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This study presents a method of using acoustic holography and the force analysis

technique to identify vibration sources from radiated noise measurements. The

structure studied is a plate excited by a shaker on which three measurements were

performed: the first is a reference measurement of plate velocity obtained by scanning

laser vibrometry, the second is based on sound pressure measurements in the near field

of the structure, and the third is the measurement of normal acoustic velocities by using

a p-U probe recently developed by Microflown Technologies. This was followed by the

application of classical NAH, known as pressure-to-velocity holography and velocity-to-

velocity holography to predict the plate velocity field from acoustic measurements at

distances of 1 and 5 cm. Afterwards, the force analysis technique, also known as the RIFF

technique, is applied with these five data sets. The principle is to inject the displacement

field of the structure into its equation of motion and extract the resulting force

distribution. This technique requires regularization done by a low-pass filter in the

wavenumber domain. Apart from pressure-to-velocity holography at 5 cm, the

reconstructed force distribution allows localizing the excitation point in the measure-

ment area. FAT regularization is also shown to improve results as its cutoff wavenumber

is optimized with the natural wavenumber of the plate. Lastly, quantitative force values

are extracted from force distributions at all frequencies of the band 0–4 kHz studied and

compared with the force spectrum measured directly by a piezoelectric sensor.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The general aim of the study described in this paper is to identify the excitations generating the vibration and the
acoustic radiation of a structure by contactless measurements. The approach followed is particularly interesting because it
allows detecting the mechanical cause of the radiated noise. The objective is to go further than simple airborne source
characterization, as structure-borne noise source characterization is also concerned. Consequently, the quantities sought
are mechanical forces or moments, force distribution and/or the mechanical power applied to the structure. To achieve this,
two well known methods are coupled: near field acoustic holography (NAH) and the force analysis technique (FAT).

For several years, NAH has proved a useful technique for the acoustic source identification in terms of pressure and/or
velocity field prediction [1–3]. In its usual form, the principle consists in measuring sound pressure on a microphone grid
on a given plane, calculating the pressure field in the k-space by a 2D Fourier transform and computing ‘‘acoustic back-
propagation’’ by using the inverse solution of the wave equation in the normal direction of the plane. As in several inverse
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problems, the NAH is particularly sensitive to measurement uncertainties. This ill-posed problem characteristic is due to
the fact that small data errors are essentially located in the high wavenumber domain, amplified by the back-propagation
process. That is the reason why wavenumber low-pass filtering is essential in NAH.

The force analysis technique is a method first developed 10 years ago by Pezerat [4,5]. It is also known as the RIFF
technique, the acronym stemming from the French Résolution Inverse Filtrée Fenêtrée (filtered windowed inverse
resolution). It is intended to compute the force distribution acting on a structure by using the measurement of its
displacement field. Here, computation of force distribution is based on the use of the vibration equation of motion where
the spatial derivatives of the displacement field are deduced by finite difference schemes. As with NAH, this approach is
highly sensitive, so wavenumber low-pass filtering is also required. This filtering is done by using a convolution product of
the reconstructed force distribution and a finite spatial response of a low-pass wavenumber filter. It should be noted that
this approach is relatively local and that knowledge of the equation of motion is sufficient. Measurements of the entire
structure are not needed and the boundary conditions can be unknown. Also, it is possible to identify every type of
excitation, since they can be extracted if the force distribution is known. For example, it is possible to identify point forces
[6], moments [7], injected power [8], etc. Until now, FAT has been developed for simple structures such as beams [6], plates
[5] and shells [9,10] where the equation of motion is known analytically.

In this work, the example chosen is a plate excited by a shaker and the goals are to localize and identify the applied
force. Different kinds of data were measured in order to compare the accuracies of several approaches. First, the
displacement field of the plate was measured directly by a scanning laser vibrometer. This provides a reference
measurement through the use of the classical RIFF method. Several distances are proposed for the acoustic measurements.
Traditionally, sound pressure is used in NAH because it is easier to measure sound pressure than particle velocity.
A Microflown p-U transducer is now available [11–13] that gives sound pressure and acoustic particle velocity in the
direction normal to the plate. The velocity component in this direction is most important [14]; the velocity components in
the plane parallel to the plate are already fairly well represented in the pressure measurements, while the velocity
component in the normal direction must be deduced from theory if it is not measured experimentally. The use of this p-U
transducer in the NAH gives better results as predicted quantity (velocity) is the same as that measured [14,15].

Excluding the conclusion, the rest of this paper is divided into three parts. The first part contains the description of the
experiments where data samples are shown. The second part presents the method of performing the back-propagations
and gives the identified velocity fields of the plate. The last part concerns force identification by using FAT, where data from
the laser vibrometer, pressure-to-velocity NAH predictions and velocity-to-velocity NAH predictions are used. Finally, force
spectra are compared with the force spectrum measured by a piezoelectric sensor.
2. Experimental procedures

2.1. Experimental setup

These measurements are intended to provide satisfying results, thereby demonstrating the ability of the NAH and FAT
methods to localize and quantify the excitation acting on a structure. Because the structure must be capable of radiation
(acoustic measurement) and because its analytic equation of motion must also be known (in order to use FAT), it appeared
that a plate was the simplest structure that could be used. More specifically, it was a 5 mm thick aluminium plate clamped
by three screws fixed at the top of the setup (see Fig. 1).
Fig. 1. Experimental setup.
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Fig. 2. Grid of measurements (399 points): 21 points separated by Dx located on length Lx; 19 points separated by Dy located on length Ly . The position of

the point force is ðX;YÞ ¼ ð�275 mm;�214 mmÞ. REF represents the position of the reference accelerometer. Dark gray surfaces illustrate the positions of

absorbing bands.

C. Pézerat et al. / Journal of Sound and Vibration 326 (2009) 540–556542
The same 2D grid was used for all the measurements (structural and acoustic measurements). This grid is represented in
Fig. 2. It is composed of:
�
 21 points in the x direction (length Lx ¼ 430 mm) separated by Dx ¼ 21:5 mm.

�
 19 points in the y direction (length Ly ¼ 387 mm) separated by Dy ¼ 21:5 mm.
For the phase reference of all measurements, an accelerometer was fixed to the plate outside the grid of measurement
points.

Moreover, the plate was excited by an electrodynamic shaker driven by white noise and located in the grid at position
ðX;YÞ ¼ ð�275 mm;�214 mmÞ (see Fig. 2). The force applied by the shaker was measured directly by a piezoelectric sensor.
This allows providing a reference for the final FAT predictions.

Finally, to avoid high resonances at which FAT can give poor results for the corresponding eigenfrequencies (see [5]), the
modal overlap of the plate was increased by absorbing bands fixed near its boundaries.
2.2. Plate velocity field measurement

The aim of the plate velocity field measurement is to give a reference for force identification by using back-propagation
techniques. The plate velocity field was measured with a scanning Polytec laser vibrometer at each point of the grid
presented in Fig. 2. For each point, auto spectra, transfer functions and coherences between each sensor (laser,
accelerometer, force sensor) were recorded in the frequency range (5–4000 Hz) with a step Df equal to 5 Hz. The averaged
coherence (defined as the ratio between averaged coherent power output spectrum and averaged output power spectrum
[16]) between plate velocity (laser vibrometer) and force (force sensor) is presented in Fig. 3. As can be seen, coherence
decreases above 2500 Hz due to the low velocity level at high frequency.
2.3. Pressure and acoustic velocity field measurement

The sound pressure and the acoustic velocity fields are the input data for the back-propagation techniques used to
estimate plate velocity. These measurements were done by a Microflown p-U probe [12,13] where the same signal
processing parameters were kept (frequency range: (5–4000 Hz); step: Df ¼ 5 Hz). Also, two different distances from the
plate were chosen: 1 and 5 cm.

Fig. 4 compares pressure and acoustic velocity to background noise. Pressure and velocity levels appear very high (more
than 10 dB higher) compared to background noise on the frequency band 500–4000 Hz. In addition, averaged coherence
between signals given by the p-U sensor and the force sensor presented in Fig. 5 demonstrates that the acoustic quantities
are well correlated to the point force for both distances.
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Fig. 4. Influence of background noise on pressure and acoustic velocity measurements: (a) acoustic velocity autospectrum and (b) pressure autospectrum.

Dot line: background noise; solid black line: 1 cm measurement; solid gray line: 5 cm measurement.
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Fig. 3. Averaged coherence between the laser vibrometer and the force sensor defined as the ratio between coherent output power spectrum and output

power spectrum.
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2.4. Comparison of velocity fields

In this section, averaged velocity and velocity maps measured by the scanning laser vibrometer, by the p-U probe at
1 cm and by the p-U probe at 5 cm are compared.

Figs. 6 and 7 show the quality of acoustic measurements. In Fig. 6, curves corresponding to the plate velocity and the
acoustic velocity at 1 cm seems to be very close. Indeed, the difference does not exceed 2 dB. For applications that focus
only on analyzing the velocity field of the plate, this small difference could be considered as a continuity relationship.

However, at 5 cm the difference between both curves reaches more than 8 dB in the 500–2000 Hz frequency range. In
this case, the level of averaged acoustic velocity is lower, because the influence of evanescent waves is less.

Fig. 7 compares velocity maps (each map has its own scale) measured with the laser vibrometer and the p-U probe at
1500 Hz. The p-U probe at 1 cm gives velocity maps very close to those measured by the laser vibrometer. At 5 cm, the
acoustic velocity map is smoothed, although the correlation with the plate velocity is obvious.
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Fig. 5. Averaged coherence defined as the ratio between coherent output power spectrum and output power spectrum: (a) between acoustic velocity

sensor and force sensor and (b) between pressure sensor and force sensor. Solid black line: 1 cm measurement; solid gray line: 5 cm measurement.
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Fig. 6. Space averaged velocity. Solid black line: laser vibrometer; solid gray line: p-U probe at 1 cm; dot gray line: p-U probe at 5 cm.

Fig. 7. Velocity maps at 1500 Hz: (a) laser vibrometer; (b) p-U probe at 1 cm from the plate and (c) p-U probe at 5 cm from the plate. Each map has its own

scale.
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Fig. 8. Velocity maps at 1500 Hz: (a) laser vibrometer; (b) p-U probe at 1 cm from the plate and (c) p-U probe at 5 cm from the plate. Maps have the same

scale.
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Fig. 8 shows these maps in the same scale. In this case, the influence of distance is clearly shown. This figure
demonstrates that velocity back-propagation is needed.

3. Acoustic pressure and velocity back-propagations

3.1. Basics

In this section a back-propagation correction is proposed to assess the velocity of the plate from acoustic quantities.
Acoustical holography [1] is based on a 2D discrete Fourier transform (DFT) of acoustical information measured on a plane
in the near field of an acoustic source. The data measured are usually sound pressures, but holography can easily be
formulated with acoustic velocities measured in the normal direction of the measurement plane [14]. Assuming the
periodicity of the acoustic fields in the measurement plane and a harmonic time dependence e�jot , the acoustic pressure is
expressed in Fourier series:

pðx; y; zÞ ¼
X

n

X
m

PnmðzÞ e
jknxx ejkmyy (1)

where knx ¼ 2pn=Lx, kmy ¼ 2pm=Ly, Lx and Ly stand for x and y dimensions of the measurement grid and n;m are orders of
the Fourier components varying between the limits fixed by the spatial resolution.

Taking only waves travelling towards positive values of z, the use of (1) in the Helmholtz equation Dpþ ðo=cÞ2p ¼ 0
allows identifying the form of PnmðzÞ:

PnmðzÞ ¼ Pnmð0Þ e
jknmz

with knm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cÞ2 � k2

nx � k2
my

q
for ðo=cÞ2 � k2

nx þ k2
my

knm ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

nx þ k2
my � ðo=cÞ2

q
for ðo=cÞ2 � k2

nx þ k2
my (2)

where o is the pulsation (rad/s) and c the speed of sound (m/s).
Thus, each Fourier component in any plane z can be easily predicted from the values in the measurement plane at z ¼ 0.

Now, by considering the Euler equation giving the relationship between the acoustic velocity and the acoustic pressure
gradient, Eq. (2) can be written in terms of normal acoustic velocity:

Vz
nmðzÞ ¼

j

rorPnmðzÞ ¼
knm

ro Pnmð0Þ e
jknmz ¼ Vz

nmð0Þ e
jknmz (3)

This equation allows assessing the normal acoustic velocity in the plate plane from either the normal acoustic velocity or
the pressure in the measurement plane at z ¼ 0.

3.2. Regularization filters and extra-padding solutions

3.2.1. Back-propagation filter

For back-propagation applications, z is negative in Eq. (3). Thus, the exponential operator in Eq. (3) is either harmonic if
knm is real, or increasing exponentially if knm is imaginary, corresponding to the back-propagation of evanescent waves.
This latter operation is particularly sensitive to measurement errors and a filtering operation is necessary to minimize
them. High wavenumbers of the hologram that would be amplified by more than the gain GR are attenuated, since the



ARTICLE IN PRESS
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wavenumbers of the 2D DFT components are given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

nx þ k2
my

q
. This is a low-pass filter adapted to the back-propagation

distance and to the frequency. The corresponding cutoff wavenumber kR
c can be written as follows:

kR
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð10ÞGR

z:20

� �2

þ ðo=cÞ2

s
(4)

where GR is the maximum gain in dB of the retro-propagation operator.
The shape of the k-space filter is similar to the filter described in [17].

3.2.2. Pressure-to-velocity filter

The computation of the normal acoustic velocity in the measurement plane from acoustic pressures can also amplify
measurement noise. The pressure-to-velocity operation described in Eq. (3) is performed by multiplying the pressure
components Pnm by the ratio knm=ro, leading to a considerable gain for high spatial frequencies. A maximum gain GPV is
fixed for the pressure-to-velocity operation. This gain is given relatively to the pressure-to-velocity correction of the plane
wave, i.e. rc. The cutoff wavenumber kPV

c for the corresponding low-pass filter is given by

kPV
c ¼

o
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10GPV =10

q
(5)

where GPV is the maximum gain in dB of the pressure-to-velocity operator.
The pressure-to-velocity filter is combined in this work with the back-propagation filter when acoustic pressures are

used as the input data.

3.2.3. Extrapolation of the acoustic fields

There is a very strong assumption of the periodicity of the acoustic field when using DFT. Artificial discontinuities
produced at the edges of the measurement domain induce artifacts affecting the entire wavenumber domain. The use of
low-pass filters is insufficient, as they lead to ‘‘wraparound’’ errors (see [2]). The usual approach for solving this problem is
to weight the domain by Hanning or Tukey windows to constrain values at boundaries to zero. This windowing is
appreciable when the measurement domain is significantly larger than the source, but windowing can have a very
penalizing effect when the measurement domain has the same size as the source, as it is in this study. To limit the bias
error caused by windowing, the domain is extended by extrapolation carried out on the acoustic fields. This spatial
extension is not a new idea, but usually zero-padding is used (see [2]). Some iterative extrapolation approaches are
proposed in the literature [18]. The idea is to apply a low-pass filter in the wavenumber domain to the zero-padded
hologram. This operation not only attenuates the discontinuities at the boundaries of the hologram, it also corrupts
measured data. The measurements are then re-injected into the filtered hologram, keeping only changes outside the
measurement surface, and the low-pass filter is applied repeatedly to finally obtain the extrapolation. In this work, the
Fig. 9. (a) Measured acoustic velocity at 890 Hz. (b) Periodized field using the DFT. (c) Classic 100 percent zero-padding. (d) Used extrapolation.
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Fig. 10. (a) Plate velocity at 890 Hz measured by the laser vibrometer. (b) Measured acoustic velocity at 5 cm (multiplied by 2 to fit the color scale of other

maps). (c) Back-propagated velocity with 100 percent zero-padding. (d) Back-propagated velocity with 100 percent extra-padding.
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iterative process is stopped either when the difference between the filtered and unfiltered hologram is less than a given
threshold, or when the iteration has reached a given maximum value. The low-pass filter used for the extrapolation is the
same as that used for the retro-propagation and pressure-to-velocity operations described in the previous section. An
example of extra-padding is given in Fig. 9 for the acoustic velocity field measured at 890 Hz.

Fig. 10 shows the efficiency of the chosen extrapolation solution at 890 Hz. In this example, the number of points is
trebled in all directions. Edge errors are clearly visible when using classical zero-padding. The result using extrapolation is
closer to the plate velocity measured directly by the laser vibrometer.

The quality of acoustic holography results can be quantified using a quadratic error indicator. The indicator chosen was
defined in frequency bands by the magnitude of the difference between laser measurements and holography results
divided by the magnitude of the laser measurements:

�ð½f l; f s�Þ ¼

Pf s
f¼f l

PN
x¼1

PM
y¼1 jv

laserðx; y; f Þ � vholoðx; y; f Þj2Pf s
f¼f l

PN
x¼1

PM
y¼1 jv

laserðx; y; f Þj2
(6)

where ½f l; f s� represents the given frequency band, N and M are the number of points in the measurement grid along the
x and y directions, vlaser is the plate velocity measured by the laser vibrometer and vholo is the acoustic velocity measured
with the Microflown p-U probe back-propagated on the plate.

It is clear that it is not possible to reach a perfect match between grids used for laser and robot measurements, resulting
in a residual bias error contributing to the quadratic error indicator. Meanwhile, the holography results are all computed
from data acquired on the robot grid, and are compared to a unique reference velocity map obtained on the laser grid. The
bias error contribution can thus be supposed equivalent for all quadratic error curves shown in following figures.

The quadratic error is shown in Fig. 11 for the velocity back-propagated without zero-padding, with 100 percent zero-
padding and with 100 percent extra-padding. The error obtained with the extrapolation is between 1.5 and 2 times lower
than the error with classical zero-padding over the whole spectrum and 2–3 times lower the error without zero-padding.
This result shows the pertinence of the extrapolation chosen on the whole frequency range.
3.3. Back-propagation results

Acoustic pressures and velocities measured at 1 and 5 cm were back-propagated in the plate plane with a maximum
back-propagation gain adjusted to 6 and 20 dB (for, respectively, 1 and 5 cm) and a maximum pressure-to-velocity gain to
10 dB. An illustration of data processing is given in Fig. 12 for acoustical data measured at 5 cm at 890 Hz. First of all, the
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Fig. 11. Quadratic error by 50 Hz frequency bands of the holography results using acoustic velocities measured at 5 cm. Fine black: without zero-padding.

Thick black: classical 100 percent zero-padding. Dotted gray: 100 percent extra-padding.

Fig. 12. (a) Acoustic pressure measured at 5 cm at 890 Hz. (b) Normal acoustic velocity at 5 cm computed using acoustic pressure measured at 5 cm. (c)

Normal acoustic velocity measured at 5 cm. (d) Plate velocity measured with the laser vibrometer. (e) Computed plate velocity from measured acoustic

pressure at 5 cm. (f) Computed plate velocity from measured acoustic velocity at 5 cm.
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pressure map is converted into a velocity map. Then, back-propagations are applied to the resulting velocity and to the
velocity measured directly by the p-U probe. Moreover, the results can be compared to the plate velocity measured directly
(obtained by the laser vibrometer).
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Fig. 13 shows the quadratic errors with respect to the frequency. It is clear that the results obtained at 1 cm are more
reliable than those obtained at 5 cm. Also, it appears that the results obtained from the acoustic velocities are much more
satisfactory than those obtained from the acoustic pressures, particularly above 1 kHz. In the extreme case, the errors
computed from the pressure at 5 cm exceed 100 percent above 1500 Hz.

Regarding a hypothetical assumption of using the p-U probe as a plate velocity sensor at 1 cm without the back-
propagation technique, the quadratic error associated with the velocity at 1 cm is also drawn in Fig. 13 (in gray). The
comparison with the error obtained at 1 cm with acoustic holography clearly indicates that velocities are similar below
1 kHz. Otherwise, the acoustic correction should be taken into account. Indeed, with NAH, the error can be divided by 1.5 in
the 1000–2500 Hz band and by more than 2 above 2500 Hz.
4. Force distribution calculation

In this section, the force distribution computation is processed by FAT [4–6]. Initially, attention is given to the spatial
distribution for a given frequency in order to see if the results allow precise localization of the force applied by the shaker.
Secondly, force spectra are reconstructed and compared to those measured directly by the force sensor. Finally, quantitative
comparisons and frequency limits of the method are given.
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Fig. 13. Quadratic error by 50 Hz frequency bands. Solid black: back-propagated 1 cm measurement. Dotted black: back-propagated 5 cm measurements.

Left: results from acoustic velocity (solid gray: measured velocity at 1 cm). Right: results from acoustic pressure.

Fig. 14. Force distribution magnitude obtained from laser measurement with FAT at 890 Hz without filtering.
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4.1. Using only the discretized equation of motion

The first step of the FAT method consists in injecting the displacement (measured directly or obtained from acoustic
back-propagation) in the plate equation of motion discretized by a finite difference scheme. The scheme used is chosen to
be an estimation of the derivatives corresponding to a truncation of a first-order Taylor series. With this approximation, the
calculation of the force distribution Fi;j at the point indices ði; jÞ can be computed from 13 displacements around this point:

Fi;j ¼
Eh3

12ð1� n2Þ
ðd4x

i;j þ d4y
i;j
þ 2d2x2y

i;j
Þ � rho2wi;j (7)

where E, n, r, h are, respectively, the Young modulus, the Poisson ratio, the mass density and the thickness of the plate, o is

the pulsation. wi;j represents the displacement of the plate at point (i,j) and d4x
i;j , d4y

i;j
and d2x2y

i;j
indicate the finite difference

schemes approximating the spatial derivatives of the displacement. Their expressions are given in [5].
Fig. 15. Force distribution magnitude obtained with FAT at 890 Hz without filtering after pressure-to-velocity holography. Left: from pressure

measurements carried out at 1 cm from the plate. Right: from pressure measurements made at 5 cm from the plate.

Fig. 16. Force distribution magnitude obtained with FAT at 890 Hz without filtering after velocity-to-velocity holography. Left: from velocity

measurements carried out at 1 cm from the plate. Right: from velocity measurements carried out at 5 cm from the plate.
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In practice, this approach cannot be used without a regularization step, because the calculation of spatial derivatives
leads to a dramatic amplification of measurement errors. To illustrate this, Fig. 14 shows the force distribution obtained at
890 Hz by laser measurements. No wavenumber filtering was applied in this case, so the excitation point cannot be
localized easily.

Nevertheless, the results below are proposed without filtering to see whether NAH filtering is sufficient. Fig. 15
corresponds to force distributions deduced by pressure-to-velocity holography. This result appears very interesting,
because it clearly demonstrates the possibility of locating the excitation point from sound pressure measurements,
although the distance between the plate and the hologram must be small. Indeed, the use of the velocity field calculated
from sound pressures measured at 5 cm is not precise enough to allow good localization.

Concerning the same approach with data obtained by acoustic velocity holography, the results shown in Fig. 16 are
better and the excitation is visible even at the distance of 5 cm.
4.2. Using the FAT regularization process

Even if the results locate the excitation correctly, because data have already been filtered, we propose in this section to
use the usual FAT regularization to ascertain whether quality can be improved. This regularization consists in applying
Fig. 17. Force distribution magnitude obtained with FAT at 890 Hz with kFAT
c ¼ 2k from laser measurement.

Fig. 18. Force distribution magnitude obtained with FAT at 890 Hz with kFAT
c ¼ 2k after pressure-to-velocity holography. Left: from pressure

measurements made at 1 cm from the plate. Right: from pressure measurements carried out at 5 cm from the plate.
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C. Pézerat et al. / Journal of Sound and Vibration 326 (2009) 540–556552
windowing and low-pass wavenumber filtering [5]. In this case, the regularization parameter is the cutoff wavenumber
kFAT

c . Its value is chosen to follow the natural wavenumber k with a linear law kFAT
c ¼ a � k. Consequently, due to the plate

dispersion equation, the cutoff wavenumber depends on the square root of the frequency:

kFAT
c ¼ a

12rð1� n2Þ

E � h2

 !1=4 ffiffiffiffiffi
o
p

(8)

where o is the pulsation studied and a is the FAT regularization parameter. This latter parameter depends on the noise
level. Generally, it is a number between 1 and 4, but in the majority of cases a ¼ 2 is a good compromise.

In this work, the window used was a Tukey window for which the force distribution was weighted at its edges over a
distance equal to the cutoff wavelength lc ¼ 2p=kFAT

c . The filtering was performed by a convolution product with a sinc
function truncated by a Hanning window over a length of 2lc .
Fig. 19. Force distribution magnitude obtained with FAT at 890 Hz with kFAT
c ¼ 2k after velocity-to-velocity holography. Left: from velocity measurements

made at 1 cm from the plate. Right: from velocity measurements carried out at 5 cm from the plate.

102 103
0

0.02

0.04

0.06

0.08

0.1

0.12

frequency (Hz)

Fo
rc

e 
au

to
sp

ec
tru

m
 in

 R
M

S
 V

al
ue

 (N
)

Force sensor

Laser

Fig. 20. Force spectra. Dotted line: measured by the piezoelectric sensor—solid line: identified by FAT from laser measurements.
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Fig. 17 corresponds to the filtering of the noisy distribution illustrated in Fig. 14 with kFAT
c ¼ 2k using the Tukey window

and the filtering described. The good localization of the excitation point proves that the regularization parameters were
well optimized.

Also, as seen in Figs. 18 and 19, the use of a cutoff wavenumber matching the FAT criteria gives results with better
qualities than above, but the regularization is not sufficient for long distance pressure-to-velocity holography, because the
velocity prediction is too distant from the plate velocity.
4.3. Force spectra

In this last section, the identified force spectra are described and compared to those measured directly by a piezoelectric
force sensor. All the regularization parameters (maximum back-propagation gain GR, GPV , FAT regularization parameter a)
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Fig. 21. Force spectra. Dotted line: measured by the piezoelectric sensor—solid line: identified by FAT from pressure-to-velocity holography.

Up: measurements at 1 cm—down: measurements at 5 cm.
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are the same as in the previous section. To calculate the force value (in Newton), the peak observed on force distributions
(in N=m2) is spatially integrated by the discretized equation:

F ¼ Dx � Dy

Xnfþnl�1

i¼nf�nl

Xmfþnl�1

j¼mf�nl

Fi;j (9)

where F denotes the complex force value, Fi;j is the force distribution at the point indices ði; jÞ, nf and mf the excitation point
indices (identified by the maximum of the pic) and nl is the half-length of the spatial response of the FAT filter. Note that
this calculation is performed at each frequency, but an automatic procedure is carried out since the excitation point
coordinates are determined and the regularization parameters are fixed.

Figs. 20–22 show the force obtained by FAT compared to the force measured by the force sensor (which is the same in all
figures). The FAT obtained from laser measurements (Fig. 20) is a reference of what is obtained today with modern
force sensor
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Fig. 22. Force spectra. Dotted line: measured by the piezoelectric sensor—solid line: identified by FAT from velocity-to-velocity holography.

Up: measurements at 1 cm—down: measurements at 5 cm.
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equipment. The result is excellent, except in the low frequency domain (fo300 Hz), because the area becomes too small in
comparison with the wavelength. Indeed, when the window is shorter than one wavelength, the entire force distribution is
weighed and the result is underestimated. To overcome this limitation, a larger measurement area is needed.

Concerning FAT on pressure-to-velocity NAH predictions, Fig. 21 allows concluding on the possibility of reconstructing
the excitation provided the distance between the structure and measurements is very small. Generally, this approach gives
poor quality, but it has the advantage of using microphones which are cheaper than a scanning laser vibrometer or acoustic
velocity sensors.

Lastly, Fig. 22 shows that FAT applied on back-propagated acoustic velocity measured by a Microflown p-U probe gives
good quality. For a distance of 1 cm (at the top) the differences between curves are comparable to those obtained with the
laser vibrometer (Fig. 20). At 5 cm, quality is lower and the force magnitude is underestimated in a wider frequency band
(fo1500 Hz). However, the quality is generally good, so that measurements at this distance are conceivable.
5. Conclusion

FAT is a technique that allows locating and identifying vibration excitations in the displacement field of a structure. The
method requires numerous vibration responses on a given meshgrid. Contactless measurements are investigated in this
paper in order to overcome the difficulty of measurement. The aim was to study the possibility of using acoustic
holography so that structure displacement fields can be identified with a movable antenna. The structure studied is a
suspended plate excited by a shaker and the test consists in identifying the position and the value of the force. Three kinds
of measurements were performed: plate velocities by classic laser measurements, sound pressures at 1 and 5 cm from the
plate and acoustic particle velocities at 1 and 5 cm from the plate using the recent sensors developed by Microflown
Technologies. Localizations and force identifications lead to the same observations. Firstly, pressure-to-velocity holography
can be used, but the distance to the plate must be small. Here, holography can be considered as being similar to a
conversion of pressures into velocities. Secondly, velocity-to-velocity holography gives very good results, comparable to
those obtained by a laser vibrometer. Here, holography can be seen as back-propagation, making it possible to consider
longer distances from the structure. Therefore the use of p-U probe technology is particularly interesting due to its ease of
use.

The test considered is of course restricted to point force identification and its generalization to all kinds of excitation is
certainly the first direction that should be explored. Other deterministic excitations (such as moments, distributions, etc.)
should not be a problem, since FAT is capable of reconstructing a spatially correlated force distribution as a quantity.
However, when excitations are uncorrelated (such as turbulent boundary layer excitation), the method cannot be used as it
is, but the advantage of contactless measurement with an antenna is that it can acquire fields simultaneously and the same
technique developed here can be applied in the temporal domain.

The outlook for further research is promising for other similar techniques. For example, acoustic back-propagations can
also be performed by the inverse BEM (boundary element method) method [19], facilitating measurements on geometries
different to a plane. Also, the improvement of FAT for use on complex structures by using FEM modeling is an interesting
challenge, leading to the extension of the approach to all radiating structures.
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