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a b s t r a c t

Interest in complex robotic systems is growing in new application areas. An example of

such a robotic system is a dexterous manipulator mounted on an oscillatory base. In

literature, such systems are known as macro/micro systems. This work proposes

pseudo-inverse Jacobian feedback control laws and applies grey relational analysis for

tuning outer-loop PID control parameters of Cartesian computed-torque control law for

robotic manipulators mounted on oscillatory bases. The priority when modifying

controller parameters should be the top ranking importance among parameters. Grey

relational grade is utilized to investigate the sensitivity of tuning the auxiliary signal PID

of the Cartesian computed-torque law to achieve desired performance. Results of this

study can be feasible to numerous mechanical systems, such as mobile robots, gantry

cranes, underwater robots, and other dynamic systems mounted on oscillatory bases, for

moving the end-effector to a desired Cartesian position.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Complex robotic systems have recently garnered increased attention in many fields. An example of such a system is a
dexterous manipulator mounted on a flexible base. In literature, such systems are known as macro-micro systems,
characterized by the number of control actuators than state variables [1,2]. In such research, manipulator dynamics are
markedly affected by nonlinear forces due to base oscillation and nonlinearity; these include gravity, and Coriolis and
centrifugal forces that are typically intrinsic to mechanical systems [3].

Many studies have investigated the flexibly linked elastic-joint robots in terms of joint trajectory control [4], stability of
joint-level control [5], and tracking control [1–3,6]. However, maintaining the stability of end-point feedback control with a
flexible base remains difficult. If task-space control is applied to flexible-base manipulators without considering base
flexibility, a closed-loop system can be destabilized rapidly.

Most work related to oscillatory base manipulators move robots along desired joint angles [1–10]. Controllers for robots
described in literature are restricted to tracking joint-space trajectories. However, in practical applications, the desired
trajectories of a robotic arm are given in the workspace or as Cartesian coordinates.

In the history of robotics, PD control for not only joint-space control but also task-space control was investigated in
[11,12]. Moreover, a task-space PD control does work also for robotic systems with joint redundancy. This means that
without compensating the complex nonlinear terms, a task space control works well for position control or stabilization,
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provided PD-gain tuning is accomplished carefully [13–15]. However, none of these studies developed a PD (or PID)
controller for the proposed mechanism structure—manipulators mounted on oscillatory bases in task space control.

Exploration on kinematically redundant robots has been flourishing for over two decades, and now is still very active
[15]. A manipulator is termed kinematically redundant when it possesses more degrees of freedom than it is needed to
execute a given task. Redundancy can be conveniently exploited to achieve more dexterous robot motions. It is widely
recognized that a general task consists of following an end-effector motion trajectory is considered as the typical example
of intrinsically redundant manipulator. However, even robot arms with fewer degrees of freedom, like conventional
six-joint manipulators, may become kinematically redundant for specific tasks, such as simple end-effector positioning
without constraints on the orientation. Therefore, the motivation for introducing kinematic redundancy in the mechanical
structure of a manipulator goes beyond that for using redundancy in traditional engineering design, explicitly, increasing
robustness to faults so as to improve reliability [15].

To move the robotic end-effector to a desired position, knowledge of its kinematics is required to solve an inverse
kinematics problem to generate a desired position in the joint space. When the control problem is formulated directly in
the task space, the inverse kinematics problem is replaced by the transposed Jacobian matrix, ranging from the joint space
to the task space in control law [16]. Ref. [17] described a real-time implementation of a Cartesian-based controller
applied to a direct-drive selective compliance assembly robot arm (SCARA) robot with 2 degrees of freedom (dof).
This control scheme uses path shapes described in Cartesian coordinates and, therefore, avoids trajectory conversion of
joint-based coordinates.

For tasks performed by robotic manipulators, such as moving payloads or painting objects, position controllers give
adequate performance as such tasks only require that a robot follows a desired Cartesian trajectory. Therefore, regulating
the contact force between the end-effector of the manipulator and the environment is extremely important [18].
Consequently, position/force control must be performed for robot manipulators to achieve such sophisticated tasks.

Many robot-control schemes have been developed. Most can be considered as special cases of computed-torque
controllers. The scheme proposed in this study involves decomposition of the control design problem into an inner-loop
and outer-loop design problem. Due the simple structure of control type, the proportional-derivative (PD) controller or
proportional-integral-derivative (PID) controller has been widely used as the auxiliary control signal for computed-torque
controllers [19]. However, the major challenge in producing a satisfactory PID controller is tuning PID controller parameters
to achieve desired performance. The method for selecting parameters based on experimental results is usually time-
consuming [9,20]. The Ziegler–Nichols ultimate-cycle tuning and closed-loop tuning have been widely accepted as accurate
heuristic schemes for determining the appropriate settings for PID and proportional-integral (PI) controllers for numerous
industrial applications. However, manual tuning is not often applied in practice because it is laborious and time-
consuming, particularly for processes with large time constants. Manual tuning also requires that an instrument/control
engineer and operator pay close attention to process, because the process must be operated near instability to measure
ultimate gain and period [20].

Grey system theory, pioneered by [21], has been widely applied in numerous fields. Grey theory manages any random
data series as a variation in a grey value within a specific range. Recently, grey relational theory has been employed to
elucidate the tuning of PID parameters to yield a desired performance. The grey relational decision model, which is one of
the most commonly used approaches, is simple, practical and easy to handle [9].

This study presents novel pseudo-inverse Jacobian feedback control laws combined with grey relational analysis for
tuning outer-loop PID control parameters of Cartesian computed-torque control laws for robot manipulators mounted on
oscillatory bases. This research extends that of [7–9], in which robots move along desired joint angles. Hence, the primary
goal in this study is present a novel controller that moves the robotic end-effector to a desired Cartesian position.
Experiments are conducted to confirm the efficiency of the proposed methodology. Experimental results demonstrate that
the proposed scheme is feasible for developing a controller.

2. System configuration

2.1. Dynamic modeling

Fig. 1 presents the conceptual model of a manipulator mounted on an oscillating base. For convenience, this
work considers a special case, a two-link planar arm mounted on an oscillatory base (Fig. 2), with a 2-dof manipulator
and 1-dof base motions. The oscillatory dynamics of the base can be simplified as a lumped mass with a spring, and
represented as

Mb €xb þ Cb _xb þ Kbxb ¼ f d, (1)

where xb 2 <
p denotes the displacement of the base from its equilibrium point. Here, p is defined as the number of dofs of

the oscillatory base. Moreover, Mb 2 <
p�p and Kb 2 <

p�p are the inertial matrix and stiffness matrix, respectively, and
Cr 2 <

p�p is the damping matrix, and fd is the excitation force acting on an oscillatory base [1–3].
Additionally, the dynamics of the n rigid-link manipulators with revolutional joints can be expressed as [19]

MrðqÞ€qþ Crðq; _qÞ ¼ tr , (2)
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Fig. 1. Conceptual model of compliant manipulators.
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Fig. 2. Schematic view of the manipulator mounted on an oscillatory base.
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with qðtÞ 2 <n as the joint variable vector, Mr 2 <
n�n as the inertia matrix of rigid-link manipulators, and trðtÞ 2 <n as the

control input, where Cr 2 <
n represents the nonlinear terms, including the Coriolis/centripetal forces, viscous friction,

dynamic friction, and gravity.
When the two systems are serially combined, detailed analysis indicates that the overall system can be represented

as [7–9]

MrðqÞ MT
brðxÞ

MbrðxÞ Mb þMb=rðxÞ

2
4

3
5 €q

€xb

( )
þ

Crðq; _qÞ þ Cb=rðx; _xÞ

Cb _xb þ Cbrðx; _xÞ

2
4

3
5

þ

0 0

0 Kb

" #
q

xb

( )
¼

t1

t2

" #
þ

0

f d

" #
, (3)

where Mb=rðxÞ 2 <
p�p and Mbr 2 <

p�n are inertia matrices for the manipulator/base coupling, which is referred to as the
inertia coupling matrix; Cb=rðx; _xÞ 2 <

n and Cbrðx; _xÞ 2 <
p are nonlinear coupling terms, and x ¼ ½q xb�

T 2 <ðnþpÞ. Hence, the
overall system dynamics equations can be rewritten as

MðxÞ€xþ Cðx; _xÞ þ KðxÞx ¼ t. (4)

The inertial matrix of the overall system MðxÞ 2 <ðnþpÞ�ðnþpÞ shown in Eq. (4) is symmetrical and positive-definite.
Therefore, inertial matrix M(x), which is uniformly bounded from above and below, satisfies

m Inþp �MðxÞ �mInþp; 8x 2 <
nþp

where m and m̄ are positive constants, and Inþp 2 <
ðnþpÞ�ðnþpÞ is the identity matrix. By applying Lagrangian formulation,

the overall dynamics equation of a two-link planar arm mounted on an oscillatory base is in the same form as that in
Eq. (3), where the joint variable is q ¼ ½y1 y2�

T, and generalized force vector is t1 ¼ ½u1 u2�
T, where u1 and u2 are joint

torques supplied by actuators. Moreover, t2 is the control voltage from the force generator that reduces the vibration of the
oscillatory bases. For the dynamic derivation procedure, refer to [7–9].
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Moreover, the symbolic terms in Eq. (4) are as follows.

Mb=r ¼ m1 þm2;

Mbr ¼ ðm1 þm2Þa1 cos y1 þm2a2 cosðy1 þ y2Þ m2a2 cosðy1 þ y2Þ
h i

;

Mr ¼
ðm1 þm2Þa

2
1 þm2a2

2 þ 2m2a1a2 cos y2 m2a2
2 þm2a1a2 cos y2

m2a2
2 þm2a1a2 cos y2 m2a2

2

2
4

3
5;

Cbr ¼ �ðm1 þm2Þa1
_y

2
1 sin y1 �m2a2ð

_y1 þ
_y2Þ

2 sinðy1 þ y2Þ þ ðm1 þm2Þgxb;

Cr ¼
�m2a1a2ð2

_y1
_y2 þ

_y
2
2Þ sin y2 þ ðm1 þm2Þga1 cos y1 þm2ga2 cosðy1 þ y2Þ

m2a1a2
_y

2
1 sin y2 þm2ga2 cosðy1 þ y2Þ

2
4

3
5;

Cb=r ¼
�ðm1 þm2Þa1 _xb

_y1 sin y1

0

" #
;

where we assume link masses m1 and m2 are concentrated at the ends of the link. Furthermore, a1 and a2 are link
lengths [7–9].

2.2. Task-space formulation

In most applications, a desired path for the end-effector is specified in a task space such as a Cartesian space. In such a
case, the planar arm is mounted on an oscillatory base. Hence, let f be a task space defined as follows:

H ¼ fðxÞ, (5)

where m � nþ p and f : <ðnþpÞ�m ! <m is generally a nonlinear transformation describing the relationship between joint
space and task space. Here, m defined as the number of degrees of freedom required for the end-effector task. In such a
case, this study considers nonredundant robots, where m ¼ n+p, and redundant robots, where mon+p. Typically, the joints
can provide at least number of degrees of freedom required for the end-effector task.

Task-space velocity _H is related to joint-space velocity _x as

_H ¼ JðxÞ_x (6)

where Jð�Þ 2 <m�ðnþpÞ is the Jacobian matrix from the joint space to task space. The above equation is called the first-order
differential kinematics.

By differentiating Eq. (6), the Cartesian acceleration term is

€H ¼ JðxÞ€xþ _J _x (7)

This equation is also known as the second-order differential kinematics.
Moreover, the equation for robot system motion in the joint space can then be represented as Cartesian space

coordinates based on the following relationship:

€x ¼ JðxÞ�1ð €H � _J _xÞ. (8)

Substituting Eq. (8) into Eq. (4) yields

MðxÞJðxÞ�1ð €H � _J _xÞ þ Cðx; _xÞ þ KðxÞx ¼ t (9)

where MðxÞ 2 <ðnþpÞ�ðnþpÞ is total system inertia matrix, Cðx; _xÞ 2 <ðnþpÞ is nonlinear Coriolis/centrifugal terms, and KðxÞ 2
<ðnþpÞ�ðnþpÞ is stiffness matrix.

The manipulator is nonredundant and, thus, m ¼ n+p; however, if it is not the case, the manipulator can be considered
as locally redundant. However, in the case of mon+p, additional constraints must be imposed on available joint torques to
satisfy the static assumption [16].

To analyze redundant robots (mon+p), the singular value decomposition (SVD) is introduced [15,22]. The SVD of J is
given by

J ¼ USVT ¼ U
k O

O O

� �
VT (10)

where U 2 <m�m, S 2 <m�ðnþpÞ, V 2 <ðnþpÞ�ðnþpÞ, and k ¼ diag(l1,l2,y,lr).
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Under the assumption that the manipulator is kinematically redundant (i.e. mon+p), the pseudo-inverse J+ of J is a
matrix that must satisfy

JJþJ ¼ J

JþJJþ ¼ Jþ

ðJJþÞT ¼ JJþ

ðJþJÞT ¼ JþJ (11)

Therefore, the SVD of such a matrix can be written as

Jþ ¼ V
k�1 O

O O

" #
UT. (12)

If J+ is low-rectangular and full rank, its pseudo-inverse can be computed as

Jþ ¼ JTðJJTÞ�1, (13)

and JJþ ¼ IðnþpÞ�ðnþpÞ.
Hence, the dynamic Eq. (9) can be rewritten as

MðxÞJþðxÞð €H � _J _xÞ þ Cðx; _xÞ þ KðxÞx ¼ t. (14)

However, in most work, oscillatory base manipulators are designed to move robots along desired joint angles [1–10]. In this
section, the output of interest is Cartesian error

eHðtÞ ¼ HdðtÞ � HðtÞ, (15)

where Hd(t) is the desired Cartesian trajectory, and H(t) is the end-effector Cartesian position. To determine the influence of
input u(t) on tracking error, Eq. (15) is differentiated twice to obtain

_eHðtÞ ¼
_HdðtÞ �

_HðtÞ

€eHðtÞ ¼
€HdðtÞ �

€HðtÞ. (16)

The control input law is defined as

€eHðtÞ ¼ tH . (17)

In classical control theory, in the presence of disturbances, PD control generates a nonzero steady-state error [19]. However,
at a steady state, a residual error exists due to disturbance and gravity. This error can be removed using the PID computed-
torque controller

_�H ¼ eHðtÞ

tH ¼ �Kd _eH � KpeH � Ki�H , (18)

which yields robot manipulator control input

t ¼MðxÞJþðxÞð €Hd �
_J _xþ Kd _eH þ KpeH þ Ki�HÞ

þ Cðx; _xÞ þ KðxÞx. (19)

Eq. (19) is called as the ‘‘Cartesian computed-torque control law (CCTC)’’.
However, the control law (19) cannot usually be implemented due to its complexity or to uncertainties present in M(x),

Cðx; _xÞ, and K(x). Instead, one applies t in (20) below where M̂JðxÞ, Ĉðx; _xÞ, and K̂ðxÞ are approximations to MðxÞJþðxÞ, Cðx; _xÞ,
and K(x), respectively,

t ¼ M̂JðxÞð
€Hd �

_J _xþ Kd _eH þ KpeH þ Ki�HÞ þ Ĉðx; _xÞ þ K̂ðxÞx. (20)

We call Eq. (20) the ‘‘approximate Cartesian computed-torque controller (ACCTC)’’.
In some case M(x), Cðx; _xÞ, or K(x) is not known exactly. Then, M̂JðxÞ, Ĉðx; _xÞ, and K̂ðxÞ could be the best estimate we have

for these terms. Fundamentally, the Eq. (19) is based on the calculation of the inertia matrix M(x), Coriolis and centrifugal
terms Cðx; _xÞ and stiffness K(x). In fact, even if the matrix M̂JðxÞaMðxÞJþðxÞ, Ĉðx; _xÞaCðx; _xÞ, and K̂ðxÞaKðxÞ, the performance
of controllers based on Eq. (20) can be quite good if the outer-loop gains are selected appropriately [19].

From the projection operator, Eq. (19), (20) can be divided into two control loops—one is the damping controller that
suppresses vibrations of oscillatory bases, and the other is the controller, which dominates Cartesian trajectory tracking.
The principal advantage is that the pseudo-inverse Jacobian control only need to select control gains for Cartesian position
tracking; that is, one does not need to redesign a vibration damping controller for such a system.

Moreover, the closed-loop characteristic polynomial is

DcðsÞ ¼ js
3I þ Kds2 þ Kpsþ Kij (21)
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Selecting diagonal control gains yields

Kd ¼ diagfkdi
g; Kp ¼ diagfkpi

g; Ki ¼ diagfkii
g

By using the Routh test, closed-loop stability requires that

kii
okdi

kpi
(22)

that is, the integral gain should not be excessively large [19].
However, the principal challenge in generating a satisfactory outer-loop PID is tuning the PID controller parameters to

achieve a desired performance. The approach of selecting parameters based on experimental results is typically time-
consuming. The Ziegler–Nichols tuning approach is broadly accepted as an accurate heuristic scheme for determining the
proper settings for PID and PI controllers for a wide range of industrial processes. However, manual tuning is not frequently
employed in practice because it is laborious and time-consuming, particularly for processes with large time constants.

Moreover, [19] proposed another scheme for selecting PD gains. The standard form of the closed-loop characteristic
polynomial is

DcðsÞ ¼ js
2I þ kdi

sþ kpi
j ¼ s2 þ 2zonsþo2

n (23)

where z is the damping ratio, and on is the natural frequency. Therefore, the desired performance in each component of the
error e(t) may be achieved by selecting the PD gains kpi

¼ o2
n; kdi

¼ 2zon.
However, determining the damping ratio and natural frequency for each component in the system is difficult. Selecting

the integer (I) control gain is also difficult. Thus, an efficient method for selecting the PID control gains is needed.
3. Grey relational analysis

3.1. Development of the prediction model

The remainder of this section describes the standard derivation procedure associated with the Grey model based on
experimental results obtained by other studies. Grey model GM(1,1) is employed to establish a grey predictor. The GM(1,1)
comprises the fundamental operations for modeling. The prediction model was developed elsewhere [9,21,23].
3.2. Grey relational grade analytical algorithm

This subsection presents the grey relational approach for analyzing system output (Cartesian tracking error) sensitivity
to small perturbations in outer-loop PID controller parameters for the Cartesian computed-torque law. Grey relational
analysis is employed to rank the importance of PID control gains. Grey relational analysis is described as follows. The
computation technology is similar to that described elsewhere [9,21,23].

Step 1. Calculate the comparison series xj

The Cartesian tracking error is defined by eH(kT) ¼ Hd(kT)�H(kT), where Hd(kT) the desired Cartesian trajectory, H(kT) is
the end-effector Cartesian position, k is an integer, and T is sampling period. Thus, the comparison series xj can be defined
as the Cartesian tracking error for the end-effector of the manipulator in a normalized root-mean-square (RMS)
formulation

xj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

e2
H

vuut =N, (24)

where N is the total number of samples.
Step 2. Calculate the reference series xi,

x�i ðkÞ ¼
min½xð0Þ

j
ðkÞ�

xð0Þ
j
ðkÞ

, (25)

where min½xð0Þ
j
ðkÞ� is the minimum values in a comparison series at the kth experimental datum.

Step 3. The absolute differences of a given series are compared via

DijðkÞ ¼ jxiðkÞ � xjðkÞj (26)

where Dij is the absolute difference between the series xi and xj at the kth experimental datum. Typically, xi and xj are
defined as reference and comparison series, respectively. The values for the original series must be normalized to the same
order as variations in the order of data that characterize factors results in an inaccurate grey relational grade.
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Step 4. Calculate the minimum and maximum values of each experimental datum via

Dmin ¼ 8j
min
2 i8k

min
jxiðkÞ � xjðkÞj

Dmax ¼ 8j
max
2 i8k

max
jxiðkÞ � xjðkÞj

(27)

Step 5. Estimate the grey relational coefficient using g(xi(k),xj(k))
The calculated grey relational coefficient (GRC) expresses the relationship between control performance, which is an

estimated reference sequence, and its sequences that are compared. Eq. (28) yields the GRC of (xi,xj) at the k-th
corresponding datum. The GRC can be intuitively regarded as the point-to-point relationship at the k-th corresponding
datum.

gðxiðkÞ; xjðkÞÞ ¼
Dmin þ zDmax

DijðkÞ þ zDmax
(28)

where z is the distinguishing coefficient; its interval is bounded on z 2 ½0;1� and frequently taken as 0.5. The factor z in
Eq. (28) controls the resolution between Dmax and Dmin. The operator can select a value between 0 and 1 to suit the
application. Additionally, Dmin and Dmax are the minimum and maximum differences between the reference sequence and
all other sequences, respectively.

Step 6. Estimate the grey relationship grade (GRG) Gðxi; xjÞ

The grey relational grade (GRG) is employed to describe and elucidate the relationship between two sets of comparison
and reference under a particular background. A large GRG between two tasks indicates that the tasks are closely related.
Restated, task that are very similar have a large GRG. When estimating the effort expended by a PID controller, the GRG is
the strength of the relationship between an estimated control performance (reference series) and its historical values
(comparison series). The GRG is defined as the mean of the GRCs at the effort drivers. Here, Gðxi; xjÞ is designed as GRG
between xi(k) and xi(k)

Gðxi; xjÞ ¼
1

n

Xn

k¼1

gðxiðkÞ; xjðkÞÞ (29)

where n is the number of effort drivers identified during the estimation procedure. In the tracking-control experiment,
the GRG is associated with the impact of the PID control gains for the estimated Cartesian computed-torque law for
tracking error.

4. Experimental implementation

An experimental device was designed and constructed to verify both model development and controller design. For a
description of this device, see [6–9]. Fig. 3 shows the experimental apparatus. Test results are obtained via the
aforementioned procedures using MATLAB and Simulink. Two servomotors are attached to each joint, and optical encoders
are used to measure the position of the motor shaft. Optical encoders are used as the positional feedback device for sensing
the angular displacement of the motor shaft. Furthermore, base compliance was achieved by four linear springs (stiffness of
each spring is 200 N/m). To analyze the transverse oscillations of the base, a PCB PIEZOTRONICS force sensor (model
208C01) was attached to the face of the oscillatory base to measure base transverse vibrations. Moreover, a force generator
is generating a damping force that suppresses vibration of oscillatory bases. The implementation of the proposed controller
is indicated in Fig. 4.

5. Results and discussion

5.1. Estimation for grey relational grade G

Grey relational analysis is utilized to determine the sensitivity of tuning outer-loop PID parameters to attain a desired
performance based on the Cartesian computed-torque control law. The simulations and experimental results are specified
the desired task of the robot manipulator mounted on the oscillatory bases. Since the manual computation associated in
grey analysis is tedious and prone to errors, an automated computational process is highly desirable. Therefore, a program
written in Microsoft EXCEL is developed for this work. Data are input and the program then automatically derives the
dynamic equations for a given system. Additionally, in this program, no ranking errors affect operations. Hence, the results
of the analysis are more convincing than those obtained by manual computation.

The end-point Cartesian position X- and Y-direction vector of such a manipulator system is:

x2 ¼ a1 cos y1 þ a2 cosðy1 þ y2Þ

y2 ¼ a1 sin y1 þ a2 sinðy1 þ y2Þ þ xb. (30)
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Therefore, Jacobian matrix J is a nonsquare matrix and a redundant robot condition occurs. Hence, the pseudo-inverse
Jacobian matrix is applied for such a system. Moreover, point accuracy has been determined while accounting for base
transverse vibrations. Calculation of the GRG follows the procedure presented in Section 3.2. Table 1 presents
computational results yielded by Eqs. (24)–(29) for X-direction tracking. Table 1 also presents the normalized RMS
tracking error, ex, for various Kpx, Kix, and Kdx control gains. Table 1 also shows the GRC g and its relational grade for
X-direction tracking, G. The GRG G is 0.82725 for Kpx, 0.85420 for Kdx, and 0.72134 for Kix. Hence, the sensitivities of
parameter perturbations are obtained easily. Furthermore, tuning Kdx for the PID controller is more sensitive than that for
tuning Kpx, and Kix in X-direction tracking behavior (Table 1). The ranked importance of control gains is Kdx4Kpx4Kix. The
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Table 1
Grey relational grade for X-direction.

Cartesian coordinates X-direction

Design Eq. (24) Eq. (25) Eq. (26) Eq. (28) Eq. (29) Rank

xj xi Dij g G

Kpx ¼ 10 Kdx ¼ 10 Kix ¼ 0 0.00756 0.56878 0.56122 1.00000 0.82725 2

Kpx ¼ 20 0.00560 0.76786 0.76226 0.84046

Kpx ¼ 30 0.00477 0.90147 0.89670 0.75944

Kpx ¼ 40 0.00430 1.00000 0.99570 0.70910

Kpx ¼ 40 Kdx ¼ 10 Kix ¼ 0 0.00430 1.00000 0.99570 0.70910 0.85420 1

Kdx ¼ 20 0.00536 0.80224 0.79688 0.81799

Kdx ¼ 30 0.00638 0.67398 0.66760 0.90872

Kdx ¼ 40 0.00730 0.58904 0.58174 0.98099

Kpx ¼ 40 Kdx ¼ 10 Kix ¼ 10 0.00433 1.00000 0.99567 0.70911 0.72134 3

Kix ¼ 20 0.00441 0.98186 0.97745 0.71787

Kix ¼ 30 0.00448 0.96652 0.96204 0.72545

Kix ¼ 40 0.00455 0.95165 0.94710 0.73295

Eq. (27)
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Fig. 5. Tracking error vs. control gains in X-direction.
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priority of modifying controller parameters should be highest among parameters. Based on the GRG between tracking error
and PID control gains, all control gains can be ranked according to GRG. This procedure is called grey relational ranking.
Consequently, an operator can make an appropriate decision based on the grey ranking and the control goal can be
attained. An existing GRG close to unity corresponds to a strong similarity among geometric patterns that characterize any
two series. Notably, as Kpx gain increases, tracking error decreases (Fig. 5). Conversely, Fig. 5 also indicates that as Kdx (or Kix)
gain increases, tracking error increases. Therefore, one can follow the above rules when adjusting PID control gains to
determine whether to increase (or decrease) the control gains.

Table 2 shows the GRC g and its relational grade G for Y-direction tracking. Fig. 6 shows tracking error vs. control gains in
the Y-direction. The results are similar to those for X-direction tracking. The ranked importance of control gains is
Kdy4Kpy4Kiy. Thus, reduced tracking error is maximal when parameter Kdy is tuned, indicating that parameter Kdy is the
most important parameter when tuning the controller. The proposed grey relational analysis methodology can be
employed to rank parameter importance. The most important parameter typically dominates in base control; the next most
important parameters are used to modify the fine motion. Hence, control parameters with the highest priorities should be
modified first. Thus, the proposed grey relational analysis offers several implementation benefits—it is simple, low-cost,
requires minimal computational time, and has a fast adaptation rate during implementation. A number of experiments
were performed using the PID grey model to assess the merits of concepts.
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Table 2
Grey relational grade for Y-direction.

Cartesian coordinates Y-direction

Design Eq. (24) Eq. (25) Eq. (26) Eq. (28) Eq. (29) Rank

xj xi Dij g G

Kpy ¼ 10 Kdy ¼ 10 Kiy ¼ 0 0.01707 0.57030 0.55323 1.00000 0.82483 2

Kpy ¼ 20 0.01265 0.76939 0.75674 0.83743

Kpy ¼ 30 0.01079 0.90214 0.89135 0.75613

Kpy ¼ 40 0.00973 1.00000 0.99027 0.70578

Kpy ¼ 40 Kdy ¼ 10 Kiy ¼ 0 0.00973 1.00000 0.99027 0.70578 0.85188 1

Kdy ¼ 20 0.01211 0.80387 0.79177 0.81464

Kdy ¼ 30 0.01442 0.67503 0.66062 0.90708

Kdy ¼ 40 0.01647 0.59108 0.57461 0.98001

Kpy ¼ 40 Kdy ¼ 10 Kiy ¼ 10 0.00982 1.00000 0.99018 0.70582 0.71803 3

Kiy ¼ 20 0.00999 0.98260 0.97261 0.71427

Kiy ¼ 30 0.01016 0.96665 0.95649 0.72220

Kiy ¼ 40 0.01032 0.95165 0.94133 0.72982

Eq. (27)

Dmin Dmax

0.55323 0.99027

tracking error (RMS) in Y direction

0.00800

0.01000

0.01200

0.01400

0.01600

0.01800

10
Gains

tra
ck

in
g 

er
ro

r (
m

)

20 30 40

adjust Kpy

adjust Kdy

adjust Kiy

Fig. 6. Tracking error vs. control gains in Y-direction.
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5.2. Simulation results

As noted in Section 2, the pseudo-inverse Jacobian control only needs to select control gains for Cartesian position
tracking. Redesigning a vibration-damping controller for such a system is unnecessary. Therefore, to confirm further
controller performance, the step reference command for X- and Y-directions were applied to the system. According to the
grey relational degree described in Section 5.1, parameter Kdx is adjusted first to yield the best performance for X-direction
reference inputs.

Parameters Kpx and Kix are then adjusted to acquire the best performance for reference inputs for the remaining
operational range. Once these parameters are tuned, the Y-direction is tuned. After arbitrarily assigning values to the PID
parameters [(Kpx ¼ 50, Kdx ¼ 60, Kix ¼ 70),(Kpy ¼ 50, Kdy ¼ 60, Kiy ¼ 70)], the modification should follow the modification
process (Fig. 7). First, the adjusted sequence for control parameters in the X-direction is

ðKpx ¼ 50;Kdx ¼ 60;Kix ¼ 70Þ ! ðKpx ¼ 50;Kdx ¼ 15;Kix ¼ 70Þ ! ðKpx ¼ 65;Kdx ¼ 15;Kix ¼ 70Þ

! ðKpx ¼ 65;Kdx ¼ 15;Kix ¼ 0:1Þ

Performance improved significantly after the above modification methodology was applied to control parameters
(Fig. 8(a)). Tracking performance was significantly improved by tuning control parameter Kdx. The steady-state error of the
positional response was decreased markedly by the control action, indicating that parameter Kdx in the controller is the
most important and dominates base control action. However, the improved performance achieved by tuning only
parameter Kdx is insignificant and settling time (2.2 s) remains large. Therefore, tuning Kpx and then Kix can significantly
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improve system tracking performance. After tuning parameter Kix, the convergence rate accelerated (settling time was
0.8 s) and steady-state error was reduced. Consequently, the proposed modification scheme increased the convergence rate
and reduced steady-state error.

When the X-direction tracking performance is satisfactory (Kpx ¼ 65, ,Kdx ¼ 15, Kix ¼ 0.1), then Y-direction control
parameters are adjusted. Similarly, the concept used to modify Y-direction tracking control parameters is the same as used
for the X-direction parameters. The adjustment sequence is

ðKpy ¼ 50;Kdy ¼ 60;Kiy ¼ 70Þ ! ðKpy ¼ 50;Kdy ¼ 20;Kiy ¼ 70Þ ! ðKpy ¼ 100;Kdy ¼ 20;Kiy ¼ 70Þ

! ðKpy ¼ 100;Kdy ¼ 20;Kiy ¼ 0:2Þ

Fig. 8(b) displays the tracking performance in the Y-direction for various control gains. Fig. 8(c) shows that the tip position
of the manipulator can move to the desired position smoothly after the proposed modification scheme was introduced.

The linear quadratic regulator (LQR) is another well-known approach for optimizing the control gains of a linear system.
However, the LQR is impractical when a system has various complexities, such as nonlinearities and coupling. When
system parameters are not fully known and exhibit nonlinear characteristics, selecting the weighting matrix and setting
control gain K are very difficult tasks [18].

The Ziegler–Nichols tuning formula is a famous PID tuning scheme. The Ziegler–Nichols tuning formula is based
on empirical knowledge of the ultimate gain ku and ultimate period tu. The PID controller is typically implemented as
follows [20];

u ¼ kc eþ
1

Ti

Z
edt � Td

dyf

dt

 !
(31)

where the proportional gain kc ¼ 0.6ku, the integral time Ti ¼ 0.5tu and the derivative time Td ¼ 0.125tu. The tracking error
is defined as e ¼ yd�y, and yf ¼ ð1=ð1þ sTd=NÞÞy, where N is noise filtering constant.
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Compare to the grey PID control, the Ziegler–Nichols tuning formula needs two more values ku and tu to be
determined. The main point of Ziegler Nichols is that it is empirical. Measure the reaction time and then derive the
PID settings. However, this manual tuning scheme is not applied in practice as it is laborious and time-consuming,
particularly when the time constant is large. In control process, determining ultimate gain ku and ultimate period tu is very
difficult.

Fig. 9 presents the simulation results for the traditional Ziegler–Nichols tuning formula and the proposed grey PID
methodology. According to Ziegler–Nichols tuning formula, the ultimate gain ku and ultimate period tu is selected as 3.43
and 2.88, respectively. The effectiveness of Cartesian tracking performance was confirmed when the proposed grey PID
tuning scheme was applied. The settling time and steady-state error of the tracking response was reducibly by the grey PID
control gains. However, the accuracy of the Zigler–Nichols tuning formula has been found to be quite adequate for manual
tuning, as it can be supplemented by fine-tuning based on experience. It needs manual fine-tuning and human expertise to
select PID control gains while in system operation. Therefore, the automation of the controller-tuning procedure, exploring
the possibility of modifying the tuning formula by incorporating heuristic knowledge to replace manual fine-tuning is
strong desired.

Hence, this study developed a novel fast adaptation scheme based on the GRG to select outer-loop PID control
parameters for Cartesian computed-torque control. Relational analysis was used to rank easily the importance of PID
control gains. The most important parameters must be identified to ensure the parameters sensitivity. The proposed grey
relational methodology allows operators to adjust easily control gains while a system is operating.
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5.3. Experimental results

Numerous real-time experiments were performed using the grey model of PID to assess the merits of grey relational
analysis.

After arbitrarily assigning values to PID parameters, the modification should follow the grey relational process (Fig. 7).
First, the adjustment sequence for control parameters is

ðKpx ¼ 50;Kdx ¼ 40;Kix ¼ 30Þ ! ðKpx ¼ 50;Kdx ¼ 1;Kix ¼ 30Þ ! ðKpx ¼ 100;Kdx ¼ 1;Kix ¼ 30Þ

ðKpx ¼ 100;Kdx ¼ 1;Kix ¼ 4Þ

Therefore, experimental results also support the same conclusion as that for position tracking response (Fig. 10a). Similarly,
when X-direction trajectory tracking performance is satisfactory (Kpx ¼ 100, Kdx ¼ 1, Kix ¼ 4), Y-direction control
parameters are adjusted. A substantial improvement was attained during tracking tasks when the proposed parameter
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modification scheme was adopted (Fig. 10b). The settling and steady-state error of the end-effector position response
was reduced markedly by the control action. We conclude that the controller was effective in tuning grey PID parameters
(Fig. 10). These experimental results indicate that good tracking performance can be achieved (Figs. 10a and b) and base
oscillation eliminated (Fig. 10c). Consequently, the proposed scheme improves Cartesian endpoint accuracy. Even when a
controller only selects control gains for Cartesian position tracking, base oscillation can be decreased. Such gain control
should reduce the effect of subsystem coupling motion on the entire system. Additionally, control gains can be tuned for a
robot mounted on an oscillatory base without need for elaborate modeling and analyses.

Similarly, the experimental results also the effectiveness of the proposed grey PID scheme for tracking performance
(Figs. 11a and b) and minimizing base oscillatory vibration in time domain (Fig. 11c). The grey PID control action
significantly reduces the steady-state error in settling time, demonstrating that the convergence rate is faster than
Ziegler–Nichols tuning scheme.
5.4. Test results with model uncertainties

In addition, this study also investigates the control of the robot manipulators mounted on oscillatory bases when their
dynamical model is uncertain. Simulations like those presented in this subsection could be carried out for approximate
Cartesian computed-torque control which demonstrated in Eq. (20). The basic principles for the tuning grey PID control
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gains would be the same as for the Cartesian computed-torque control while the model is assume exactly known. The PID
parameters modification also follows the adaptation process (Fig. 7). Tracking performance was significantly improved by
tuning control gains Kdx and Kdy. The steady-state error of the positional response was decreased markedly by the control
action, indicating that parameter Kdx and Kdy in the controller is the most important and dominates base control action for
X- and Y-direction, respectively. Hence, simulation results support the same conclusion as that for position tracking
response (Fig. 12a and b). Fig. 12(c) shows that the end-effector of the manipulator can move to the desired Cartesian
position smoothly after the proposed modification scheme was introduced. Therefore, even if the dynamic systems are not
known exactly, the performance of controllers based on Eq. (20) can be quite good if the outer-loop gains are selected
appropriately. In less demanding applications, or when the dynamic model of the process is poorly known, PID control may
still be used [19,20].

Furthermore, Fig. 13 indicates that the experimental results for tracking performance in using grey PID scheme with
approximate Cartesian computed-torque control law. The experimental results also demonstrate the successfully tracking
performance when the dynamical model is uncertain (Fig. 13). The tip position of the manipulator can move to the desired
Cartesian position efficiently after the proposed grey modification method was applied. Thus, even if the dynamic model is
inadequately known, the proposed grey relational methodology as well allows the operators to adjust easily control gains
while a system is operating. Consequently, the robustness properties of pseudo-inverse Jacobian control with grey
relational analysis make a successful control law for many applications.
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6. Conclusions

The pseudo-inverse Jacobian feedback control laws with grey relational analysis for tuning outer-loop PID control
parameters of Cartesian computed-toque control law was successfully applied for robot manipulators mounted on
oscillatory bases. From the projection operator, the whole system can be divided into two control loops—one is the
damping controller that suppresses vibrations of oscillatory bases, and the other is the controller, which dominates
Cartesian trajectory tracking. The primary advantage is that the proposed pseudo-inverse Jacobian control only need to
select control gains for Cartesian position tracking; that is, one does not need to redesign a vibration damping controller for
such a system. Grey relational grade is utilized to investigate the sensitivity of tuning the auxiliary signal PID of the
Cartesian computed-torque law to achieve desired performance. It indicates that the ranking importance is Kd4Kp4Ki

for X- and Y-directions tracking control, respectively. The priority modification of the controller parameters should be the
top ranking importance among the parameters. The test results of position response have shown that the tracking
performance can be achieved and base oscillation eliminated. The results of this study can be feasible to various
mechanical systems, such as mobile robot, gantry cranes, underwater robot, and other dynamic systems mounted on
oscillatory bases for moving the end-effector to a desired Cartesian position. However, the control of the robot end-effector
to a desired Cartesian position is the preliminary study of the hybrid position/force control. Therefore, the future work will
be focus on the issue of hybrid force/position control of the robots with oscillatory base interacting with geometrically
unknown environments.
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