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a b s t r a c t

A methodology is developed to solve the modal frequency response problem for the

structural system with partially distributed structural and viscous damping materials

and/or components. For the problems of interest, it is noted that the finite element

viscous and structural damping matrices are typically very sparse, so the rank of the

matrices are identified with the singular value decomposition (SVD) method. Then the

modal frequency response problem is reformulated with the low rank matrices obtained

from the SVD method. The strategy of the new approach is to compute the modal

solution using the Sherman–Morrison–Woodbury formula for the inverse of equation

which is subjected to low rank modifications, instead of factoring the coefficient matrix

at each excitation frequency. Numerical results are presented to validate and assess the

proposed approach, and the advantages of this method are examined.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As part of a structural evaluation, a steady-state response of the structural system has been carried out in the frequency
domain. Today, the determination of frequency response behavior for structures is performed with the finite element (FE)
method, but the frequency response analysis in terms of all of the finite element degrees of freedom in the millions has
been prohibitive for large scale structures. Instead, industry has performed the frequency response analysis using the
modal analysis [1].

For a system without damping or with proportional damping, it is trivial to solve the modal frequency response problem
because the coefficient matrix becomes uncoupled [2]. However, because the dynamic response of structural system is
susceptible to damping effects [3], it is essential to describe realistic damping distribution.

The non-proportional damping can describe the realistic damping of structures. The non-proportional damping results
in a coupled problem in the modal formulation.

With most structures, a relatively small amount of non-proportional damping provides a large reduction in stress and
deflection by dissipating energy from the structure. Viscous and structural damping are the most commonly used types of
non-proportional damping [3]. Generally, the energy loss of elastic materials is described by the structural damping. One of
the most common types of the viscous damping is a piston that is attached to the structural body and is arranged to move
through liquid or air in a cylinder or bellows. When these non-proportional dampings are considered in the finite element
model, the corresponding coupled modal frequency response problem has been solved with either direct methods or
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iterative methods. These approaches, however, are too expensive for large scale FE models that require more than
thousands of modes to represent the dynamic responses [1,4].

Recently, an efficient algorithm, fast frequency response analysis (FFRA) algorithm, is developed for modal frequency
response analysis considering the structural damping [1] and viscous damping [5], in which the FFRA algorithm
dramatically improved the performance of the modal frequency response analysis compared to conventional approaches
[2]. In this approach, the complex symmetric matrix eigenvalue problem is required regardless of the way of damping
distribution. However, the complex symmetric matrix eigenvalue problem still requires more reliable mathematical theory
due to quasi-null condition and an expensive computation cost [6,7].

This paper presents a new algorithm as an extension of the FFRA algorithm for the dynamic response analysis in the
frequency domain to consider the partially damped structural system with viscous and structural damping, which is a
realistic situation in structural systems. The advantage of this new approach is that it does not require the complex
symmetric eigenvalue problem any more, which is the most expensive part in the FFRA algorithm [1]. The accuracy and
efficiency are demonstrated by a real industry vehicle finite element model.

2. Problem formulation

The forced vibration equations of motion for damped structures discretized by the finite element method are

½M� €xðtÞ þ ½B� _xðtÞ þ ð1þ igÞ½K�xðtÞ þ i½Ks�xðtÞ ¼ pðtÞ (1)

where the scalar g is a global structural damping coefficient and i ¼
ffiffiffiffiffiffiffi
�1
p

. ½M�, ½B�, ½K�, and ½Ks� 2 R
n�n are the finite element

mass, non-proportional viscous damping, stiffness matrix, and local structural damping matrix, respectively. The finite
element local structural damping matrix ½Ks� represents localized deviations of specific elements from the global structural
damping g.

In a structural system, a damping treatment consists of any material, combination of materials, or components in order
to increase its ability to dissipate mechanical energy. The focus of this paper is to consider a structural system that consists
of only a few damping materials or components. Fig. 1 illustrates a structural system finite element model, which has a
large number of finite element degrees of freedom, but only a few degrees of freedom for the structural and viscous
damping finite elements. In this case, it is noted that the finite element viscous and structural damping matrices are
typically very sparse for problems of interest in structural systems, which results in the low rank of finite element viscous
and structural damping matrices. For example, in full or large scale vehicle finite element model, the small number of
viscous damping finite element elements, which describes engine mounts and shock absorbers, and structural damping
finite element elements, which describes floor and suspension spring system, are used.

In order to obtain the frequency response formulation for the equations of motion (1), we assume a harmonic solution of
the form xðtÞ ¼ XðoÞ eiot 2 Cn�nf for a harmonic excitation pðtÞ ¼ PðoÞ eiot 2 Cn�nf , in which o is the radian frequency of
time-harmonic excitation and nf is the number of load cases. When the first and second derivatives of xðtÞ are substituted
into Eq. (1), the following is obtained after dividing by eiot:

f�o2½M� þ io½B� þ ð1þ igÞ½K� þ i½Ks�gXðoÞ ¼ PðoÞ (2)

This is a system of equations for the direct frequency response analysis. For excitations PðoÞ 2 Cn�nf , the frequency
responses XðoÞ 2 Cn�nf are calculated at each excitation frequency o by solving a set of complex linear equations (2).

Recently, the size n of FE models increases to over millions of degrees of freedom as the accuracy requirement of analysis
increases. However, solving these very large FE systems of equations at many frequencies has been prohibitive because CPU
time, memory, and data I/O are limited, even though this method is very straightforward. Instead, modal frequency
response analysis has been used [1,5].

To formulate the modal frequency response problem, the frequency response problem (2) is projected onto the space
spanned by eigenvectors in ½F� 2 Rn�m of a partial eigensolution of the generalized eigenvalue problem ½K�½F� ¼ ½M�½F�½L�,
in which ½L� 2 Rm�m is a eigenvalue matrix and m is the number of modes obtained up to cutoff frequency ðm5nÞ [1]. By
M, K, γ

B
KS

Fig. 1. A large scale finite element model with only a few viscous and structural damping elements.
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substituting XðoÞ ¼ ½F�ZðoÞ and premultiplying by ½F�T, the modal frequency response problem is represented as

f�o2½I� þ io½B̄� þ ð1þ igÞ½L� þ i½K̄s�gZðoÞ ¼ FðoÞ (3)

where the mass and stiffness matrices are diagonalized, ½F�T½M�½F� ¼ ½I� and ½F�T½K�½F� ¼ ½L�, as a result of the mode
orthogonality and mass normalization, and FðoÞ ¼ ½F�TPðoÞ 2 Cm�nf . However, the modal viscous and structural damping
matrices, ½B̄� ¼ ½F�T½B�½F�, ½K̄s� ¼ ½F�T½Ks�½F� 2 Rm�m are still fully populated matrices, which results in still expensive cost to
solve Eq. (3) due to Oðm3Þ operations to factor the coefficient matrix at each excitation frequency o.

3. Modal frequency response analysis for a partially damped structure

For the partially damped structures with viscous and structural damping, which are the problems of interest in this
paper, the corresponding finite element matrices ½B� and ½Ks� result in very sparse. This fact implies that the rank of the
viscous and structural damping matrices become very low compared to the mass and stiffness matrices. Therefore, it is
essential to identify the rank of these non-proportional damping matrices. Conventionally, the rank of matrix can be
obtained with singular value decomposition (SVD) method [8]. An asymmetric matrix should be added to the viscous
damping matrix ½B� when gyroscopic effects are considered.

First, ½B� and ½Ks� are condensed to ½B�c 2 Rb�b and ½Ks�
c 2 Rs�s that contain only non-zero rows and columns of the finite

element matrix ½B� and ½Ks�, respectively. Generally b, which is non-zero rows and columns of ½B�, and s, which is non-zero rows
and columns of ½Ks�, are much smaller than n since ½B� and ½Ks� are very sparse for the problem of interest in this paper. Using the
condensed matrices, the modal viscous damping matrix ½B̄� and the modal structural damping matrix ½K̄s� can be rewritten as

½B̄� ¼ ½Fb�
T½B�c½Fb� (4)

½K̄s� ¼ ½Fs�
T½Ks�

c½Fs� (5)

in which ½Fb� 2 R
b�m and ½Fs� 2 R

s�m contain rows of F which correspond to non-zero elements in ½B� and ½Ks�, respectively.
Then, instead of applying the SVD method to the FE matrices ½B� and ½Ks� 2 R

n�n directly, the SVD method for the
condensed viscous and structural damping matrices is performed as

½B�c ¼ ½Ub�½Sb�½Vb�
T (6)

½Ks�
c ¼ ½Us�½Ss�½Vs�

T (7)

in which ½Sb� 2 R
rb�rb and ½Ss� 2 R

rs�rs are the diagonal matrix of singular values for ½B�c and ½Ks�
c , respectively, in which rb

and rs are the rank of ½B�c and ½Ks�
c . ½Ub� and ½Vb� 2 R

b�rb are orthogonal matrices for ½B�c, and ½Us� and ½Vs� 2 R
s�rs are

orthogonal matrices for ½Ks�
c.

By substituting Eqs. (6) into (4), and (7) into (5), the modal damping matrices ½B̄� and ½K̄s� can be represented as

½B̄� ¼ ½Fb�
Tð½Ub�½Sb�½Vb�

TÞ½Fb� (8)

½K̄s� ¼ ½Fs�
Tð½Us�½Ss�½Vs�

TÞ½Fs� (9)

Finally, with Eqs. (8) and (9), the modal frequency response problem (3) is rewritten as

�o2½I� þ ð1þ igÞ½L� þ ½FT
bUb;F

T
s Us�

ioSb 0

0 iSs

" #
VT

bFb

VT
sFs

2
4

3
5

8<
:

9=
;ZðoÞ ¼ FðoÞ (10)

For simplicity, the modal frequency response problem (10) can be represented in the form

ð½DðoÞ� þ ½U�½SðoÞ�½V �TÞZðoÞ ¼ FðoÞ (11)

where

½DðoÞ� ¼ �o2½I� þ ð1þ igÞ½L� 2 Cm�m (12)

½U� ¼ ½FT
bUb;F

T
s Us� 2 R

m�r (13)

½V �T ¼
VT

bFb

VT
sFs

2
4

3
5 2 Rr�m (14)

½SðoÞ� ¼
ioSb 0

0 iSs

" #
2 Cr�r (15)

and r ¼ rb þ rs.
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Table 1
The FFRA algorithm for the dynamic response analysis of the partially damped structure in the frequency domain.

Form the frequency independent matrices

(1a) form ½B�c

(1b) ½B�c ¼ ½Ub�½Sb�½Vb�
T

(1c) form ½Fb�

(2a) form ½Ks�
c

(2b) ½Ks�
c ¼ ½Us�½Ss�½Vs�

T

(2c) form ½Fs�

(3) form ½D�; ½U�; ½V �, and ½S�

Frequency loop:

for i ¼ 1;2; . . . ;nfreq

(4a) P1 ¼ ½D�
�1FðoÞ

(5a) Q1 ¼ ½V �
T½D��1FðoÞ

(5b) Q2 ¼ ð½S��1 þ ½V �T½D��1½U�Þ�1Q1

(5c) P2 ¼ ½D�
�1½U�Q2

(6) ZðoÞ ¼ P1 � P2

end for

[B] [B]c

Fig. 2. The sparsity of the finite element viscous damping matrix ½B� and the corresponding condensed viscous damping matrix ½B�c (dot: non-zero entry).
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The strategy to compute the modal solution ZðoÞ is to use the Sherman–Morrison–Woodbury (SMW) formula [8] for the
inverse of coefficient matrix in Eq. (11), which is subjected to low rank modifications, instead of factoring the coefficient
matrix of Eq. (11) with Oðm3Þ operations at each excitation frequency o. The general form of the Sherman–Morrison–
Woodbury formula [8,9] is

ðAþ X1GXT
2Þ
�1 ¼ A�1

� A�1X1ðG
�1
þ XT

2A�1X1Þ
�1XT

2A�1 (16)

Then, the modal solution ZðoÞ can be expressed in the form

ZðoÞ ¼ ð½D� þ ½U�½SðoÞ�½V �TÞ�1FðoÞ

¼ f½D��1 � ½D��1½U�ð½S��1 þ ½V �T½D��1½U�Þ�1½V �T½D��1gFðoÞ (17)

Once the modal solution ZðoÞ is obtained efficiently, because the inversion of ð½S��1 þ ½V �T½D��1½U�Þ 2 Cr�r and other
matrix multiplications are inexpensive due to r5m, the frequency response in the finite element dimension can be
obtained from XðoÞ ¼ ½F�ZðoÞ. Table 1 summarizes the details of the FFRA algorithm for the frequency response analysis of
partially damped structure.

4. Numerical example and discussion

The newly developed FFRA algorithm for a partially damped structure is validated with an industry passenger
automobile finite element model that has 1.3 million degrees of freedom in FE dimension. A commercial FE software
NASTRAN [10] is used to model this automobile model. The frequency range of interest is from 1 to 500 Hz with a 1 Hz
increment, so that the global cutoff frequency is set to 750 Hz. The numbers of global modes m obtained from the
generalized eigenvalue problem KF ¼ MFL is 3361.

In this FE model, only four viscous damping FE elements and four structural damping FE elements are used to model
engine mounts and the suspension springs, respectively. In this FE model, the viscous and structural damping are described
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with one-dimensional linear FE element, so that the size of each FE damping matrix results in 2� 2 [11]. Fig. 2 illustrates
the concept of the sparsity of the FE viscous damping matrix ½B� of order n, which has only 16 non-zero entries, and the
condensed viscous damping matrix ½B�c , in which the dimension b becomes 8. Similarly, the FE structural damping matrix
½Ks� is reduced to ½Ks�

c , in which the dimension s results in 8.
Once the condensed matrices, ½B�c and ½Ks�

c , are obtained, the rank of each matrix is computed. The rank of the
condensed viscous and structural damping matrix, rb and rs, is identified as 8 and 8, respectively. The computational costs
of the singular value decomposition to identify the rank of matrices are very inexpensive, at most Oðr3

b
Þ and Oðr3

s Þ, because
the size of the condense matrices is very small compared to the size n of FE matrices, that is, rb5n and rs5n.

Based on the singular values and orthogonal matrices obtained from the singular value decomposition of ½B�c and ½Ks�
c ,

the modal frequency response problem is reformulated as expressed in Eq. (11). Because this FE model does not include any
gyroscopic effect, ½U� and ½V � are the same. Then, the Sherman–Morrison–Woodbury formula is employed to invert the
coefficient matrix. Note that, in Eq. (17), the inversion of diagonal matrix ½D� is trivial, and the inversion of ð½S��1 þ

½U�T½D��1½U�Þ is also very economical since the dimension, r ¼ rb þ rs, is only 16. Therefore, it is expected that the total cost
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Fig. 3. Dynamic response of displacement in the frequency domain for the FE model. (a) point 1, (b) point 2.

Table 2
Elapsed time of the modal frequency response analysis for the FE model.

FFRA Direct method (ZSYSV)

elapsed time 2 min 13 sec 1 hr 27 min 52 sec
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to solve the modal frequency response problem with the new approach can be significantly reduced compared to the
traditional approach that factorize the coefficient matrix at each frequency with Oðm3Þ operations, in which m is 3361.

Table 2 shows the elapsed time of the modal frequency response analysis (3) with the direct method, ZSYSV in LAPACK
[12], and the modal frequency response analysis (17) with the FFRA algorithm. An HP rx5670 with 900 MHz Itanium II
processor is used to validate the performance and accuracy of the FFRA algorithm. The FFRA algorithm reduced the
computational cost, 97.5 percent, compared to the direct method ZSYSV in LAPACK, in which the coefficient matrix is
factored at each frequency.

The magnitude of dynamic response in displacement from the FFRA is compared to the results from the direct method
ZSYSV in LAPACK in order to validate the accuracy of the FFRA algorithm. Both Figs. 3(a) and (b) show that the FFRA
algorithm produce the same results as the direct method. It is obvious outcome because the FFRA algorithm is an efficient
problem reformulation [1,5], not an approximation, to obtain a high performance.

5. Conclusions

The fast frequency response analysis algorithm is extended to solve the modal frequency response problem for the
structural system with partially distributed structural and viscous damping materials. In this structural system, the finite
element viscous and structural damping matrices are typically very sparse, so that the rank of the matrices results in low.
Then the modal frequency response problem is reformulated with the low rank matrices of the non-proportional damping,
which is obtained from the singular value decomposition method. The reformulated problem is solved with the
Sherman–Morrison–Woodbury formula, so the modal response solution is obtained inexpensively without factoring the
coefficient matrix at each excitation frequency. Numerical results show that the FFRA algorithm improves the performance
significantly, while providing the same accuracy as the direct method.
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