½MrA� ¼
rAlb

210ð1þfÞ2

ð70f2
þ 147fþ 78Þ ð35f2

þ 77fþ 44Þ
lb
4

ð35f2
þ 63fþ 27Þ �ð35f2

þ 63fþ 26Þ
lb
4

ð35f2
þ 77fþ 44Þ

lb
4

ð7f2
þ 14fþ 8Þ

l2b
4

ð35f2
þ 63fþ 27Þ

lb
4

�ð7f2
þ 14fþ 6Þ

l2b
4

ð35f2
þ 63fþ 27Þ ð35f2

þ 63fþ 26Þ
lb
4
ð70f2

þ 147fþ 78Þ �ð35f2
þ 77fþ 44Þ

lb
4

�ð35f2
þ 63fþ 26Þ

lb
4
�ð7f2

þ 14fþ 6Þ
l2b
4
�ð35f2

þ 77fþ 44Þ
lb
4

ð7f2
þ 14fþ 8Þ

l2b
4

2
6666666666664

3
7777777777775
(28)

and with the rotary inertia of the regular beam element as

½MrI� ¼

36 �ð15f� 3Þlb �36 � 15f� 3ð Þlb

� 15f� 3ð Þlb ð10f2
þ 5fþ 4Þl2b ð15f� 3Þlb ð5f2

� 5f� 1Þl2b

10f2
þ 5fþ 4

� 	
l2b ð15f� 3Þlb 36 ð15f� 3Þlb

� 15f� 3ð Þlb ð5f2
� 5f� 1Þl2b ð15f� 3Þlb ð10f2

þ 5fþ 4Þl2b

2
6666664

3
7777775

. (29)

The stiffness matrix [Kb] of the regular beam element (also called as the local stiffness matrix) is the sum of the bending
stiffness and the shear stiffness and is written in matrix form as

½Kb� ¼

Z L

0

q
qx
½Ny�

½Ny� þ
q
qx
½Nw�

2
664

3
775

T

EI 0

0 KGA

� � q
qx
½Ny�

½Ny� þ
q
qx
½Nw�

2
664

3
775dx. (30)

Substituting the mode shape functions [Nw], [Ny] into Eq. (30) and integrating, we get the stiffness matrix [Kb] of the
regular beam element as [11,12,42,49]

½Kb� ¼
EI

ð1þ fÞl3b

12 6L �12 6L

6lb ð4þfÞl2b �6lb ð2�fÞl2b
�12 �6lb 12 �6lb

6lb ð2�fÞl2b �6lb ð4þfÞl2b

2
66664

3
77775. (31)

The consistent force array is given as

fFg ¼

Z L

0

½Nw�

Ny

 �" #T

q

m

� �
dx. (32)

The finite element modeling of the piezoelectric element is done as follows. The regular beam and the piezoelectric beam
(beam+piezo-patch) are shown in Figs. 3(a) and (b), respectively. The piezoelectric beam element is obtained by bonding
the regular beam element with a layer of two piezoelectric patches or layers, one above and the other below at two finite
element positions as a collocated pair as shown in the Figs. 4(a)–(d). Collocated piezoelectric sensor/actuators are used
because they are supposed to be more robust (against parameter uncertainty) under feedback control action. The bottom
layer acts as the sensor and the top layer acts as an actuator. The element is assumed to have two structural degrees of
freedom at each nodal point, which are, transverse deflection w, an angle of rotation or slope y and an electrical degree of
freedom, i.e., the sensor voltage. The piezo sensor–actuator pair is also modeled using the Timoshenko beam theory.
Employing the same procedure similar to the regular beam element, which was modeled using the Timoshenko beam
theory, we obtain the mass matrix of the piezoelectric element as

Mp ¼ ½MrpA� þ ½MrpI�, (33)

where rp is the mass density of piezoelectric element, Ap is the area of the piezoelectric patch ¼ 2tab, i.e., the area of the
sensor as well as actuator, b being the width of the beam/width of the sensor/actuator and lp is the length of the
piezoelectric patch.
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Here, in Eq. (33), ½MrpA� and ½MrpI� is associated with the translational inertia and the rotary inertia of the piezoelectric

element as [11,12,42,49]

½MrpA� ¼
rpAplp

210ð1þ fÞ2

�

ð70f2
þ 147fþ 78Þ ð35f2

þ 77fþ 44Þ
lp
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ð35f2
þ 63fþ 27Þ �ð35f2

þ 63fþ 26Þ
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4
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lp
4
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þ 14fþ 8Þ

l2p
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l2p
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lp
4
ð70f2

þ 147fþ 78Þ �ð35f2
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lp
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�ð7f2

þ 14fþ 6Þ
l2p
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lp
4

ð7f2
þ 14fþ 8Þ

l2p
4

2
666666666666664

3
777777777777775

(34)

and

½MrpI� ¼

36 �ð15f� 3Þlp �36 �ð15f� 3Þlp

�ð15f� 3Þlp ð10f2
þ 5fþ 4Þl2p ð15f� 3Þlp ð5f2

� 5f� 1Þl2p

ð10f2
þ 5fþ 4Þl2p ð15f� 3Þlp 36 ð15f� 3Þlp

�ð15f� 3Þlp ð5f2
� 5f� 1Þl2p ð15f� 3Þlp ð10f2

þ 5fþ 4Þl2p

2
6666664

3
7777775

. (35)

Similarly, we obtain the stiffness matrix [Kpiezo] of the piezoelectric element as

½Kp� ¼
EpIp

ð1þ fÞl3p

12 6lp �12 6lp

6lp ð4þfÞl2p �6lp ð2� fÞl2p
�12 �6lp 12 �6lp

6lp ð2�fÞl2p �6lp ð4þ fÞl2p

2
666664

3
777775, (36)

where

EI ¼ EbIb þ 2EpIp, (37)

rA ¼ bðrbtb þ 2rptaÞ, (38)

Ip ¼
1

12
bt3

a þ bta
ðta þ tbÞ

2

� �2

. (39)

Here, Ep is the modulus of elasticity of the piezoelectric material, Ap is the area of the piezoelectric patch, rp is the mass

density of the piezoelectric material, Ip is the moment of inertia of the piezoelectric layer with respect to the neutral axis of

the beam, tp is the thickness of the beam and ta is the thickness of the actuator, which is also equal to the thickness of the

sensor ts and b is the width of the piezo-patch and also that of the host beam. Note that when f is neglected in the regular
beam elements and in the piezoelectric beam elements, the mass matrix and the stiffness matrix reduce to the mass and
stiffness matrix of a Euler–Bernoulli beam, thus making the Timoshenko beam a accurate model. The mass and stiffness
matrix for the piezoelectric beam element (regular beam element with piezoelectric patches placed at the top and bottom
surfaces) as a collocated pair is given by [11,12,42,49]

½M� ¼ ½Mb� þ ½Mp� (40)

and

½K� ¼ ½Kb� þ ½Kp�. (41)

3.2. Piezoelectric strain rate sensors and actuator modeling

The linear piezoelectric coupling between the elastic field and the electric field of a PZT material is expressed by the
direct and converse piezoelectric constitutive equations as [52]

D ¼ dsþ eTEf ; � ¼ sEsþ dEf , (42)

where s is the stress, e is the strain, Ef is the electric field, D is the dielectric displacement, e is the permittivity of the
medium, sE is the compliance of the medium and d is the piezoelectric constant.
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3.2.1. Sensor equation

The direct piezoelectric equation is used to calculate the output charge produced by the strain in the structure. The total
charge Q ðtÞ developed on the sensor surface (due to the strain) is the spatial summation of all the point charges developed
on the sensor layer and the corresponding current generated is given by [52]

iðtÞ ¼ ze31b

Z lp

0
NT

a _q dx, (43)

where z ¼ ðtb=2Þ þ ta, e31 is the piezoelectric stress/charge constant, _q is the time derivative of the modal coordinate vector
and NT

a is the second spatial derivative of the mode shape function of the beam. This current is converted into the open
circuit sensor voltage Vs using a signal-conditioning device with gain Gc and applied to an actuator with the controller gain
Kc . The sensor output voltage obtained is as [52]

Vs ¼ Gce31zb

Z lp

0
NT

a _q dx (44)

or can be expressed as a scalar vector product

VsðtÞ ¼ pT _q, (45)

where pT is a constant vector. The input voltage to the actuator is VaðtÞ and is given by [52]

VaðtÞ ¼ KcGce31zb

Z lp

0
NT

a _q dx. (46)

The cable capacitance between sensor and signal-conditioning device has been considered negligible and the
temperature effects have been neglected. Note that the sensor output is a function of the second spatial derivative of
the mode shape.

3.2.2. Actuator equation

The actuator strain is derived from the converse piezoelectric equation. The strain developed by the electric field ðEf Þ on
the actuator layer is given by [52]

�A ¼ d31Ef ¼ d31
VaðtÞ

ta
. (47)

When the input to the actuator VaðtÞ is applied in the thickness direction, the stress developed is

sA ¼ Epd31
VaðtÞ

ta
. (48)

The resultant moment MA acting on the beam due to this stress is determined by integrating the stress throughout the
structure thickness as

MA ¼ Epd31 �zVaðtÞ, (49)

where �z is the distance between the neutral axis of the beam and the piezoelectric layer. This resultant moment is used to
produce the control force by the actuator. Finally, the control force applied by the actuator is obtained as

f ctrl ¼ Epd31b�z

Z
lp

Ny dxVaðtÞ (50)

or can be expressed as

f ctrl ¼ hVaðtÞ, (51)

where ½Ny�
T is the first spatial derivative of mode shape function of the beam and hT is the constant vector which depends

on the piezo characteristics and its location on the beam. If an external force f ext acts on the beam, then, the total force
vector becomes

f t
¼ f ext þ f ctrl. (52)

3.3. Dynamic equation of the smart structure

The dynamic equation of the smart structure is obtained by using both the regular and piezoelectric beam elements
(local matrices) given by Eqs. (27), (31), (33) and (36). The mass and stiffness of the bonding or the adhesive between the
master structure and the sensor/actuator pair is neglected. The mass and stiffness of the entire beam, which is divided into
4 finite elements with the piezo-patches placed at only one finite element location is assembled using the FEM technique
and the assembled matrices (global matrices), M and K are obtained, which also includes the sensor/actuator mass and
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stiffness. The equation of motion of the smart structure is finally given by [49,52]

M €qþ Kq ¼ f ext þ f ctrl ¼ f t , (53)

where M;K;q; f ext; f ctrl; f
t are the global mass matrix, global stiffness matrix of the smart beam, the vector of displacements

and slopes or the nodal displacement vector and is equal to ½w1 y1 w2 y2�
T, the external force applied to the beam, the

controlling force from the actuator and the total force coefficient vector, respectively.
The generalized coordinates are introduced into the Eq. (53) using a transformation q ¼ Tg in order to reduce it

further such that the resultant equation represents the dynamics of the first two vibration modes of the smart flexible
cantilever beam. T is the modal matrix containing the eigen vectors representing the first two vibratory modes. In the
flexible system, the first two vibration modes o1 and o2, which are the most dominant modes compared to the other
modes are being considered. This method is used to derive the uncoupled equations governing the motion of the free
vibrations of the system in terms of principal coordinates by introducing a linear transformation between the generalized
coordinates q and the principal coordinates g. The Eq. (53) after applying the transformation and further simplifying
becomes [52]

MT €gþ KTg ¼ f ext þ f ctrl. (54)

Multiplying Eq. (54) by TT on both sides and further simplifying, we get [52]

M� €gþ K�g ¼ f�ext þ f�ctrl, (55)

where M� ¼ TTMT, K� ¼ TTKT, f�ext ¼ TTf ext, f�ctrl ¼ TTf ctrl are the generalized mass matrix, the generalized stiffness
matrix, the generalized external force vector and the generalized control force vectors, respectively. The generalized
damping matrix C� (Rayleigh damping or the proportional damping) is introduced into the Eq. (55) by using [52]

C� ¼ aM� þ bK�, (56)

where a and b are the frictional damping constant and the structural damping constant used in C*. Finally, the dynamic
equation of the smart structure is given by [52]

M� €gþ C� _gþ K�g ¼ f�ext þ f�ctrl. (57)

3.4. State space model of the smart structure

The governing equation in Eq. (57) is often written in state space form and is obtained as follows [52]. Let the
transformation used be g ¼ x [50,51].

i:e:; g ¼
g1

g2

" #
¼

x1

x2

" #
¼ x, (58)

‘ _g ¼ _x ¼
_x1

_x2

" #
¼

x3

x4

" #
and €g ¼ €x ¼

_x3

_x4

" #
. (59)

Thus,

_x1 ¼ x3; _x2 ¼ x4. (60)

Using Eqs. (58)–(60) in Eq. (57), the Eq. (57) now becomes

M�
_x3

_x4

" #
þ C�

x3

x4

" #
þ K�

x1

x2

" #
¼ f�ext þ f�ctrl, (61)

which can be further simplified as

_x3

_x4

" #
¼ �M��1K�

x1

x2

" #
�M��1C�

x3

x4

" #
þM��1f�ext þM��1f�ctrl. (62)

The generalized external force coefficient vector is

f�ext ¼ TTfext ¼ TTfrðtÞ, (63)

where rðtÞ is the external force input (impulse disturbance) to the beam.
The generalized control force coefficient vector is

f�ctrl ¼ TTf ctrl ¼ TThVaðtÞ ¼ TThuðtÞ, (64)

where voltage VaðtÞ is the input voltage to the actuator from the controller and is nothing but the control input uðtÞ

to the actuator and h the constant vector which depends on the actuator type, its position on the beam and
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is given by

h ¼ Epd31b�z½�1 1 . . . 0 0�8�1 ¼ ac½�1 1 . . . 0 0� (65)

for one piezoelectric actuator element (say, for the piezo patch placed at the finite element position numbering 2), where
Epd31b�z ¼ ac being the actuator constant.

So, using the Eqs. (63) and (64) in Eq. (62), the state space equation for the smart Timoshenko beam is represented as
[52]

_x1

_x2

_x3

_x4

2
66664

3
77775 ¼

0 I

�M��1K� �M��1C�

� � x1

x2

x3

x4

2
66664

3
77775þ

0

M��1TTh

� �
uðtÞ þ

0

M��1TTf

� �
rðtÞ, (66)

where uðtÞ is the control input, rðtÞ is the external input to the system, i.e., the disturbance and f is the total force coefficient
vector.

The sensor voltage is taken as the output and the output equation is obtained as [52]

VsðtÞ ¼ pT _q ¼ yðtÞ, (67)

where pT is a constant vector which depends on the piezoelectric sensor characteristics (i.e., the sensor constant Sc) and on
the position of the sensor location on the beam. The constant vector for the sensor placed at finite element position
numbering 4 is given by [52]

pT ¼ Gce31zb½0 0 . . . � 1 1�1�8 ¼ Sc½0 0 . . . � 1 1�, (68)

where Gce31zb ¼ Sc is the sensor constant. Thus, the sensor output for a SISO case is given by

yðtÞ ¼ pT _q ¼ pTT _g ¼ pTT
x3

x4

" #
, (69)

which can be further written as

yðtÞ ¼ ½0 pTT�

x1

x2

x3

x4

2
66664

3
77775. (70)

The state space model (state equation and the output equation) of the smart structure developed for the system in
Eqs. (66) and (70) thus, is given by [52]

_x ¼ AxðtÞ þ BuðtÞ þ ErðtÞ,

yðtÞ ¼ CTxðtÞ þDuðtÞ, (71)

with

A ¼
0 I

�M��1K� �M��1C�

" #
ð4�4Þ

; B ¼
0

M��1TTh

" #
ð4�1Þ

; CT
¼ ½0 pTT�ð1�4Þ,

D ¼ Null matrix; E ¼
0

M��1TTf

" #
ð4�1Þ

(72)

where A;B;C;D;E; xðtÞ and yðtÞ represents the system matrix, input matrix, output matrix, transmission matrix, external
load matrix, state vector, system output (sensor output). Here, E is the external load disturbance matrix, which couples the
disturbance (impulse) to the system. The numerical values of the A, B, C, D and E matrices of the four models are given in
the Appendix.

Since Timoshenko beam model is closer to the actual model as we have included the shear effects in the modeling, it is
used as the basis for the controller design in our research work. The state space model in Eq. (72) is obtained for various
sensor/actuator locations on the cantilever beam by using three regular beam elements and one piezoelectric element at a
time as a collocated pair as shown in Figs. 4(a)–(d), thus giving rise to four models of the smart beam system. By placing a
piezoelectric element as sensor/actuator at one finite element of the cantilever beam and making other elements as regular
beam elements as shown in the Fig. 4(a)–(d) and by varying the position of the piezoelectric sensor/actuator from the free
end to the fixed end, various state space models are obtained with the inclusion of mass and stiffness of sensor/actuator
only. Then, the control of these models is obtained using the multirate output feedback discrete sliding mode control
technique [43–48], which is considered in the next section.



ARTICLE IN PRESS

T.C. Manjunath, B. Bandyopadhyay / Journal of Sound and Vibration 326 (2009) 50–7464
4. Design of DSMC controller

In the following section, the control strategy for the SISO representation of the developed smart structure [49] model
(with one actuator input u and one sensor output y) using an application of the MROF based sliding mode control law is
presented [43–48]. In [7], Bartoszewicz proposed a quasi-sliding mode control strategy that has the property of finite time
convergence to the quasi-sliding mode band. In addition, it also eliminates chattering by avoiding the use of a switching
input. The method is briefly discussed in the following paragraphs.

We use the algorithm presented in [43–48] to develop the control scheme for the smart structure model.
Consider a discrete-time nth-order single output system that is sampled with a sampling interval of t s.

xðkþ 1Þ ¼ FtxðkÞ þ DFtxðkÞ þGtuðkÞ þ f ðkÞ; yðkÞ ¼ CxðkÞ, (73)

where DFt is the uncertainty in the state, f ðkÞ is an external disturbance vector and ðFt;Gt;CÞ are matrices of appropriate
dimensions with ðFt;GtÞ being controllable and ðFt;CÞ being observable. Let us define the disturbance vector as
[43–48]

d̃ðkÞ ¼ DFtxðkÞ þ f ðkÞ. (74)

Let the desired sliding manifold be governed by the parameter vector cT such that cTGta0 and the resulting quasi-sliding
motion is stable and let the disturbance be bounded such that

dðkÞ ¼ cTd̃ðkÞ (75)

satisfies the inequality

dl � dðkÞ � du, (76)

where dl and du are the known upper and lower bounds on the disturbance, respectively. Here, we define the following
terms:

d0 ¼ 0:5ðdl þ duÞ; dd ¼ 0:5ðdu � dlÞ, (77)

sðkÞ ¼ cTxðkÞ. (78)

The quasi-sliding mode is defined as the motion such that jsðkÞj � �, where the positive constant e is called the quasi-
sliding-mode bandwidth. A new reaching law was proposed by Bartoszewicz in [7], and is of the form,

sðkþ 1Þ ¼ dðkÞ � d0 þ sdðkþ 1Þ. (79)

Here, sdðkÞ is an apriori known function that satisfies the following conditions:

a: If jsð0Þj42dd; then sdð0Þ ¼ sð0Þ; sdðkÞsdð0Þ � 0 for any k � 0, (80)

sdðkÞ ¼ 0 for any k � k�; jsdðkþ 1ÞjojsdðkÞj � 2dd; for any kok�.

b: If jsð0Þj � 2dd; then sdðkÞ ¼ 0 for any k � 0. (81)

The value of the positive integer k� is chosen by the designer so as to have a trade off between faster convergence and the
magnitude of the control input u. One possible function for sdðkÞ, when jsð0Þj � 2dd, can be described as [43–48]

sdðkÞ ¼
ðk� � kÞ

k�
sð0Þ; k ¼ 0;1; . . . ; k�, (82)

where

k�o
jsð0Þj

2dd
. (83)

The control law that satisfies the reaching law defined in (79) and achieves sliding mode for the system with disturbance
described in (73), can be computed to be [43–48]

uðkÞ ¼ �ðcTGtÞ
�1ðcTFtxðkÞ þ d0 � sdðkþ 1ÞÞ. (84)

When the control input described in (84) is fed into the system, it would guarantee that for any k � k�, the system would
satisfy the inequality [43–48]

jsðkÞj ¼ jdðk� 1Þ � d0j � dd. (85)

Hence, the states of the system settle within a quasi-sliding mode band whose width is less than half the width of the
band described in [6]. The state to output relationship in multirate system is explained as follows.

Consider the system in Eq. (73), sampled at an interval of D ¼ t=N, where N is chosen to be an integer greater than the
observability index of the system. Let this system dynamics be described using the matrices F, G and C. Now, if the system
output is sampled at every D s and input is given every t s, then the relationship between the system states and the system
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output can be derived as follows [43–48]:

xððkþ 1ÞtÞ ¼ FtxðktÞ þ GtuðktÞ þ d̃ðkÞ. (86)

Let us assume that the disturbance vector d̃ðkÞ present in the t system in Eq. (86) manifests itself in the D system
dynamics as [43–48]

xðktþ ðjþ 1ÞDÞ ¼ Fxðktþ jDÞ þGuðktÞ þ d0ðkÞ; j ¼ 0;1; . . . ;N � 1, (87)

where d0ðkÞ is the equivalent disturbance in the D system.
Using Eq. (87), the state vector at j ¼ 0;1;2; . . . ; ðN � 1Þ can be computed in terms of xðktÞ as [43–48]

xðktÞ ¼ xðktÞ
xðktþDÞ ¼ FxðktÞ þ GuðktÞ þ d0ðkÞ

xðktþ 2DÞ ¼ FxðktþDÞ þGuðktÞ þ d0ðkÞ

¼ F2xðktÞ þ ðFGþGÞuðktÞ þ ðFþ IÞd0ðkÞ

..

.

xððkþ 1Þt�DÞ ¼ FN�1xðktÞ þ
XN�2

i¼0

FiGuðktÞ þ
XN�2

i¼0

Fid0ðkÞ

xððkþ 1ÞtÞ ¼ FNxðktÞ þ
XN�1

i¼0

FiGuðktÞ þ
XN�1

i¼0

Fid0ðkÞ. (88)

But, using the properties of discrete time LTI systems and comparing the last equation in (88) with (86), we arrive at the
relationship [43–48]

d0ðkÞ ¼
XN�1

i¼0

Fi

 !�1

d̃ðkÞ. (89)

Now, using the output equation in (73) and Eqs. (88) and (89), we can define the relationship between the system states
and the lifted output of the system as [43–48]

ykþ1 ¼ C0xðkÞ þ D0uðkÞ þ Cdd̃ðkÞ, (90)

where

yk ¼

yððk� 1ÞtÞ
yððk� 1Þtþ DÞ

..

.

yðkt� DÞ

2
666664

3
777775; C0 ¼

C
CF

CF2

..

.

CFN�1

2
6666664

3
7777775
; D0 ¼

0

CG
CðFGþ GÞ

..

.

C
PN�2

i¼0
FiG

2
66666666664

3
77777777775
; Cd ¼

0

C
PN�1

i¼0
Fi

 !�1

C
P1
i¼0

Fi

 ! PN�1

i¼0
Fi

 !�1

..

.

C
PN�2

i¼0
Fi

 ! PN�1

i¼0
Fi

 !�1

2
666666666666666664

3
777777777777777775

. (91)

If N is chosen to be equal to n, which is the order of the system, then the matrix C0 would be the observability matrix of
the system, and since the system is of single-output and assumed to be observable, C0 would be invertible. Now, using (86)
and (90), the state xðkþ 1Þ can be represented in terms of ykþ1, uðkÞ and d̃ðkÞ as [43–48]

xðkÞ ¼ C�1
0 ðykþ1 � D0uðkÞ � Cdd̃ðkÞÞ, (92)

xðkþ 1Þ ¼ FtC�1
0 ykþ1 þ ðGt � C�1

0 D0ÞuðkÞ þ ðI � C�1
0 CdÞd̃ðkÞ. (93)

Let us define the terms

Ly ¼ FtC�1
0 ; Lu ¼ Gt � C�1

0 D0; Ld ¼ I � C�1
0 Cd. (94)

Thus, using Eqs. (93) and (94), the state xðkÞ can be expressed using the lifted output vector yk as

xðkÞ ¼ Lyyk þ Luuðk� 1Þ þ Ldd̃ðk� 1Þ. (95)

Consider the system described by Eqs. (86) and (90). We define a new variable eðkÞ as eðkÞ ¼ cTFtLdd̃ðkÞ. Since the
disturbance d̃ðkÞ is bounded, we would have [43–48]

el � eðkÞ � eu. (96)
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Let us define the average value of eðkÞ and the maximum deviation of eðkÞ from this value as
e0 ¼ 0:5ðel þ euÞ and de ¼ 0:5ðeu � elÞ, respectively. e0 and de are the mean and variation of the function of the
uncertainty. Now a new reaching law for output feedback sliding mode for the system in Eq. (73) is obtained as

sðkþ 1Þ ¼ dðkÞ � d0 þ eðk� 1Þ � e0 þ sdðkþ 1Þ. (97)

The control input generated using this algorithm can be represented as [43–48]

uðkÞ ¼ �ðcTGtÞ
�1ðcTFtLyyk þ cTFtLuuðk� 1Þ þ d0 þ e0 � sdðkþ 1ÞÞ. (98)

Substituting the value of xðkÞ from (95) in (98),

uðkÞ ¼ �ðcTGtÞ
�1ðcTFtðLyyk þ Luuðk� 1Þ þ Ldd̃ðk� 1ÞÞÞ � ðcTGtÞ

�1ðd0 � eðk� 1Þ þ e0 � sdðkþ 1ÞÞ, (99)

uðkÞ ¼ �ðcTGtÞ
�1ðcTFtLyyk þ cTFtLuuðk� 1Þ þ eðk� 1Þ � eðk� 1ÞÞ � ðcTGtÞ

�1ðd0 þ e0 � sdðkþ 1ÞÞ, (100)

uðkÞ ¼ �ðcTGtÞ
�1ðcTFtLyyk þ cTFtLuuðk� 1Þ þ d0 þ e0 � sdðkþ 1ÞÞ. (101)

Hence, from the above equation, we infer that the control input can be computed using the past output samples and the
immediate past input signal. But, at k ¼ 0, there are no past outputs for use in control, hence uð0Þ is obtained by ignoring
eðk� 1Þ and e0 (as we expect no disturbance before the instant k ¼ 0 to affect the system) and assuming an initial state xð0Þ
to obtain [43–48]

uð0Þ ¼ �ðcTGtÞ
�1ðcTFtxð0Þ þ d0 � sdð1ÞÞ. (102)

The initial state xð0Þ or the representative point can be assumed to be of any value in the state space, which is normally
chosen arbitrarily by the user. Depending on the initial state, the future values of the states and the control efforts are
evaluated. Different values of the initial states were used for the simulations and finally, in the work considered, the initial
state xð0Þ was assumed to be the value of the E matrix in the simulations. When the control input deduced from Eq. (98) is
applied to the system, it obeys the reaching law [43–48]

sðkþ 1Þ ¼ dðkÞ � d0 þ eðk� 1Þ � e0 þ sdðkþ 1Þ, (103)

sðkÞ ¼ dðk� 1Þ � d0 þ eðk� 2Þ � e0 þ sdðkÞ. (104)

When k4maxðk�;2Þ; sdðkÞ ¼ 0 and therefore,

sðkÞ ¼ dðk� 1Þ � d0 þ eðk� 2Þ � e0. (105)

Thus, we have [43–48]

jsðkÞj ¼ jdðk� 1Þ � d0 þ eðk� 2Þ � e0j,

� jdðk� 1Þ � d0j þ jeðk� 2Þ � e0j ¼ dd þ de,

jsðkÞj � dd þ de. (106)

It can be seen that this algorithm [43–48] does not need the measurement of the states of the system for the generation
of the control input. But, as a trade off, the width of the quasi-sliding mode band is increased by de.

5. Conclusions and discussions of the control simulations

The vibration control of a smart cantilever beam requires a control law that is capable of handling uncertainty or any
disturbance to the system. Thus, an application of the multirate output feedback discrete-time sliding mode control
strategy based on Bartoszewicz control law, as discussed in Section 4 is used for the active vibration control purpose here in
this context. The application of the DSM control law [43–48] applied to the SISO smart structure model [49] presented in
Section 4 gave the following simulation results as shown in Figs. 5(a) and (b)–8(a) and (b). From these figures, it can be
inferred that the system responds well in closed loop and does not exhibit undesirable chattering phenomenon as seen
from the plots of the switching function sðkÞ. Neither, does the system vibrate much. It was inferred that without control the
transient response was predominant and with control, the vibrations are suppressed quickly within 5 s.

The Model 1 of the plant is more sensitive and effective to the first mode as the bending moment is maximum, strain
rate is higher, minimum tip deflection, better sensor output and less requirement of the control input u (control will be
more effective), whereas at the free end of the plant, because of lesser strain rate and maximum tip deflection, more control
effort is required to damp out the vibrations. The sensitivity to the higher modes depends not only on the collocation of the
piezo pair, but also on many factors such as the gain of the amplifier used and the location of the piezo pair at the nodal
points. Hence, it may be said that an effective vibration control technique is demonstrated here.

Here, the comparison and discussion of the simulation results of the vibration control for the smallest magnitude of the
control effort u required to control the vibrations of the smart cantilever beam is presented. The quantitative results of the
simulations are shown in the Tables 3 and 4. From the simulation results shown in the Figs. 5(a) and (b)–8(a) and (b),
9(a)–(d) and in Tables 3 and 4, it is observed that modeling a smart structure by including the sensor/actuator mass and
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Fig. 5. (a) Responses of SISO system when piezo pair is placed at finite element position 1 and (b) plot of switching function s(k) when piezo pair is placed

at finite element position 1.
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stiffness and by varying its location on the beam from the free end to the fixed end introduces a considerable change in the
system’s structural vibration characteristics.

Further, the responses of the 4 models were also observed by considering the first three vibratory modes. The results
were compared with the controllers designed for the first two vibration modes. The open loop, closed loop responses and
the magnitude of the control inputs were observed for all the four SISO models. The obtained responses by retaining the
first three modes were nearly (almost) the same, as when the two vibration modes were considered, since the higher
modes do not contribute much to the vibration characteristics and only the first two modes are the dominant ones. Hence,
a fourth-order model with the first two dominant vibratory modes is sufficient to model a smart beam. For convenience,
here, only the responses for the SISO models designed for two modes are shown in the Figs. 5(a) and (b)–8(a) and (b) for an
impulse disturbance at the free end of the beam.

From the Figs. 5(a) and (b)–8(a) and (b), it is observed that when the piezoelectric element is placed near the clamped end,
i.e., the fixed end (Fig. 4(a)), the sensor output voltage is greater as seen from the Table 3 (OL 4.7 V and in CL 4.7 V). This is due
to the heavy distribution of the bending moment near the fixed end for the fundamental mode, thus leading to a larger strain
rate. The sensor voltage is very less when the sensor/actuator pair is located at the free end (Fig. 4(d)) as seen in the Table 3 (OL
1.8 V and in CL 1.8 V) as the strain rate is low. Coming to the control effort required, a small amount of control effort is required
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Fig. 6. (a) Responses of SISO system when piezo pair is placed at finite element position 2 and (b) plot of switching function s(k) when piezo pair is placed

at finite element position 2.
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to control the vibrations at the fixed end (requires 41 V) rather than at the free end (requires 171 V). Comparing the 4 models of
the Figs. 4(a)–(d), it is observed that as the smart beam is divided into 4 finite elements with piezo pair at the fixed end or the
root, the vibration characteristics are the best and more effective. Thus, sensitivity of the sensor/actuator pair depended on its
location on the beam. A comparison of the settling times of the responses was also made and shown in Table 3.

From Table 4, it is observed that considering the first two vibration modes, the vibration frequencies of Model 1 (position 1)
is the highest and those of Model 4 (position 4) is the lowest. The relationship between the four frequency values of the
first mode was found out to be position 1424344, which can also be observed from the frequency response plots shown
in Figs. 9(a)–(d). The natural frequency (first mode frequency, i.e., the fundamental frequency) goes on decreasing
monotonically when the piezoelectric patch is moved from fixed end (position 1) to the free end (position 4). One of the
reasons may be as follows. It is normally assumed that the piezo patch does not alter the strength parameter of the beam.
However, there will be secondary influence on the stiffness and inertia matrices as one adds smart patches (actuator/
sensor). If the patch is placed near the fixed end of cantilever, it will have larger influence on the stiffness, strain rate will be
higher (hence the mode frequencies are higher at the fixed end) and if the patch is near the tip, it will have larger influence
on the inertia.
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Fig. 7. (a) Responses of SISO system when piezo pair is placed at finite element position 3 and (b) plot of switching function s(k) when piezo pair is placed

at finite element position 3.
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Fig. 8. (a) Responses of SISO system when piezo pair is placed at finite element position 4 and (b) plot of switching function s(k) when piezo pair is placed

at finite element position 4.
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Table 3
Comparative statements of the simulation results of various parameters.

FE 1 Model 1

(V)

Settling time

(s)

FE 2 Model 2

(V)

Settling time

(s)

FE 3 Model 3

(V)

Settling time

(s)

FE 4 Model 4

(V)

Settling time

(s)

Open loop (OL) response 4.7 32 3.9 29 2.7 20 1.8 5

Closed loop (CL) response 4.7 3 3.9 2 2.7 1.5 1.8 0.5

Control input to actuator (V) 41 89 129 171

First and second mode

frequencies (Hz)

6.75 5.93 4.96 3.11

39.34 31.26 33.50 23.84

Table 4
Comparison of the mode frequencies of the four models.

Location of the collocated piezo-pair patch First mode (Hz) Second mode (Hz)

Model 1, position 1 (finite element location 1) 6.7532 39.3458

Model 2, position 2 (finite element location 2) 5.9325 31.2640

Model 3, position 3 (finite element location 3) 4.9661 33.5070

Model 4, position 4 (finite element location 4) 3.1094 23.8404

Fig. 9. Bode plots of the four SISO models of the smart structure plant: (a) Bode plot for Model 1, (b) Bode plot for Model 2, (c) Bode plot for Model 3 and

(d) Bode plot for Model 4.
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Hence, there will be a corresponding change in the natural frequency as one moves away from the fixed end towards the
free end. It is also inferred that this decrease in frequency from fixed end to the free end (always) may not be true for the
second mode and the higher modes. Sometimes, this depends on the number of finite elements also. When the piezo-pair is
moved from the fixed end towards the free end, the second mode frequency goes on decreasing and then increases,
reaching a local maximum and finally decreases at the free end of the beam. The mode frequencies (first and second mode
frequency) are high when the piezos are mounted in the regions of high average strain, which will require less control effort
to damp out the vibrations. The decrease in the second mode frequency and then increasing and finally decreasing is due to
the mode shape functions of the beam, material properties, distance of the piezoelectric patch from the fixed end, length of
the patch, thickness of the piezo and also due to many other factors.
Acronyms

CC
 clamped–clamped
CF
 clamped–free
CL
 closed loop
CT
 continuous time
DOF
 degree of freedom
DSMC
 discrete sliding mode control
DT
 discrete time
EB
 Euler–Bernoulli
ER
 electrorheological
FE
 finite element
FEM
 finite element method
FOS
 fast output sampling
HOBT
 higher-order beam theory
IEEE
 Institute of Electrical & Electronics Engineers
LMI
 linear matrix inequalities
LTI
 linear time invariant
MR
 magnetorheological
OL
 open loop
PVDF
 polyvinylidene fluoride
PZT
 lead zirconate titanate
RHS
 right-hand side
SISO
 single input single output
Appendix

Model 1

A1 ¼ 1:0e4 �

0 0 0:0001 0

0 0 0 0:0001

�5:5567 0:0000 �0:0006 0:0000

0:0000 �0:1637 0:0000 �0:0000

2
666664

3
777775; B1 ¼

0

0

�0:0514

�0:0027

2
666664

3
777775; E1 ¼ 1:0e3 �

0

0

3:0567

�1:2241

2
666664

3
777775

CT
1 ¼ ½0 0 � 0:0026 � 0:0010�; D1 ¼ 0.

Frequencies of mode 1 and 2: 6.7532 and 39.3458 Hz.
Model 2

A2 ¼ 1:0e4 �

0 0 0:0001 0

0 0 0 0:0001

�3:2159 0:0000 �0:0003 0:0000

0:0000 �0:1158 0:0000 �0:0000

2
666664

3
777775; B2 ¼

0

0

�0:0862

�0:0168

2
666664

3
777775; E2 ¼ 1:0e3 �

0

0

2:5605

�0:9010

2
666664

3
777775

CT
2 ¼ 1:0e� 3 � ½0 0 0:8572 � 0:5738�; D2 ¼ 0.

Frequencies of mode 1 and 2: 5.9325 and 31.2640 Hz.
Model 3

A3 ¼ 1:0e4 �

0 0 0:0001 0

0 0 0 0:0001

�3:8213 �0:0000 �0:0004 �0:0000

�0:0000 �0:0839 �0:0000 �0:0000

2
666664

3
777775; B3 ¼

0

0

0:0375

�0:0198

2
666664

3
777775; E3 ¼ 1:0e3 �

0

0

2:6924

�0:7842

2
666664

3
777775

CT
3 ¼ ½0 0 0:0019 � 0:0003�; D3 ¼ 0.

Frequencies of mode 1 and 2: 4.9661 and 33.5070 Hz



ARTICLE IN PRESS

T.C. Manjunath, B. Bandyopadhyay / Journal of Sound and Vibration 326 (2009) 50–74 73
Model 4

A4 ¼ 1:0e4 �

0 0 0:0001 0

0 0 0 0:0001

�0:0402 0:0000 �0:0000 0:0000

�0:0000 �2:3620 �0:0000 �0:0002

2
666664

3
777775; B4 ¼

0

0

0:0164

�0:1822

2
666664

3
777775; E4 ¼ 1:0e3 �

0

0

0:5449

�1:4109

2
666664

3
777775

CT
4 ¼ 1:0e� 003 � ½0 0 0:0208 � 0:2542�; D4 ¼ 0.

Frequencies of mode 1 and 2: 3.1094 and 23.8404 Hz.
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